Press Releases

Organic Solar Cells and Light-emitting Diodes United: TUD Physicists Enlighten Us

Published on in PRESS RELEASES

(Press release from TU Dresden; Deutsche Version unter "read more")

In the past 25 years of research on organic semiconductors, it was thought that organic solar cells and organic light-emitting diodes (OLEDs) could not be combined in a single device. A team of physicists headed by Prof. Koen Vandewal from Technische Universität Dresden has now succeeded in manufacturing an organic solar cell that simultaneously functions as an efficient OLED. Their findings were recently published in the internationally renowned journal Nature Materials.


A fundamental loss mechanism in semiconductors is the emission of light to maintain the thermodynamic balance between the material and its environment. Precisely this balance between light absorption and light emission in semiconductors is responsible for the fact that "an ideal solar cell is also an ideal light-emitting diode," says Johannes Benduhn, reiterating the basic assumption by the Organic Solar Cells (OSOL) group at the Institute of Applied Physics.

However, organic solar cells are subject to further loss mechanisms which have challenged this assumption until now. Instead of generating light, a large part of charge carriers recombines in the form of heat ("non-radiative"). This leads to a lower voltage and consequently a reduction of the power conversion efficiency, one of the main reasons why organic solar cells are not as efficient as established technologies you can currently find on rooftops. With the newly developed organic solar cells, the OSOL Group was able to keep these voltage losses comparatively low and thus pave the way for higher efficiency and completely new fields of application.

The international research team has succeeded in developing combinations of organic semiconductors based on electron acceptor and electron donor heterojunctions that function as both solar cells and LEDs. The results of this research significantly extend the current understanding of organic semiconductors and combine the physical description of organic solar cells and OLEDs for the first time.

These findings will contribute to the development of more energy-efficient OLEDs in smartphone displays or television screens. The newly developed photovoltaic devices can be used for the efficient conversion of ultraviolet and blue photons into electrical power, e.g. in indoor applications for the electrical supply of Internet-of-Things devices or as semi-transparent solar cells in glass facades.

 

The Organic Solar Cell (OSOL) Group at TU Dresden’s Institute of Applied Physics

The OSOL group is part of the Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and the Institute of Applied Physics of TU Dresden.  The group was formerly headed by Prof. Koen Vandewal, who is now teaching and conducting research at the University of Hasselt in Belgium. One research focus of the OSOL group is photoactive organic semiconductors and their application in solar cells and photodetectors. They are currently conducting research on topics such as fundamental recombination processes, the development and synthesis of new materials, the design of new device architectures and the optimisation of organic solar cells.

 

Original Publication:

Sascha Ullbrich, Johannes Benduhn, Xiangkun Jia, Vasileios C. Nikolis, Kristofer Tvingstedt, Fortunato Piersimoni, Steffen Roland, Yuan Liu, Jinhan Wu, Axel Fischer, Dieter Neher, Sebastian Reineke, Donato Spoltore and Koen Vandewal, Emissive and charge-generating donor–acceptor interfaces for organic optoelectronics with low voltage losses. Nature Materials 2019 (https://doi.org/10.1038/s41563-019-0324-5)

 

Media enquiries:

Johannes Benduhn
Institute of Applied Physics
Tel: +49 351 463-36446
johannes.benduhn@tu-dresden.de

 


(Deutsche Version)

Organische Solarzellen und Leuchtdioden in einem: TUD-Physiker zeigen, wie es geht

In der organischen Halbleiterforschung der vergangenen 25 Jahre galten organische Solarzellen und organische Leuchtdioden (OLEDs) als nicht vereinbar in einem Bauelement.  Einem Team von Physikern unter Leitung von Prof. Koen Vandewal von der Technischen Universität Dresden ist es nun gelungen, organische Solarzellen herzustellen, die auch als effiziente OLEDs funktionieren. Diese Erkenntnisse wurden kürzlich im international renommierten Journal Nature Materials veröffentlicht.

Ein fundamentaler Verlustmechanismus in Halbleitern ist das Aussenden von Licht zum Erhalt des thermodynamischen Gleichgewichts zwischen Material und Umgebung. Genau dieses Gleichgewicht zwischen der Lichtabsorption und -emission in den Halbleitern ist demnach dafür verantwortlich, dass „eine ideale Solarzelle auch eine ideale Leuchtdiode ist“, erläutert Johannes Benduhn die Grundannahme der Organischen Solarzellen (OSOL) Gruppe am Institut für Angewandte Physik.

Es treten bei organischen Solarzellen allerdings weitere Verlustmechanismen auf, die dieser Annahme bisher entgegenstanden. Diese Mechanismen bewirken die Rekombination von Ladungsträgern in Form von Wärme, ohne das Aussenden von Licht („nichtstrahlend“) und verringern damit die abgreifbare Spannung und folglich den Wirkungsgrad der Solarzelle. Diese nichtstrahlenden Spannungsverluste sind einer der Hauptgründe für die niedrigeren Wirkungsgrade organischer Solarzellen im Vergleich zu etablierten Technologien, die aktuell auf Hausdächern verwendet werden. Bei den neu entwickelten organischen Solarzellen konnte die OSOL-Gruppe diese Spannungsverluste vergleichsweise gering halten und damit den Weg für effiziente und völlig neue Anwendungsgebiete ebnen.

Dem internationalen Forscherteam ist es gelungen, Kombinationen von organischen Halbleitern zu entwickeln, die auf Elektronenakzeptor- und -donatorübergängen beruhen und sowohl als Solarzelle als auch LED funktionieren. Die Ergebnisse aus dieser Forschungsarbeit erweitern das bisherige Verständnis von organischen Halbleitern. Sie vereinen erstmals die physikalische Beschreibung von organischen Solarzellen und OLEDs.

Handelsübliche OLEDs in Smartphone-Displays oder Fernsehbildschirmen lassen sich durch diese Erkenntnisse künftig energieeffizienter gestalten. Die entwickelten organischen Solarzellen können auch für die effiziente Umwandlung von ultravioletten und blauen Photonen in elektrische Leistung Verwendung finden, z.B. in Indoor-Anwendungen für die elektrische Versorgung von Internet-of-things Geräten oder als semi-transparente Solarzellen in Glasfassaden.

 

Die Organische Solarzellen (OSOL) Gruppe am Institut für Angewandte Physik der TU Dresden

Die OSOL-Gruppe ist Teil des Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) und des Instituts für Angewandte Physik der Technischen Universität Dresden. Sie wurde bisher von Prof. Koen Vandewal geleitet, der mittlerweile an der University of Hasselt in Belgien forscht und lehrt. Ein Forschungsfokus der OSOL-Gruppe sind photo-aktive organische Halbleiter und deren Anwendung in Solarzellen und Photodetektoren. Aktuelle Arbeitsschwerpunkte sind grundlagenorientierte Rekombinationsprozesse, Entwicklung und Synthese neuer Materialien, Design neuer Bauteilarchitekturen und die Optimierung von organischen Solarzellen.

 

Originalveröffentlichung:

Sascha Ullbrich, Johannes Benduhn, Xiangkun Jia, Vasileios C. Nikolis, Kristofer Tvingstedt, Fortunato Piersimoni, Steffen Roland, Yuan Liu, Jinhan Wu, Axel Fischer, Dieter Neher, Sebastian Reineke, Donato Spoltore and Koen Vandewal, „Emissive and charge-generating donor–acceptor interfaces for organic optoelectronics with low voltage losses.“ Nature Materials 2019: https://doi.org/10.1038/s41563-019-0324-5

 

Informationen für Journalisten:

Johannes Benduhn
Institut für Angewandte Physik
Tel: +49 351 463-36446
johannes.benduhn@tu-dresden.de

 

Bildunterschrift:

Strom-Spannungskennlinie einer organischen, optoelektronischen Diode, die ultraviolette und blaue Photonen absorbiert. Unterhalb der Leerlaufspannung funktioniert die Diode als Solarzelle und oberhalb als OLED. Die Molekülstrukturen zeigen die Ladungsträgerverteilung in den verwendeten organischen Halbleitern: BF-DPB (Elektronendonator) und B4PYMPM (Elektronenrezeptor) Visualisierung von Dr. Reinhard Scholz und Matteo Cucch

Go back