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Abstract in English

Life presents fascinating examples of self-organization and emergent phenomena. In

multi-cellular organisms, a multitude of cells interact to form and maintain highly complex body

plans. This requires reliable communication between cells on various length scales. First, there

has to be the right number of cells to preserve the integrity of the body and its size. Second,

there have to be the right types of cells at the right positions to result in a functional body

layout. In this thesis, we investigate theoretical feedback mechanisms for both self-organized

body plan patterning and size control.

The thesis is inspired by the astonishing scaling and regeneration abilities of flat-

worms. These worms can perfectly regrow their entire body plan even from tiny amputation

fragments like the tip of the tail. Moreover, they can grow and actively de-grow by more than a

factor of 40 in length depending on feeding conditions, scaling up and down all body parts while

maintaining their functionality. These capabilities prompt for remarkable physical mechanisms

of pattern formation.

First, we explore pattern scaling in mechanisms previously proposed to describe bi-

ological pattern formation. We systematically extract requirements for scaling and highlight

the limitations of these previous models in their ability to account for growth and regeneration

in flatworms. In particular, we discuss a prominent model for the spontaneous formation of

biological patterns introduced by Alan Turing. We characterize the hierarchy of steady states

of such a Turing mechanism and demonstrate that Turing patterns do not naturally scale.

Second, we present a novel class of patterning mechanisms yielding entirely self-

organized and self-scaling patterns. Our framework combines a Turing system with our

derived principles of pattern scaling and thus captures essential features of body plan regenera-

tion and scaling in flatworms. We deduce general signatures of pattern scaling using dynamical

systems theory. These signatures are discussed in the context of experimental data.

Next, we analyze shape and motility of flatworms. By monitoring worm motility, we can

identify movement phenotypes upon gene knockout, reporting on patterning defects in the lo-

comotory system. Furthermore, we adapt shape mode analysis to study 2D body deformations,

which enables us to characterize two main motility modes of the worms: a smooth gliding mode

due to the beating of their cilia and an inchworming behavior based on muscle contractions.

Additionally, we apply this technique to investigate shape variations between different flatworm

species. With this approach, we aim at relating form and function in flatworms.

Finally, we investigate the metabolic control of cell turnover and growth. We estab-

lish a protocol for accurate measurements of growth dynamics in flatworms. We discern three

mechanisms of metabolic energy storage; theoretical descriptions thereof can explain the ob-

served organism growth by rules on the cellular scale. From this, we derive specific predictions

to be tested in future experiments.

In a close collaboration with experimental biologists, we combine minimal theoret-

ical descriptions with state-of-the-art experiments and data analysis. This allows us

to identify generic principles of scalable body plan patterning and growth control in flatworms.
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Zusammenfassung auf Deutsch

Die belebte Natur bietet uns zahlreiche faszinierende Beispiele für die Phänomene

von Selbstorganisation und Emergenz. In Vielzellern interagieren Millionen von Zellen

miteinander und sind dadurch in der Lage komplexe Körperformen auszubilden und zu er-

halten. Dieses konzertierte Handeln verlangt eine zuverlässigen Kommunikation zwischen den

Zellen auf verschiedenen Längenskalen. Einerseits ist stets die richtige Zellanzahl erforderlich,

sodass der Körper intakt bleibt und seine Grösse erhält. Anderseits muss für einen funktions-

tüchtigen Körper der richtige Zelltyp an der richtigen Stelle zu finden sein. In der vorliegenden

Dissertation untersuchen wir beide Aspekte, die Kontrolle von Wachstum sowie die selbstor-

ganisierte Ausbildung des Körperbaus.

Die Dissertation ist inspiriert von den erstaunlichen Skalierungs- und Regene-

rationsfähigkeiten von Plattwürmern. Diese Würmer können ihren Körper selbst aus

winzigen abgetrennten Fragmenten – wie etwa der Schwanzspitze – komplett regenerieren.

Darüberhinaus können sie auch, je nach Fütterungsbedingung, um mehr als das 40fache in der

Länge wachsen oder schrumpfen und passen dabei alle Körperteile entsprechend an, wobei deren

Funktionalität erhalten bleibt. Diese Fähigkeiten verlangen nach bemerkenswerten physikali-

schen Musterbildungsmechanismen.

Zunächst untersuchen wir das Skalierungsverhalten von früheren Ansätzen zur

Beschreibung biologischer Musterbildung. Wir leiten daraus Voraussetzung für das

Skalieren ab und zeigen auf, dass die bekannten Modelle nur begrenzt auf Wachstum und

Regeneration von Plattwürmern angewendet werden können. Insbesondere diskutieren wir

ein wichtiges Modell für die spontane Entstehung von biologischen Strukturen, das von Alan

Turing vorgeschlagen wurde. Wir charakterisieren die Hierarchie von stationären Zuständen

solcher Turing Mechanismen und veranschaulichen, dass diese Turingmuster nicht ohne weiteres

skalieren.

Daraufhin präsentieren wir eine neuartige Klasse von Musterbildungsmechanis-

men, die vollständig selbstorgansierte und selbstskalierende Muster erzeugen. Unser

Ansatz vereint ein Turing System mit den zuvor hergeleiteten Prinzipien für das Skalieren von

Mustern und beschreibt dadurch wesentliche Aspekte der Regeneration und Skalierung von

Plattwürmern. Mit Hilfe der Theorie dynamischer Systeme leiten wir allgemeine Merkmale von

skalierenden Mustern ab, die wir im Hinblick auf experimentelle Daten diskutieren.

Als nächstes analysieren wir Form und Fortbewegung der Würmer. Die Auswer-

tung des Bewegungsverhaltens, nachdem einzelne Gene ausgeschaltet wurden, ermöglicht Rück-

schlüssse auf die Bedeutung dieser Gene für den Bewegungsapparat. Darüber hinaus wenden

wir eine Hauptkomponentenanalyse auf die Verformungen des zweidimensionalen Wurmkörpers

während der Fortbewegung an. Damit sind wir in der Lage, zwei wichtige Fortbewegungsstrate-

gien der Würmer zu charakterisieren: eine durch den Zilienschlag angetriebene gleichmässige

Gleitbewegung und eine raupenartige Bewegung, die auf Muskelkontraktionen beruht. Zusätz-

lich wenden wir diese Analysetechnik auch an, um Unterschiede in der Gestalt von verschiede-

nen Plattwurmarten zu untersuchen. Grundsätzlich zielen alle diese Ansätze darauf ab, das

Aussehen der Plattwürmer mit den damit verbundenen Funktionen verschiedener Körperteile

in Beziehung zu setzen.
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Schlussendlich erforschen wir den Einfluss des Stoffwechsels auf den Zellaustausch

und das Wachstum. Dazu etablieren wir Messungen der Wachstumsdynamik in Plattwürmern.

Wir unterscheiden drei Mechanismen für das Speichern von Stoffwechselenergie, deren theoreti-

sche Beschreibung es uns ermöglicht, das beobachtete Wachstum des Organismus mit dem Ver-

halten der Zellen zu erklären. Davon ausgehend leiten wir Vorhersagen ab, die in der Zukunft

experimentell getestet werden.

In enger Zusammenarbeit mit Kollegen aus der experimentellen Biologie führen wir

minimale theoretische Beschreibungen mit modernsten Experimenten und Analyse-

techniken zusammen. Dadurch sind wir in der Lage, Grundlagen sowohl der skalierbaren

Ausbildung des Körperbaus als auch der Wachstumskontrolle bei Plattwürmern herauszuar-

beiten.
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1. Introduction

1.1. Development, growth and regeneration

The world around us is populated by a great variety of organisms of very different

shapes, sizes and levels of complexity. Many of the most complex organisms, including

“Cell and tissue, shell and bone, leaf and flower,
... Their problems of form are in the first in-
stance mathematical problems, their problems of
growth are essentially physical problems, and the
morphologist is, ipso facto, a student of physical
science.” — D’Arcy W. Thompson, On Growth
and Form, 1945 (217)

humans, develop from a single fertilized egg cell,

see Fig. 1.1(a). The egg divides multiple times

to give rise to the many cells that form the dif-

ferent tissues of the adult organism (68, 244).

This embryonic development results in a well-

defined body plan of the organism, which eventu-

ally can reproduce again. One important aspect

of development is growth, i.e. the increase in organism size. The growth at the scale of

the organism follows from processes at the cellular scale: (i) an increase in cell number

by cell division, (ii) an increase in cell size by cellular growth and (iii) an increase in

the extra-cellular material (244).

During most of its lifetime, an organism maintains shape and function of its body,

despite the fact that cells continuously become damaged and get lost (68, 158, 244).

This homeostasis requires the sustained addition of new cells by cell division as well

as mechanisms of controlled cell death such as apoptosis. Importantly, the turnover

processes have to be well orchestrated at the cell, tissue and organism level. Imperfect

homeostasis results in aging of the organism (158).

Furthermore, many organisms can regenerate after injury to some extent, see Fig. 1.1(b)

(68, 184, 244). Regeneration refers to de-novo formation of large parts of tissues and

organs that have been damaged or lost. In contrast to embryonic development, which

comprises a fixed sequence of morphogenetic events starting from the fertilized egg as

a well-defined initial condition, the starting point of regeneration strongly depends on

the injury and is thus variable. It is a major question to what extent both processes

are guided by the same principles and depend on the same mechanisms (184).

The ability to reproduce and the permanent struggle against decay are important cha-

racteristics of life in general (192). We are only beginning to understand the respective

1



1. INTRODUCTION

Figure 1.1.: (a) Human development starts from a single fertilized egg cell, from

which the body plan emerges and grows to its final size. (b) Many multi-cellular

organisms like lizards and salamanders can regenerate major parts of their body.

processes of development, growth and regeneration in simple model systems with the

help of modern molecular biology. In this thesis, we combine minimal theoretical de-

scriptions with the analysis of biological data in flatworms as model systems in order

to extract fundamental physical principles for body plan patterning and growth control

in multicellular organisms.

1.1.1. From cells to tissues to organisms

The question of how an organism forms has puzzled natural philosophers and researchers

for more than two millennia. It was Aristotle who performed one of the earliest do-

cumented experiments in developmental biology in 350 BC (68, 216, 244). He opened

chicken eggs at various time intervals after fertilization and observed that the embryo

gradually resembles a chicken. The gradual formation of an organism, called epige-

nesis, was confronted with the alternative hypothesis of preformation (68, 244). The

latter assumes a completely pre-formed miniature body which then only grows. Despite

the work of Aristotle, the theory of preformation was still prevalent in Europe until the

18th century and is embodied in the idea of the “homunculus”, the tiny version of a

2



1.1 Development, growth and regeneration

person encapsulated in the sperm cell (68, 228, 244). Later a related discussion arose

about the concepts of pre-encoded and emergent complexity, as will be mentioned below

(188).

The basic building blocks of higher order organisms are the cells, which come at very

different shapes and sizes (68, 244). For example, a muscle cell and a blood cell have a

completely different appearance and very different properties but they both originate

from a single egg cell, which has divided many times to give rise to all the cells of

the body (68, 244). The cells become committed to fulfill specific tasks and change

their properties during the process of differentiation. Uncommitted cells that can

differentiate into other cell types are called stem cells. Often, there are also tissue-

specific stem cells that are already partially committed and can only turn into a subset

of cell types. In some organisms, differentiated cells are able to de-differentiate into less

committed cells (15, 214).

During embryonic development and regeneration, cells differentiate and organize in a

position dependent manner to form a well-defined body plan. Most modern animals

are Bilaterians, characterized by three main body axis, see Fig. 1.2(a): the anterior-

posterior axis from tail to head, the dorso-ventral axis from the front to the backside

and a mirror symmetric medio-lateral axis (141). Yet, how is the cellular behavior

choreographed with respect to this internal coordinate system?

With the advancements in light microscopy and the ability to observe microscopic

structures, biologists could address this question and perform experiments, in which

they selectively perturbed a specific part of an organism in order to reveal its functions

in body plan patterning (42, 68, 108, 125, 128, 244). As a result, biological research

changed from a descriptive to an experimental science. Here, we will highlight three

early experiments by Chabry, Driesch and Morgan to discuss important concepts of

morphogenesis.

Chabry selectively killed individual cells in the early embryo of the marine invertebrate

Tunicate after the first or second cell division with a needle. In consequence, only

certain parts of the organism developed, depending on which cells he had destroyed

(68, 188). The results were later confirmed by completely removing the two muscle

precursor cells of the 8-cell embryo (68, 241). These separated cells became muscle

cells by themselves, while the remaining embryo was lacking the muscles. Driesch

performed a similar experiment in sea-urchins but obtained completely opposite results

(42). He separated the two cells after the first round of cell division and observed that

a single cell can develop into a perfectly patterned organism, just of a smaller size.

3



1. INTRODUCTION
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body plan
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Figure 1.2.: (a) The bilaterian body plan, for example of a frog, is characterized by

three perpendicular axes in anterior-posterior (AP), dorso-ventral (DV) and medio-

lateral (ML) direction. (b) Two concepts of morphogenesis: mosaic development based

on pre-encoded structures (exemplified by purple cells forming the head), self-organized

formation of a body plan as an emergent phenomenon based on mutual interactions

between cells.

At the same time, Morgan was performing various regeneration experiments especially

with the freshwater polyp Hydra and flatworms, and he reported that these animals

could re-grow perfectly patterned heads, tails and other body parts after amputation

(128).

These observations can be discussed in the light of two fundamental concepts of mor-

phogenesis, see Fig. 1.2(b) (68, 188): First, the theory of self-differentiation (or mosaic

development) builds on the idea of a pre-encoded (hidden) complexity in the early par-

titioning of the tissue that then only enfolds. Second, the converse theory (sometimes

called conditional specification) considers complexity of the body plan as an emergent

phenomenon by the interaction of different parts. Today, we begin to appreciate that

embryonic development combines both paradigms. The second one has the appeal to

account for regeneration in a natural fashion and will be studied in this thesis in the

context of self-organized body plan patterning.

1.1.2. Cellular communication and chemical signals

At the end of the 19th and the beginning of the 20th century, the existence of “forma-

tive substances” was postulated to control cell fate during development and regenera-

tion (128, 129, 174, 188). It was proposed that these substances are found in graded

abundance originating from the animal poles as the organizing centers and that they

determine polarity and growth of an organism by controlling the cellular behavior

(128, 129, 174). Related concepts were built on a “physiological gradient”, inspired

for example by the fact that the regenerative capability in some flatworm species varies

along the body axis from head to tail (36).
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1.1 Development, growth and regeneration

These considerations lead to the notion of morphogens as specific signaling molecules

that are secreted in distinct source regions and spread in the tissue. The morphogen

concentrations provide chemical cues that control division and differentiation of cells

(68, 79, 138, 244). The term was originally coined by Turing, who proposed a purely

theoretical mechanism for the spontaneous emergence of chemical patterns as a tem-

plate for the body plan layout (221). As a complementary theoretical approach, it

was discussed how a pre-existing organizing region can instruct tissue patterning by

secretion of morphogens (174, 243). It was proposed that graded concentration profiles

provide cells with the information about their position within the tissue. We will dis-

cuss a well-known illustration of this idea, the French flag model, in Section 1.3. Next,

we provide biological examples for organizing regions and concentration gradients of

signaling molecules.

Early experiments by Mangold and Spemann found evidence for an organizing region

that instructs body plan patterning in the embryo of the frog Xenopus laevis (204).

When transplanting the now so-called Spemann organizer into another frog embryo,

the latter developed a second perfectly patterned head. Furthermore, experimental

evidence for “organizing substances” at the animal poles was found in leaf hoppers

(100, 186, 187). After splitting the embryo in a head and a tail fragment, in most cases

neither part did develop normally. Yet, if substances from the tail tip were moved to

the head fragment, the head fragment developed into a complete embryo. Interestingly,

also the tail fragment developed further, indicating a concentration-dependent effect of

these tail substances.

Pioneering work by Nüsslein-Volhard and colleagues could identify the protein Bicoid

as a signaling molecule in the embryo of the fruit fly Drosophila melanogaster and

demonstrated its instructive role in tissue patterning, see Fig. 1.3(a) (45, 52, 56). They

also visualized its graded concentration profile decreasing from the anterior tip, which

could be fitted by an exponential function (43, 44). Additionally, they showed that

Bicoid influences cellular behavior in a concentration-dependent manner (44).

There are several key signaling systems for patterning and growth control that are

widespread across the animal kingdom. Prominent examples belong to the Transform-

ing growth factor β (TGF-β) superfamily and to the Wnt family. TGF-β proteins can

be found in a wide range of organisms from simple worms to mammals. They control

growth, patterning, tissue homeostasis and even the immune system (88). In this thesis,

we will encounter four examples of these proteins: Activin in the clawed frog Xenopus

(72, 75, 80) and Decapentaplegic (Dpp) in the fruit fly (5, 109, 205, 234), see Fig. 1.3(b),
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Figure 1.3.: (a) Bicoid protein gradient (black) in the embryo of the fruit fly

Drosophila melanogaster at different stages of development (anterior side at the left,

modified with permission from (43), scale bar and approximate timing added by the

author) (b) Decapentaplegic protein in the imaginal wing disc of the fruit fly labeled

by GFP and quantification by GFP fluorescence (green) and GFP immunostaining

(red) (modified with permission from (109)).

as well as Bone morphogenetic protein (Bmp) and Anti-dorsalizing morphogenic pro-

tein (Admp) in flatworms (4, 61). Also Wnt family members are found in organisms

from invertebrates to humans (9, 40, 107, 141, 144, 164). The name is a portmanteau

of Wingless (the corresponding protein in the fruit fly), and Integration 1 (the homolog

originally identified in mammal cancer research). These proteins control the division,

differentiation and migration of cells as well as the specification of the main body axes.

In this thesis, we especially consider the head-tail polarity in flatworms associated with

Wnts.

1.1.3. From signals to genes and back

The function of a cell is largely determined by the proteins inside (244). There are

several classes of proteins. Housekeeping proteins for the maintenance of the basic

cellular functions such as protein synthesis, structural support and cell metabolism are

present in all cells under physiological conditions. Other proteins are only found in

certain types of cells and are involved in specific tasks such as division, developmental

signaling, force generation, sensory perception or immune responses.

The blueprint for all proteins is chemically encoded in the genome. The genome

consists of Deoxyribonucleic acid (DNA) macromolecules, in which characteristic base

pair sequences (genes) represent the proteins. This genetic information can be read out

from the DNA strands by a gene expression pathway as depicted in Fig. 1.4(a). First,

the DNA unfolds at the respective gene site and the gene sequence is successively copied
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Figure 1.4.: (a) Gene expression: proteins are synthesized by transcribing the genetic

information saved in the DNA to mRNA molecules, which then act as a blueprint

for the protein. (b) Gene expression can be activated or de-activated by signaling

molecules (here exemplified for canonical Wnt signaling). In the absence of Wnt

molecules, β-catenin is tagged for degradation by a destruction complex, which in-

cludes Axin, Adenomatosis polyposis coli (APC), Glycogen synthase kinase 3 (GSK3)

and Casein kinase 1α (CK 1α). If Wnt is bound to the Frizzled receptors and the

Low density lipoprotein receptor-related protein 5 or 6 (LRP5/6), the formation of

the destruction complex is suppressed and β-catenin can translocate to the nucleus to

act as a co-activator of various genes (68, 143, 244).

to a messenger ribonucleic acid strand (mRNA) during a process called transcription.

Again a sequence of nitrogenous bases encodes the specific protein. Second, during

translation, the mRNA acts as a template for protein synthesis with the help of

ribosomes (i.e. large complexes consisting of proteins and RNA strands).

All somatic cells (with a few exceptions) are genetically equivalent because they all

stem from the same initial egg cell. During cell division, the DNA becomes duplicated

and one copy remains in each daughter cell (68, 244). The cells acquire different fates

if different genes are activated and thus different proteins are present in the cells.

This activation of genes is in turn also controlled by signaling molecules. Fig. 1.4(b)

illustrates the signaling cascade of canonical Wnts as an example. In the absence of

Wnt molecules, β-catenin is tagged for degradation by a destruction complex involving

several molecules such as Adenomatous poluposis coli (APC) and Axin. Upon binding

of Wnt molecules to the Frizzled receptors and co-receptors (LRP5/6), Axin is recruited

to the membrane and the formation of the destruction complex is suppressed. Thus,

β-catenin can accumulated and reach the nucleus, where it acts as a transcription

co-activator for specific target genes. In effect, Wnt has an activating effect on the

expression of these target genes.

The resulting proteins can fulfill certain tasks for the cell in which they have been
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synthesized, yet they can also be released and act as morphogens to activate or de-

activate parts of the genome in other cells. This realizes positive and negative feedback

loops, from which complex cellular signaling networks are built.

1.1.4. Gene expression can be modified in experiments

Experimentalists can interfere with the synthesis of specific proteins by exploiting the

control and error correction machinery of the cells, which ensures robustness of the

important processes of DNA duplication, transcription and translation and modifies

their outcome (68). One such mechanism is RNA interference (RNAi), for which small

interfering RNA (siRNA) pieces are used by the cell to target specific mRNA strands,

mainly for destruction (6). For example, this can be an immune response against exoge-

nous RNA introduced by viruses. Similarly, experimentalists can artificially suppress

a protein of choice by introducing a RNA sequence for this protein in the cell. Such

RNAi techniques are applied to obtain some of the data presented in this thesis.

1.2. Flatworms as a model organism for scaling, growth and

regeneration

Classic experiments on flatworm regeneration already inspired the idea of morpho-

genetic gradients (36, 128, 129). In recent years, the flatworm Schmidtea mediterranea

(Smed) has become increasingly popular as a model organism to study regeneration and

growth, aging, and even behavior (63, 140, 151, 158, 162, 179, 183, 198, 212). There

are many different flatworm species populating very diverse habitats all around the

world. They are found in saltwater, in freshwater and in the soil; some live more than

1000 m under the sea and some parasitic species (like flukes and tapeworms) in the

body of other organisms (151, 170, 179, 202). Smed is a non-parasitic flatworm living

in freshwater. Such free-living species are sometimes also referred to as “planarians”

(50).

Flatworms (Greek: Platyhelminthes) bridge the gap between other model organisms

of lower complexity such as the freshwater polyp Hydra and the C. elegans worm and

those of higher complexity, such as fruit fly, clawed frog, axolotl, zebrafish and mouse

(184, 244), see Fig. 1.5. Many members of the flatworm phylum seem to represent the

most evolved organisms that are still able to regenerate any part of their body (50, 128,

140, 184). For example, Smed can restore its complete body plan from amputation
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Figure 1.5.: Flatworms are the most complex model organisms that can still regene-

rate every tissue. This regeneration capability is shared with simpler organisms such as

Hydra. At the same time, flatworms possess organ systems like a centralized nervous

system and two distinct brain lobes, which are characteristic for the most complex

organisms (50, 68, 128, 140, 143, 184, 244).

fragments as tiny as the very tip of the tail with only about 104 cells (126). By

re-growing missing body parts and re-modeling oversized organs, they recover their

normal shape scaled to the size of the amputation fragment within 1-2 weeks (4, 170).

This astonishing regeneration capability is comparable to the much simpler Hydra and

distinguishes flatworms from other model organisms with much less body plan plasticity

(158, 184).

Thereby, the body plan of Smed shows already key characteristics that are usually asso-

ciated with higher order organisms (140), see Fig. 1.6. The bilaterally symmetric Smed

possess a central nervous system with a distinct bilobed brain and two ventral nerve

cords connected by commissural neurons (69, 95, 165, 170, 171, 183). The sensory sys-

tem processes information from chemo-, rheo- and photorecetors leading to a complex

behavioral repertoire (69, 95, 153, 171). Their usual mode of motility is a gliding motion

on a secreted layer of mucus being propelled by the beating of numerous short flagella

(or cilia) that project from their multi-ciliated ventral epithelium (8, 169, 179, 180).

However the worms also use the numerous muscles situated along their inner body wall

for (i) steering, (ii) quick escape responses, (ii) exploratory head motion and (iv) a

back-up movement strategy (152, 153, 169, 180, 220).
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Figure 1.6.: The body plan of the flatworm Schmidtea mediterranea (Smed) shows

already key characteristics that are usually associated with higher order organisms

(37, 51, 171, 173, 231, 245).

Smed belong to the taxon Tricladida, which is reflected by the fact that their highly

ramified gut splits in three main branches (69, 140, 165, 170), see Fig. 1.6(b). During

feeding, the carnivorous worms suck in food through their extensible pharynx opening.

After digestion, the pharynx also functions as an anus for excretion. Protonephridia

constitute a further part of the excretory system, which performs similar functions as

the kidneys in humans (171).

Turnover, growth and regneration completely relies on a pool of stem cells called

neoblasts. The fraction of neoblasts among all cells had been estimated to be as large

as 25−35% (15, 16, 17, 18). If the worms are depleted of all neoblasts by γ-irradiation,

they will show a regression of the body starting from the head and finally they fall

apart (15, 46, 159, 170). The time scale until the decay sets in varies between species

in the range from several days to a few weeks (46, 159). This indicates that there is no

de-differentiation of cells to restore the stem cell pool. A subpopulation of neoblasts

is pluripotent (and maybe even totipotent) and can develop into every other cell type

(15, 63, 84, 140, 158, 170). Wagner et al. have shown that irradiated worms can be res-

cued by transplanting a single pluripotent neoblast from an intact worm (229). Even

though neoblasts are well defined by their progression through the cell cycle resul-

ting in cell division, there is increasing evidence that the neoblast population is not
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1.2 Flatworms as a model organism for scaling, growth and regeneration

homogeneous (85, 132, 194, 225). Most likely, they also comprise lineage-restricted

subpopulations and transiently amplifying cells that go through a few more rounds of

cell division during differentiation.

Smed show both sexual and asexual reproduction (48, 140, 170, 183). Some strains are

hermaphrodites, which develop testes and ovaries symmetrically along their body axis

as well as copulatory organs for cross-fertilization, see Fig. 1.6(c). In contrast, asexual

“Wenn einem beim Duell ein Ohr oder sonst
ein Glied abgeschlagen wurde, so wuchs inner-
halb von acht Tagen erstens ein neues Ohr an
den Menschen und zweitens ein neuer Mensch
an das Ohr. ... Wer sich vermehren wollte,
schnitt sich zum Beispiel einen oder zwei oder
zehn Finger ab und wartete acht Tage lang.”
— Joachim Ringelnatz, Abseits der Geogra-
phie, 1924 (168)

strains do not possess a reproductive system and

reproduce by fissioning: the worm attaches its tail

to the substrate and glides on until the body is

ripped into two or more pieces, which develop into

new worms after regeneration (140). Fissioning

depends strongly on the environmental conditions,

in particular on temperature, feeding, light and

worm density (48, 131, 140, 161). For example,

fissioning frequency is reduced in crowded envi-

ronments. Like regeneration abilities, reproduction strategies also vary widely among

flatworm species (50). In particular, one observes various approaches to asexual repro-

duction. Some species like Smed first split and regenerate afterwards, others already

grow the respective organs of the new body plan before fissioning. The second stra-

tegy comes in two forms: as paratomy with the new body aligned to the old axis and

budding with a non-aligned outgrowth at the side or pointing backward.

Smed are well-suited model organisms to study growth and cell turnover. First, all

somatic cells are continuously replaced by cell turnover at a time scale of weeks (158,

170). Second, growth and cell turnover rely completely on the division of a large

population of neoblasts, some of which are pluripotent(15, 63, 85, 140, 158, 170). Third,

depending on feeding conditions, the worms can grow and actively shrink (usually

referred to as “degrow”), while scaling their body plan over more than one order of

magnitude in length in the range of 0.5-2 cm (140, 151, 170), see Fig. 1.7(a). Active

degrowth enables the worms to survive long starvation periods of several months. It

has been suggested that worms recycle apoptotic material during degrowth to fuel the

metabolism of the remaining cells (69, 70).

Smed are also well-suited to study scalable patterning during growth and regeneration.

Being able to reversibly grow by a factor of 40 in length and perfectly regenerate

even from scrambled body fragments prompts for patterning mechanisms that are not

only highly robust and self-organizing but also functional across a wide range in sizes,

11



1. INTRODUCTION

1mm

(a) (b)Growth and Degrowth Regeneration

Figure 1.7.: Growth and regeneration in flatworms: (a) Schmidtea mediterranea

(Smed) can reversibly grow over a 40fold range depending on feeding conditions (Im-

ages taken by Nicole Alt under the supervision of the author). (b) Amputation frag-

ments regenerate to form a perfectly shaped worm within 2 weeks (green lines mark

the cuts, white tissue parts indicate the regeneration site before all pigments have been

reestablished, modified with permission from (116)).

see Fig. 1.7. For example, regeneration comprises a tightly controlled sequence of

responses (4, 10, 13, 14, 69, 81, 117, 128, 158, 165, 170, 237). After an immediate muscle

contraction to close the wound, a peak in cell division together with the migration of

stem cells within the first 12 h generates an outgrowth of undifferentiated tissue at the

wound site, the blastema. In a second step, the now oversized, remaining body parts

are re-patterned to match the size of the amputation fragment. The corresponding

process is called morphollaxis and comprises a more sustained proliferation and cell

death response during the following days. All this pattern formation is guided by

an internal coordinate system that is re-established as one of the earliest cues in the

remaining worm fragment independently of cell differentiation (81, 141).

Our work is especially focussed on the anterior-posterior (AP) axis specifying head

and tail position. The Wnt/β-catenin system is a conserved pathway for such AP

patterning in many animals and it is also key for the AP polarity in flatworms (4, 9,

54, 81, 82, 141, 160). There are 9 Wnt genes in flatworms. In particular the canonical

Wnts (activating β-catenin signaling) are highly expressed in the tail. Inhibition of

the Wnt/β-catenin system leads to formation of additional heads, while overexpression

induces tail identity everywhere in the worm (3, 82, 82, 160). Remarkably, reducing

the level of β-catenin is sufficient to induce full regenerative power to some flatworm

species that are usually deficient in head regeneration (116, 200, 222). Taken together,

the experiments suggest that β-catenin is instructive for positional information along

the AP axis in a concentration-dependent manner.
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1.3 Theories of body plan patterning by morphogens

Perpendicular to the AP axis, the dorsal-ventral (DV) axis and the medial-lateral (ML)

axis are formed (54, 117). For example, the DV axis is specified by the interplay between

the TGF-β family members Bmp and Admp. The three body axes are characterized by

gradients in abundance and expression of specific molecules, in neoblast mitotic activity

as well as in membrane potential (4, 9, 23, 62, 81, 149, 201) and it is a major open

question how these gradients robustly guide body plan patterning irrespective of the

size of the organism.

1.3. Theories of body plan patterning by morphogens

Here, we will discuss two ideas of pattern formation based on cell-cell communication

via morphogens. The first type of mechanisms describes how a pre-existing structure

can act as an organizing center for the development of further patterns. Such theories

are built on the idea of a well-defined, sequential developmental program where existing

patterns determine the formation of new patterns, see Fig. 1.8(a). Maternal patterning

cues provide a pre-pattern for the embryonic tissues forming from an egg cell and the

layout in the embryo determines the future body plan of the animal (2, 57, 172). For

example the localization of bicoid mRNA to the anterior pole of the fly embryo is a

maternal effect. However, the impressive capabilities of flatworms to regenerate from

almost arbitrary initial fragments challenge these concepts, see Fig. 1.8(b). In contrast

to the sequential patterning from predefined cues, Alan Turing introduced a second

class of mechanisms for self-organized pattern formation (221). We will discuss both

approaches and assess them from a biological perspective.

Body plan patterning requires that cell fates are assigned depending on the relative

position of the cells in the tissue or the organism (68, 244). In order to obtain the

information about their spatial position, cells sense their environment and communicate

with each other. For that, cells respond to mechanical cues as well as chemical signals

such as morphogens (89, 112, 147, 174, 224).

Signaling molecules often establish long-range, graded concentration profiles, which can

be accounted for by the interplay of transport and degradation (76, 223, 232). Cells

respond to the concentration of these molecules in their local environment. Thus, a

graded morphogen concentration can provide cells with the information about its spatial

distance from the morphogen source (243), see Fig. 1.9(a). This idea forms the basis for

the French flag model, which draws a simplified picture of how body plan patterning

might be guided by graded morphogen profiles. For example, a stripe pattern can be
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(a) (b)

Figure 1.8.: (a) Idea of sequential development: The emerging tissues in the fertilized

egg determine the future body plan of the juvenile chicken and later of the adult

hen. Finally maternal signals break again the spatial symmetry in the new egg and

guide development of another chicken. (b) Regeneration in flatworms: Diverse initial

fragments are repatterned to form the same body plan scaled to fragment size.

generated if cellular differentiation depends on discrete, genetically encoded threshold

levels. In Fig. 1.9(a), cells turn blue if the morphogen concentration is above the first

threshold level and red if it is below the second threshold level. Several intersecting

gradients can generate more complex patterns.

Dose-dependent responses have indeed been observed in experiments, yet in a more

complex way than given by the simplified French flag model (72, 74, 75, 80, 104, 191,

242). For example, cells of the frog Xenopus show a distinct differentiation response to

at least five concentration thresholds of Activin (72, 75). However, the early response

of the individual cells is less specific and very inhomogeneous (73, 242). It appears

that only the interaction between cells leads to the well-defined behavior of the cell

aggregate. Furthermore, the cells in the tissue are reported to respond in a ratchet-like

manner to the highest level of Activin to which they were exposed (80). Similar dose-

dependent responses have also been recently reported for Wnts in the frog embryo with

respect to the AP axis patterning (104).

Thus, although the simple concept of a direct threshold-comparison has been questioned

in some organisms, the French flag model continues to provide a pictorial representa-

tion of the case where a feedback on the concentration gradient by the responding cells

can be neglected. As an extension, it also has been proposed that the cells might com-

pare spatial and temporal differences in morphogen concentration and correspondingly

adjust cell division, differentiation and motility (135, 167, 175, 233, 234, 235).

The described mechanisms can explain patterning, given a pre-defined source region

where morphogens are produced locally. Yet, how is this source region established

in the first place? One possibility is that another graded morphogen profile specified
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Figure 1.9.: (a) The French flag model substantiates the idea that a graded mor-

phogen profile provides positional information for cells in a tissue. Specifically, cells

adopt distinct cell fates (sketched blue, white, red) by responding to the local mor-

phogen concentration depending on whether a certain threshold is met. The model

assumes a pre-defined source region (grey), which secretes the morphogens. (b) In

a Turing system, at least two chemical species (morphogen 1 and 2, red and blue)

interact. Source regions (gray) of the morphogens are established in a self-organized

way (here: a source forms where the concentration of the first morphogen is larger

than the concentration of the second morphogen).

this source by a threshold rule and a sequential developmental program establishes one

pattern from an already existing one, see Fig. 1.8(a). An alternative explanation dates

back to Alan Turing. In a seminal paper from 1952, he proposed a general framework

for the spontaneous formation of biological patterns, independent of pre-patterning

cues (221). Turing’s framework was later further explored by Meinhardt and Gierer

(64, 65, 66, 106, 120).

Turing demonstrated how the interaction of at least two diffusing molecular species

can result in chemical patterns in a completely self-organized manner, see Fig. 1.9(b).

Thereby, these (often periodic) patterns specify their own production regions. It is an

appealing idea that the chemical patterns layout the body plan of an animal. Yet for

the following 50 years, there was only little experimental evidence for Turing’s ideas

and the focus of developmental biology was shifted to other patterning mechanisms

like the French flag model (74). Certainly this was partly due to the fact that it is

generally difficult to demonstrate experimentally that a specific pattern is generated by

a Turing mechanism. While a unidirectional relationship like in the French flag model

(where a concentration of one molecule has a particular effect on other molecules or the

cells) is straight forward to analyze, this is less so for Turing patterning which includes

cross-reaction terms. The behaviour of a Turing system is often counterintuitive and its

analysis might easily yield misleading results. For example, the concentration of some
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Turing molecules peak at the maximum concentration of their suppressors, compare to

Section 1.4. Furthermore, if there are more than two chemical species involved, the con-

centration of one of them might decrease upon knockout of its direct activator because

of additional indirect effects, see Appendix A.7.4 for an example. Despite the chal-

lenging task of revealing the existence of Turing patterns and identifying the involved

molecules, recently more and more evidence has been accumulated that Turing’s ideas

might be the guiding principles for the formation of a wide range of biological patterns,

ranging from the formation of digits in vertebrate limbs to the emergence of left-right

asymmetry (49, 119, 134, 137, 164, 191, 197). Some of these examples combine Turing

patterning with a French flag model.

In fact, in many biological systems, pattern formation might result from a combination

of both concepts (74). The feedback loop of a Turing mechanism ensures high robust-

ness and possesses the ability to generate chemical patterns from random fluctuations.

In particular, Turing systems can spontaneously generate graded concentration profiles

like required for the French flag model. In turn, biological patterns hardly emerge in

a completely homogeneous environment without any pre-patterning cues, as Turing al-

ready remarked (221). During development as well as during regeneration, pre-existing

morphogen profiles and tissue structures can guide the formation of chemical patterns.

Thus, Turing mechanisms might often be found downstream of morphogen profiles that

modify the respective patterns (74, 164).

1.4. Turing mechanism yields self-organized patterns

In 1952, Alan Turing introduced a generic framework for the self-organized formation

of chemical patterns in biology (221). He asked the very general question whether there

are conditions, under which a system of two or more diffusing and reacting chemical

species possesses a homogeneous steady state, which is linearly unstable with respect to

inhomogeneous perturbations, such that inhomogeneous patterns form spontaneously.

Very importantly, in consequence, any model for self-organized patterning based on

diffusing and cross-reacting molecules can be understood within the Turing framework

(64, 65, 120, 147, 195, 221). Recently, there are attempts to further generalize the

Turing mechanism to generic interactions between two players without a diffusion term

(136, 236).

In the following we show that the conditions for a Turing instability can be derived

from the linear stability analysis of the homogeneous steady state. For this, we briefly
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1.4 Turing mechanism yields self-organized patterns

recall the basic Turing model comprising two chemical species with concentrations A

and B. Details on the derivations are provided in Appendix A.3 or in the literature

(64, 65, 146, 195, 221). The general reaction-diffusion system for two molecular species

in one space dimension is

∂tA = RA(A,B) +DA ∂
2
xA

∂tB = RB(A,B) +DB ∂
2
xB , (1.1)

with diffusion coefficients DA and DB and two generic functions RA and RB describing

the reactions between the different molecules and the effects of each molecular species

on itself. In order to spontaneously form stable patterns from random fluctuations,

these reaction functions have to fulfill two requirements: the homogenous steady state

(A∗h, B
∗
h), defined by RA(A∗h, B

∗
h) = 0 and RB(A∗h, B

∗
h) = 0, has to be (i) stable with

respect to homogeneous perturbations (to avoid a diverging behavior), yet (ii) unstable

with respect to inhomogeneous perturbations.

It is possible to derive a set of necessary conditions for spontaneous pattern formation

from these two conditions above by applying linear stability analysis. For this, we

consider a small perturbation (a, b) about the homogeneous steady state: A = A∗h + a

and B = B∗h + b. The linearized form of Eq. 1.1 can be written as

∂t

(
as

bs

)
=Ms

(
as

bs

)
. (1.2)

Here, the perturbation modes as(t) and bs(t) with wavenumber s represent the spatial

Fourier transform of a(t, x) and b(t, x), respectively:

as(t) =

∫
a(x, t) e−2πsx/L dx , bs(t) =

∫
b(x, t) e−2πsx/L dx (1.3)

The matrix Ms is given by

Ms =

(
∂ARA −DA(2πs/L)2 ∂BRA

∂ARB ∂BRB −DB(2πs/L)2

)
, (1.4)

where derivatives are evaluated at A = A∗h, B = B∗h.

In order to fulfill the two conditions on the stability above, (i) the real parts of both

eigenvalues qIs and qIIs of the matrix Ms have to be negative for s = 0 and (ii) at least

one has to be positive for s 6= 0. As shown in Appendix A.3, this results in the following

conditions for the trace Tr and the determinant Det of the matrix Ms:

Tr[M0] < 0 , Det[M0] > 0 and ∃ s > 0 with Det[Ms] < 0 . (1.5)
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Figure 1.10.: There are two possible feedback topologies that lead to pattern for-

mation in a Turing system with two molecular species (A and B): (a) an activator-

inhibitor scheme with activator A and inhibitor B, (b) a second topology where both

chemical species have activating and inhibiting effects. We show two examples of

typical concentration profiles corresponding to the two feedback topologies. The self-

organized source regions are indicated in gray.

In consequence, we obtain several constraints on the reaction design, which have been

summarized by the principle of local activation and lateral inhibition (64, 65, 120, 146,

147), see Appendix A.3 for details and Fig. 1.10 for illustration of the allowed feedback

topologies. The necessary conditions for spontaneous pattern formation are:

1. One molecule has to be self-activating and the other self-inhibiting. In the following,

we choose A to be the self-activator and B the self-inhibitor:

∂ARA > 0 and ∂BRB < 0 . (1.6)

2. There have to be cross-reaction terms of opposing sign:(
∂ARB

)(
∂BRA

)
< 0 (1.7)

3. The diffusion coefficient of the self-activator has to be sufficiently smaller than the

diffusion coefficient of the self-inhibitor:

DA < DB . (1.8)

As a result for a Turing system with two chemical species, there are two possible network

topologies as depicted in Fig. 1.10. In Turing feedback 1, the concentration A has only
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1.5 Open questions in growth control and scalable body patterning

activating effects and B has only inhibiting effects both on itself and the respective

other player. In this case, we can shortly refer to A and B as the concentrations of

activator and inhibitor instead of self-activator and self-inhibitor. In Turing feedback 2,

both molecular species have activating and inhibiting effects. This includes depletion

models, where, for example, binding of both molecular species enhances the production

of A but consumes B (66). Note that there is a formal correspondence between the two

Turing topologies by the replacement B → Bc −B with a constant parameter Bc.

How the principle of local activation and lateral inhibition leads to spontaneous pat-

tern formation can be nicely demonstrated for the Turing feedback 1 of Fig. 1.10(a).

At the source, the activator dominates because the inhibitor is diffusing away more

quickly. Consequently, the source region stabilizes itself and initially tends to expand.

In contrast, some distance away from the source, the inhibitor dominates due to its fast

diffusion. This creates at least two distinct regions, which already comprises a simple

pattern. In contrast to other systems where diffusion homogenizes a pattern, here dif-

fusive spreading in combination with specific reactions enhances small inhomogeneities

in the concentrations. Therefore, it is sometimes also referred to as a diffusion-driven

instability (145, 146, 181).

1.5. Open questions in the study of growth control and

scalable body patterning

During development, growth and regeneration, cells communicate with each other and

mutually influence their behavior, especially by changing the expression status of their

genes. This information exchange orchestrates cell division, cell death or differentiation.

It can also guide cell migration and can elicit the release of further signals, e.g. the

secretion of morphogens. As a common theme of this thesis, we devise theoretical

descriptions of how cell fate decisions based on local rules on the microscopic scale result

in the formation and maintenance of a macroscopic body plan, drawing inspiration

from flatworms as a specific model organism. In particular, we address the following

questions:

How is the turnover of cells regulated during growth and homeostasis and

how are fluxes in cell number related to fluxes of metabolic energy? Organisms

have to control the number of cells to ensure homeostasis and growth in a well-defined

manner. As changes in cell number depend on the balance between cell proliferation

and cell loss, there needs to be a communication between dividing and differentiated
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1. INTRODUCTION

cells (158). Furthermore, the environment and in particular the availability of food

provides an external stimulus to influence cell behavior, such as proliferation and cell

death (113, 244).

What are minimal requirements for self-organized patterns that scale with

organism size? Organisms also have to control the type and position of cells for a

reliable body plan patterning. Again, this requires a communication between cells,

ranging from direct neighbor-neighbor interactions to long range signaling via mobile

molecules such as morphogens (54, 68, 244). Importantly, pattern formation can be

observed on all length scales from the development of a fertilized egg to growth and

regeneration of large scale tissues in mature organisms. Yet, patterning mechanisms of-

ten possess fixed characteristic length scales defined by the intrinsic physical properties

of the system (76, 223, 232), which is challenged by cases of biological pattern scaling

like regeneration in flatworms.

We aim to understand scalable body plan patterning and cell turnover dynamics by

building on the framework of dynamical systems theory and birth-death processes.

Biological systems add a new perspective to those classical concepts. They usually

operate far from equilibrium and form patterns with unconventional properties (39,

87, 120). Development and regeneration are subject to a high level of noise ranging

from external perturbation like a variable environment to the intrinsically stochastic

nature of gene expression (77, 218, 219). Thus, robust growth control and body plan

patterning require reliable sensing, transmitting and processing of noisy information

(47, 218). We address the question of robustness with respect to initial conditions and

physical parameters as well as the structural robustness of the models.

This thesis is mainly inspired by the astonishing scaling and regeneration capabilities

of flatworms, yet the results obtained here are likely also to be relevant for other bio-

logical organisms as well as related questions in biological physics, nonlinear dynamics

and pattern formation.

20



1.6 Organization of the thesis

1.6. Organization of the thesis

In this thesis, we investigate biological shape and size control on various levels, for which

we combine theoretical descriptions and state-of-the-art analyses of experimental data

in flatworms.

First, we explore mechanisms for self-organized and self-scaling pattern formation

(Chapter 2). We discuss to what extent previously proposed theories can account

for the scaling of morphogen profiles. For this, we adhere to a strict mathematical

definition of scaling and illustrate the difference between scaling and expansion with

system size. Furthermore, we demonstrate the absence of scaling in classical Turing

pattering, going beyond linear stability analysis.

Second, flatworms like Smed challenge existing theories on body plan patterning, which

typically can at most only explain one of both: either scaling or self-organization. Here,

we introduce and characterize a novel class of mechanisms that combine both features

(Chapter 3). The developed theory can act as a framework to understand robust body

plan scaling during growth and regeneration in flatworms.

Next, worm shape variations cannot only be observed between different stages of de-

velopment, growth and regeneration. Individual worms also show large body deforma-

tion during movement, driven by muscle contractions. We apply a method based on

“Principal component analysis” to characterize shape dynamics and analyze movement

patterns. A similar shape mode analysis also enables us to compare shapes of different

related species. Analyzing motility patterns and comparing shape variations between

worm species is the first step towards relating form and function (Chapter 4).

Finally, we analyze growth and degrowth dynamics and their dependence on feeding

conditions. We investigate mechanisms for size control by metabolic energy balances

to explain the macroscopic growth and degrowth behavior in terms of microscopic cell

turnover dynamics. Our theory makes testable predictions for the ongoing experiments.

Beyond, we develop the theoretical basis for additional measurements on various scales

to reveal further details about the control logic of cell turnover (Chapter 5).
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2. Scaling and non-scaling

in morphogen systems

2.1. Scaling of biological patterns

The development of multi-cellular organisms with a well-defined, complex body plan is

one of the most fascinating processes in nature. A series of patterning events take place

“The continuous change in form that takes place
from hour to hour puzzles us by its very simpli-
city. The geometric patterns that present them-
selves at every turn invite mathematical analy-
sis.” — Experimental embryology, Thomas H.
Morgan, 1927 (130)

across various length scales leading to a distinct

layout, which is scaled to match the size of the

organism. The scaling of body plan patterns be-

comes especially apparent if a juvenile organism

already resembles its adult counterpart or if indi-

viduals of different, yet related species look very

much alike besides their great differences in size (27, 76, 223). A third, more subtle

example is the robust formation of proportionate patterns in the same organism during

development despite size variations that arise from varying environmental conditions

or stochastic fluctuations of growth rates (24, 76).

In this chapter, we analyze to what extent previously proposed theories can account for

pattern scaling. First, we introduce our definition of gradient scaling, which we distin-

guish from expansion of morphogen gradients. Based on these considerations, we revisit

and assess scaling mechanisms proposed for morphogen gradients in pre-patterned sys-

tems and extract the main principles underlying scaling. This will later allow us to

point out the important differences between scaling mechanisms for pre-patterned and

self-organized systems in Chapter 3. Furthermore, we discuss the absence of scaling in

self-organized Turing systems beyond the classical approach of linear stability analysis.

The latter has be published in Werner et al. (238).
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2.2 Morphogen dynamics and concentration profiles

2.2. Morphogen dynamics and concentration profiles

One of the most simple morphogen systems that result in graded concentration profiles

draws on diffusion from a localized source with an effective diffusion coefficient D and

a linear degradation with rate β (232). It has been frequently applied to describe mor-

phogen gradients in the fruit fly (24, 44, 76, 78, 234). Note that effective diffusion might

result from a wide range of underlying undirected processes, such as active transport

or even signaling between neighboring cells without secretion of motile molecules.

For simplicity, we consider a one-dimensional system of size L with reflecting boundary

conditions. The corresponding time evolution of the morphogen concentration C =

C(t, x) is given by

∂tC = D∂2
x C − β C + ν (2.1)

∂xC|x=0 = ∂xC|x=L = 0 . (2.2)

Here, ν(x) = αΘ(w − x) describes localized morphogen production with rate α in a

source of width w. Θ denotes the Heaviside step function.

Eq. 2.1 also holds in two and three dimensions, if the system is symmetric with respect

to the other dimensions and, thus, the morphogen concentration still only depends on

x, see Appendix A.1.1. If the tissue grows at a time scale comparable to the time scale

of the morphogen dynamics, one has to consider additional terms for advection and

dilution.

The steady state solution to Eq. 2.1-2.2 is computed in Appendix A.1.2. Here, we are

mainly concerned with the steady state concentration outside the source region, which

is given by

C∗(x) = C0
cosh(L/λ− x/λ)

cosh(L/λ)
for w ≤ x ≤ L (2.3)

with amplitude

C0 =
α sinh(w/λ)

β tanh(L/λ)
(2.4)

and a characteristic length scale

λ =
√
D/β . (2.5)

Within the course of a characteristic time scale (which is of the order of 1/β in our

example, see Appendix A.1.3), the morphogen will relax towards this steady state pro-

file. Analyzing the steady state is well justified in a case of separated time scales,

where other dynamics (e.g. growth and differentiation) are slow in comparison to the

relaxation time of the morphogen profile. In the following, we will often assume such
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2. SCALING AND NON-SCALING IN MORPHOGEN SYSTEMS

a quasi steady state. One should keep in mind that this is a simplifying assumption

which is not always fulfilled. In fact, it has been argued that many gradients might be

already read out before the steady state is reached as a means to increase robustness

(20, 29, 55, 167). Yet, even in these cases, the steady state is the reference state and

provides a first order approximation to the concentration the cells actually respond to.

2.3. Expansion versus scaling of concentration profiles

Profiles of signaling molecules have been measured for example in the fruit fly Droso-

phila melanogaster, which is an important model organism to study biological pattern

formation (123, 206). Quantifications of morphogen concentrations in the developing

wing and eye of the fly at different stages of development revealed that the concentration

profiles maintain an approximately constant shape relative to the changing size of the

growing tissue (26, 83, 234, 235). This means that the morphogens spreads further as

the system grows.

We define (perfect) scaling as the ideal case of a strictly proportional expansion of a

concentration profile with system size. In this case, the concentration at steady state

can be written as

C(x;L) = C0(L) · Z(x/L) , (2.6)

where C0(L) is the amplitude and Z(x/L) defines the shape of the profile which only

depends on the relative spatial coordinate x/L. As a result, scaling profiles from tissues

of different sizes collapse onto one master curve if plotted as a function of relative

coordinates and normalized by their amplitude, see Fig. 2.1(a).

For the steady state solution in Eq. 2.3, scaling arises if the characteristic gradient

range λ is not constant but proportional to the length of the system L:

λ ∝ L . (2.7)

If the length scale λ increases with L in a nonlinear fashion, we would classify this as

expansion, yet not scaling, see Fig. 2.1(b):

∂Lλ > 0 . (2.8)

Gradient scaling is a special case of gradient expansion. Throughout this thesis, we

carefully distinguish between the two notions of profile expansion and perfect scaling as

introduced here. Both expressions are sometimes used interchangeably in the literature

(24, 26, 27, 55).
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2.3 Expansion versus scaling of concentration profiles
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Figure 2.1.: (a) Scaling concentration profile collapse onto a master curve when

plotted as a function of the relative position. (b) Some concentration profiles might

expand with system size but do not scale.

Measured morphogen profiles in the fruit fly show a collapse similar to Fig. 2.1(a)

indicating scaling, yet there is certainly always some variability in the data (26, 83, 234,

235). This can be due to noise in the system and inaccuracies in the measurement or

because the separation of time scales between system growth and morphogen dynamics

does not hold. However, it might also be the case that the underlying mechanism

inherently cannot lead to (perfect) scaling in the sense of Eq. 2.6, like illustrated in

Fig. 2.1(b). The specific task of the molecule might only require the concentration

profile to expand with the tissue as an approximation to scaling. Below, we will discuss

such an example.

According to the definition of λ in Eq, 2.5, scaling (and expansion) can be achieved if

either the diffusion coefficient or the degradation rate or both depend on system size.

Two simple choices are: (i) D ∝ L2, β = const and (ii) β ∝ L−2, D = const.

Scaling of morphogen profiles is a shape property, defined irrespective of the amplitude

C0(L), which might be a function of system size L, compare also to (223). The variation
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Figure 2.2.: Size-dependent amplitudes of scaling profiles: Models for the scaling of

morphogen profiles often assume the adjustment of degradation rate β or diffusion

coefficient D with system size L. As a result, the amplitude of the morphogen con-

centration might change depending on whether the morphogen source size (gray) is

fixed or scales with L. The reference profile (red) is the same in all plots (α/β = 10,

L/λ = 2, L/w = 5). The other profiles correspond to either halve (blue) or twice the

system size (green) with constant ratio L/λ and either scaling or non-scaling source

size w.

of the amplitude with L reflects details of the underlying scaling mechanism, see Fig. 2.2.

We discuss this for the two limiting cases of (i) a source of fixed width w and (ii) a

scaling source w ∝ L.

(i) Fixed source: If we increase λ by enhancing diffusion, the amplitude will decrease

because the same amount of morphogen is distributed more homogeneously in the

system, compare to Eq. 2.4 or Eq. A.5. In contrast, if we increase λ by reducing

degradation, the amplitude will increase due to a longer lifetime of the molecules. If D

and β both depend on size, the amplitude can be kept constant.

(ii) Scaling source: Eq. 2.4 shows that for this case the amplitude does not explicitely

depend on D but depends inversely on β. Scaling by changing the diffusion properties

does not affect the amplitude but scaling by adjustment of degradation leads to a strong

size dependence C0 ∝ L2.

Measurements of the signaling protein Dpp in the fruit fly found a decreasing degra-

dation rate with size as well as the characteristic increase in the amplitude (76, 78,

135, 233, 234). In the clawed frog, both cases have been reported, adjustment of diffu-

sion properties for Bmp as well as adjustment of degradation for the Bmp antagonist
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2.4 Scaling of morphogen profiles in pre-patterned systems

Chordin (25, 94).

Next, we discuss two classes of simple models for the expansion and scaling of mor-

phogen profiles. For the second class, it will be important to remember that changing

the morphogen range can have an impact on the morphogen amplitude. This class

achieves profile expansion in a self-organized manner by a coupling to the varying am-

plitude, which thus encodes the system size.

2.4. Scaling of morphogen profiles in pre-patterned systems

2.4.1. The concept of an expander as a chemical size reporter

In order to achieve scaling of a morphogen profile in a simple set-up as introduced in

Section 2.2, the length scale of the concentration profile has to couple to the size of

the system. Several mechanisms have been proposed for the expansion of a morphogen

profile with system size L which assume an additional molecular species, often called

“expander” (11, 24, 27, 96, 135, 148, 154, 233, 234). If the concentration E of such

an expander is a function of L, the interaction of these expander molecules with the

morphogen can result in profile expansion with system size. Depending on whether the

expander concentration increases or decreases with system size, the expander might

enhance or reduce either diffusion or degradation of the morphogen, respectively.

Yet, how does the expander obtain its size-dependent concentration and become a

chemical size reporter? In the following, we discuss two main classes of expander me-

chanisms that have been proposed for the scaling of morphogen profiles. The first class

is characterized by the fact that the expander couples to the system size independently

of the morphogen. The second class subsumes mechanisms that allow for self-scaling of

the morphogen profile by a feedback loop between the expander and the morphogen.

We illustrate the scope and the limits of the mechanisms at hand and systematically

extract the main principles that lead to robust scaling as applied later to self-organized

systems.

2.4.2. A simple mechanism of gradient scaling: Expander-dilution model

The most simple idea for how an expander concentration can report on system size is

given by the expander-dilution mechanism (135, 233, 234), see Fig. 2.3(a). It requires a

constant amount of a long-lived expander, which is neither produced nor degraded. As
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2. SCALING AND NON-SCALING IN MORPHOGEN SYSTEMS

(a) Expander-dilution with long-lived expander

(b) Dynamic size-sensing with short-lived expander

conserved amount

const. 
influx

size-dep. 
outflow

Figure 2.3.: Schematic illustration of how the concentration of an expander becomes

size-depend. (a) Expander-dilution model: a conserved amount of expander gets di-

luted in a larger system. (b) Dynamic size-sensing in a system with constant influx

and size-dependent outflow of the expander.

the system size increases, the expander gets diluted and, thus, the expander concentra-

tion depends on system size. Hence, E ∝ 1/L in a one-dimensional system. However,

such a mechanism is highly vulnerable to the loss of expander and in particular could

not easily cope with amputations of parts of the system.

A similar mechanism can overcome this issue by reading out system size from geo-

metrical features like area-volume ratios. As a specific example, we assume that the

expander of concentration E is degraded everywhere in the one-dimensional system and

produced in a source of constant width wE at the boundary:

∂tE(t, x) = DE ∂
2
xE(t, x)− βE E(t, x) + αE Θ(wE − L+ x) , (2.9)

Again, DE is an effective diffusion coefficient, βE the degradation rate and αE the pro-

duction rate of the expander. In the limit of fast expander diffusion (λE =
√
DE/βE �

L), the steady state concentration is given by

E∗ =
αE wE
βE

1

L
. (2.10)

Thus, the expander level E∗ encodes the system size L, see Fig. 2.3(b). In order for the

morphogen to scale with L, the morphogen degradation could for example be coupled

to the expander as

β ∝ E2 . (2.11)
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2.4 Scaling of morphogen profiles in pre-patterned systems

The size read-out can also be established differently from the specific choice of Eq. 2.9,

see Appendix A.2.1 for a general derivation. For example, the expander could be

produced everywhere in the system and only be degraded at the boundary, as discussed

by other authors (78, 90, 96, 148, 154).

The mechanism is robust against loss of expander, but it requires λE � L irrespective

of system size. Note that a small degradation rate results in a large λE , yet also in a

slow relaxation to the steady state, see Appendix A.1.3. Furthermore, the mechanism

relies on a tightly controlled size of the source and the degradation zone. In the example

above, the expander source has to keep its width although the system size changes. This

shifts the problem from scaling the morphogen profile to establishing a source pattern

for the expander. Finally, regeneration of arbitrarily shaped fragments seems unlikely

to agree with the notion of a fixed geometry of source and degradation zone. Therefore,

we next discuss the second class of mechanisms, in which the morphogen itself controls

the expander expression leading to a self-expanding feedback loop.

2.4.3. An example of gradient expansion without scaling:

Expansion-repression model

The discussion on morphogen scaling has been enriched by the proposal of a class of

models that yield profile expansion in a self-organized manner (24, 26). These mecha-

nisms are built on a feedback loop between morphogen and expander. Interestingly, this

relates to the engineering framework of an integral feedback control, where the gradient

is adjusted by the expander as long as it does not meet its target range (19, 24). One

prominent example is the expansion-repression model. In order to illustrate the main

principles, we discuss one specific simple realization of this model, in which the expander

production is only turned on where the morphogen level falls below a threshold Cth like

considered in (135), see Fig. 2.4(a). Alternative feedback topologies are analyzed in

Appendix A.2.3 and lead qualitatively to the same conclusions.

For our choice, Eq. 2.9 of the expander dynamics is modified to

∂tE(t, x) = DE ∂
2
xE(t, x)− βE E(t, x) + αE Θ

(
Cth − C(x)

)
. (2.12)

In order to close the feedback loop and adjust the morphogen length scales, the expander

has to affect either diffusion or degradation of the morphogen, see Section 2.3.

A simple feedback scheme as discussed for morphogens in the fly yields robust gradient

expansion, though not gradient scaling. — For gradients in the fly wing, for which the

expansion-repression mechanism was originally proposed, it is usually considered that
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Figure 2.4.: Simple expansion-repression models (as discussed for morphogen scaling

in the fly wing) typically yield an expansion of the gradient range, but no perfectly

linear scaling law λ ∝ L. (a) The morphogen confines the expander source to the

region where the morphogen concentration is below Cth. (b) Rescaled steady state

profiles do not perfectly collapse. (c) The gradient range λ increases with system

size in a sub-linear fashion. We determine λ by (i) computing λ =
√
D/β at various

positions in the system (blue dots), (ii) fitting the solution of Eq. 2.3 (solid red line)

and (iii) calculating it directly in the limit of λE � L (dashed green line). We use

typical parameters for the fly wing: D = 1µm2/s, DE = 10µm2/s, α = 0.01µM/s,

αE = 0.001µM/s, w/L = 0.1, Cth = 0.1µM, βE = 10−4/s, β0 = 10−2/s, Eth = 1µM,

L = 25...135µm (24, 26).

the expander suppresses the degradation of the morphogen (24, 26, 135). Thus, β in

Eq. 2.1 is not constant anymore but obeys

β =
β0

1 + E/Eth
(2.13)

with two constant parameters β0 and Eth. In consequence, increasing expander levels

enlarge the range of the morphogen. Yet, in turn, this suppresses the expander pro-

duction. Eventually, a steady state is reached, in which the expander production is

just cancelled by the total expander degradation in the system. The source size of the

expander in this steady state is determined by

C∗(L− w∗E) = Cth , (2.14)

where C∗ is given by Eq. 2.3 and w∗E denotes the size of the self-organized source region

of the expander, see Fig. 2.4(a). In the limit of a quickly spreading expander (λE � L),

its steady state concentration is

E∗ =
αE w

∗
E

βE L
. (2.15)

From this, we can note the following observations: First, the expander source (estab-

lished by the feedback with the morphogen) must not scale (w∗E 6∝ L), because this
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2.4 Scaling of morphogen profiles in pre-patterned systems

would result in a constant expander level irrespective of system size. Second, the mor-

phogen amplitude must change for perfect scaling. Otherwise, if the amplitude were

constant with a scaling gradient range λ ∝ L, we would obtain w∗E ∝ L from Eq. 2.14

and the expander would not encode the system size. Third, the feedback scheme in-

cluding Eq. 2.13 yields an expansion of the concentration profile but no perfectly linear

relationship of λ ∝ L defined as scaling, see Fig. 2.4(b)-(c).

The latter can be understood most clearly if we ask what relationship between β and

E would be needed for the morphogen range λ = χλL to scale with a constant factor

χλ. In Appendix A.2.2, we provide a detailed derivation for different scenarios. Here,

we only discuss the case of a scaling morphogen source (w ∝ L) as a representative

example. If we combine Eq. 2.3, 2.14 and 2.15, we obtain that β∗ has to obey

β∗ ∝ cosh

(
βE
αEχλ

E∗
)

(2.16)

for λ∗ to scale at steady state. This relationship is not in agreement with Eq. 2.13.

Thus, Eq. 2.13 cannot yield scaling. In fact, it is not even qualitatively similar as it

shows that the degradation rate has to increase with expander concentration to result

in a scaling steady state.

Scaling steady states are unstable if the expander regulates the morphogen degradation.

— Eq. 2.16 provides the functional relationship between β and E for scaling in the

steady state. Can we obtain scaling if we alter the feedback scheme? For this, we

replace Eq. 2.13 by

β ∝ cosh (E/Eth) . (2.17)

Now, the system possesses a steady state pattern that scales perfectly by construction.

However, this steady state is unstable in numerical simulations. An excess in expander

would reduce the level of morphogen by enhanced degradation and thus the expander

production and consequently the expander level would increase even further. Depending

on the initial conditions, the system shows two distinct dynamics. For small expander

levels below the unstable steady state, the expander source will eventually be suppressed

completely and the morphogen concentration will diverge. For large expander levels,

the system will converge to a second, non-scaling steady state.

Variations of the expander feedback show qualitatively similar results. — In Ap-

pendix A.2.2-A.2.3, we discuss several variations of the feedback scheme above. If

the morphogen suppresses the expander and the expander enhances the morphogen

range, we can obtain robust gradient expansion but no scaling in a strict mathematical
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scaling steady state is 
stable in a finite size range

Independently controlled expander 
(e.g. expander-dilution model)

Expander feedback loop
(e.g. expansion-repression model)

stable scaling
if sources and sinks of the expander is well controlled

degradation rate

diffusion coefficient

adjustment of

scaling steady 
state is unstable

no scaling steady state scaling steady state is 
stable in a finite size range

scaling morphogen source constant morphogen source

(a)

(b)

Figure 2.5.: Various mechanisms have been proposed for the scaling of morphogen

profiles using an expander as a chemical size-reporter: (a) the first class of models

considers an expander which reads out system size independently of the morphogen,

see (78, 90, 96, 135, 148, 154, 233, 234) for examples, (b) the second class of models

assumes a feedback loop between the morphogen and the expander such that the mor-

phogen profile scales itself (24, 26). We demonstrated that in this case it is challenging

to obtain a scaling steady state. The table summarizes the limited options for a mor-

phogen that acts on the expander production like in Eq. 2.12, see Appendix A.2.2-A.2.3

for details. For all cases, it is possible to construct a robust feedback yielding profile

expansion.

sense, compare to (24, 135). As a general rule, scaling and stability are not easily

teamed up. Yet, in many organisms, it might be sufficient if the morphogen profiles

only expand. Furthermore, more complex feedback schemes might be able to achieve

or at least closely mimic scaling over a considerable size range (24).

2.4.4. Conclusions from our analysis of expander models

We discussed two main classes of scaling mechanisms for morphogen profiles, see Fig. 2.5.

If the expander measures system size independently of the morphogen, this can result

in a robust size read-out and potentially leads to scaling (78, 90, 96, 135, 148, 154,

233, 234). Yet, it requires a tightly controlled layout of the system, e.g. pre-patterned

sources and sinks for the expander. Thus, it does not easily comply with the ability to

regenerate and might just shift the problem from the scaling a morphogen gradient to

the establishment of a source and sink pattern for the expander.
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2.5 Revisiting the absence of scaling in Turing patterns

The second class of models aims to establish scaling of the morphogen profile in a self-

organized manner by a feedback loop between the morphogen and the expander (24, 26).

It turns out that it is challenging to find mechanisms with steady state patterns that are

both: perfectly scaling and stable. Many models like the one defined by Eqs. 2.12-2.13

yield stable steady states, for which the morphogen profile expands with system size,

yet, as we have shown, they do not scale perfectly. In turn, if a feedback is chosen,

such that a scaling steady state exists like in Eq. 2.17, this fixed point is likely not to

be stable.

The intuitive picture is that an overall negative feedback loop between morphogen and

expander ensures a stable steady state. In contrast, two mutually suppressing molecular

species, which might yield scaling, form an overall positive feedback loop. Thus, they

will not result in a stable steady state without further auto- or cross-regulatory effects.

In Chapter 3, we discuss a novel self-organizing scaling mechanism that builds on such

effects.

An important signature of the feedback scheme is that the morphogen amplitude varies

with size L. This is a direct consequence of the homogeneous concentration of the

fast spreading expander, which ensures a uniform expansion of gradient range across

the system. It can be understood intuitively because the morphogen not only couples

to the expander but also the expander couples to the morphogen, hence, both have

to encode the system size. This can result in constraints on the system design. For

example, it led to the observation that the combination of a scaling morphogen source

and an adjustment of morphogen diffusion by the expander could not yield scaling of

the morphogen profile. We will have to take this into account when discussing scaling

in self-organized systems in Chapter 3.

2.5. Revisiting the absence of scaling in Turing patterns

In this thesis, we consider one specific choice of a Turing system, which is particularly

suitable for analytical treatment. We restrict our analysis to a one-dimensional system

with reflecting boundary conditions. The dynamics of the two molecules are described

by

∂tA = αA P (A,B)− βAA+DA ∂
2
xA

∂tB = αB P (A,B)− βB B +DB ∂
2
xB . (2.18)
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2. SCALING AND NON-SCALING IN MORPHOGEN SYSTEMS

Thus, we specifically consider linear degradation with rates βA, βB and production

with rates αA, αB. The function P (A,B) implements a switch-like response to the

concentrations A and B where production is switched on if the activator concentration

exceeds the inhibitor concentration, A � B. We choose a Hill function, which arises

naturally from cooperative and competitive chemical reactions in biological systems,

see Appendix A.4:

P (A,B) =
Ah

Ah +Bh
. (2.19)

In the limit h→∞, the Hill function can be replaced by the Heaviside theta function

P (A,B) = Θ(A−B) . (2.20)

As a technical point, we have to define Θ(0)
!

= 0, in order for the homogeneous steady

state to always exist, see Appendix A.5. A Fermi function could be another choice to

account for switch-like production, yielding similar results.

In the case of the production switch in Eq. 2.20, the relative source size is defined by

`/L = 〈P 〉 =
1

L

∫ L

0
P dx , (2.21)

where brackets denote a spatial average over the system. We use the same quantity

also to define the source size for the Hill-type production function. This is especially

well justified if the Hill exponent h in Eq. 2.19 is large.

Next, we analyze our example of a Turing system given by Eq. 2.18 and demonstrate

the absence of scaling. We derive the full hierarchy of steady state patterns and discuss

their existence and stability, thereby going significantly beyond linear stability analysis

of the homogeneous steady state. This will put us in the position to understand the

mechanisms for scaling of a Turing system.

2.5.1. A hierarchy of steady state solutions

Eq. 2.18 together with the production function in Eq. 2.19 possesses a unique homoge-

neous steady state:

A∗h =
αA/βA

1 + (βAαB/(αAβB))h
, B∗h =

αB/βB
1 + (βAαB/(αAβB))h

. (2.22)

For h → ∞, the steady state concentrations approach zero, A∗h = B∗h = 0, see Ap-

pendix A.5.

The inhomogeneous steady states can be computed analytically in the limit of h→∞,

corresponding to the source switch of Eq. 2.20, see Appendix A.6. We find a hierarchy
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2.5 Revisiting the absence of scaling in Turing patterns

(a) (b)
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Figure 2.6.: (a) The steady state solutions of Eq. 2.18 with Eq. 2.20 can be char-

acterized by a pair of pattern numbers (m,n), where m is the number of contiguous

source regions (gray) with A > B and n is the number of source regions touching

the system boundaries. (b) Any (m,n)-pattern can be constructed as a concatenation

of σ = 2m − n copies of the (1, 1)-pattern as a basic building block, here shown for

(m,n) = (2, 2) and (m,n) = (1, 0). (c) Thus, we obtain a complete hierarchy of steady

state solutions, exemplified for the concentration A up to m = 3 sources. Parameters:

DB/DA = 30, αB/αA = 4, βB/βA = 2, λA/L =
√

0.1 ≈ 0.3, λB/L =
√

1.5 ≈ 1.2.

of steady state patterns, which can be characterized by the number m of contiguous

source regions with A > B and the number n of source regions touching the system

boundaries, see Fig. 2.6. Any (m,n)-pattern can be constructed as a concatenation of

σ = 2m−n copies of the (1, 1)-pattern as a basic building block, see Appendix A.6. Note

that s = σ/2 is the corresponding leading order Fourier mode of the spatial patterns.

The (1, 1)-pattern with a single source, located in the interval 0 ≤ x < `, is given by

A∗(1,1) =
αA
βA

1− sinh(L/λA−`/λA)
sinh(L/λA) cosh

(
x
λA

)
, 0 ≤ x ≤ `

sinh(`/λA)
sinh(L/λA) cosh

(
x−L
λA

)
, ` < x ≤ L

(2.23)
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Figure 2.7.: Pattern length scales set size of source: The relative source size `/L of

the (1, 1)-pattern at steady state is uniquely determined by the pattern length scales

L/λA and L/λB . If only the system size is varied, while the other parameters are

kept constant, the relative source size changes along the red curve (here: λB/λA = 5).

Following the red curve, the source size approaches `/L ∝ λB/L for λB � L. Fur-

thermore, we obtain a threshold for the existence of the (1, 1)-pattern (green) and a

scaling regime in the limit of λB � L � λA (saturation of blue curve). Parameter:

αAβB/(βAαB) = 0.5.

B∗(1,1) =
αB
βB

1− sinh(L/λB−`/λB)
sinh(L/λB) cosh

(
x
λB

)
, 0 ≤ x ≤ `

sinh(`/λB)
sinh(L/λB) cosh

(
x−L
λB

)
, ` < x ≤ L .

(2.24)

Patterns are characterized by two pattern length scales for A and B, respectively,

analogous to Eq. 2.5.:

λA =
√
DA/βA and λB =

√
DB/βB . (2.25)

The source size ` has to satisfy the implicit equation

αA βB
βA αB

sinh(`/λA)

sinh(L/λA)
cosh

(
`− L
λA

)
=

sinh(`/λB)

sinh(L/λB)
cosh

(
`− L
λB

)
(2.26)

Fig. 2.7 depicts the relative source size `/L, which is a function of only three dimen-

sionless ratios: L/λA, L/λB and αAβB/(βAαB), see also Appendix A.6. A dimensional
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2.5 Revisiting the absence of scaling in Turing patterns

analysis of Eq. 2.18 shows that this is true also for finite h and other production func-

tions. The red line illustrates the variation of the relative source size `/L as a function

of L, when all other parameters are kept constant. Note that an identical curve could

be obtained if instead of L, the length scales λA and λB would be varied via a common

control parameter. This will become important in Chapter 3 when we combine the

Turing system with an expander feedback.

The source size is zero in systems that are very small relative to the characteristic

length scales, see Fig. 2.7 (green curve). For these small systems, the homogeneous

steady state is the only existing solution. The (1, 1)-pattern begins to appear only

above a critical size L1, where L1 obeys

βA αB
αA βB

tanh(L1/λA)

L1/λA
=

tanh(L1/λB)

L1/λB
. (2.27)

This equation implies in particular that λA has to be sufficiently small in comparison

to L and λB for the existence of inhomogeneous patterns, see Appendix A.6.

The relative source size `/L strongly increases with L beyond L1. In the limit of

λB � L, it eventually saturates, see Fig. 2.7 (blue curve). This observation of source

scaling for an existing (1, 1)-pattern has been reported before (66, 67, 120). In contrast,

following the red curve for a finite inhibitor range λB, the source size ` approaches a

constant value independent of L. In the limit λB � L, we obtain `/L ∝ λB/L because

the source does not sense the system boundaries but instead is restricted by λB.

Analogous to the (1, 1)-pattern, any higher order (m,n)-pattern only exists if the system

size L exceeds a critical size Lσ = σ L1, see the gray regions in Fig. 2.8(a).

2.5.2. Higher order patterns form in larger systems

We have shown that the number of coexisting patterns increases with increasing size.

Next, we investigate which of these patterns are stable and can in fact be observed in

systems of different sizes.

Higher order modes become linearly unstable in larger systems. — The homogeneous

steady state is linearly unstable with respect to inhomogeneous perturbations for pa-

rameter values that fulfill the Turing conditions discussed in Section 1.4. A linear

stability analysis as detailed in Appendix A.5 provides the corresponding parameter

range for our specific choice of Eq. 2.18 and Eq. 2.19. For a certain choice of parame-

ters and a specific system size, there is a range of perturbation modes s ∈ [smin, smax],

which grow exponentially and might result in inhomogeneous patterns. Importantly,
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Figure 2.8.: Classical Turing patterning implies that in larger systems higher-order

patterns form. (a) Typical profiles of the activator concentration A(m,n)(x) for the

(m,n)-pattern are shown in red as steady state solutions to Eq. 2.18. Size ranges are

shown, where the (m,n)-pattern is linearly stable (black), or exists, but is not stable

(gray). In the blue region, the (1, 1)-pattern is the only stable pattern. (b) Basins

of attraction: final pattern type at steady state as a function of system size on the

horizontal axis and initial conditions on the vertical axis. Initial conditions linearly

interpolate between the (1,1)- and (1,0)-pattern, i.e., A(x, t=0) = (1 − ξ)A(1,1)(x) +

ξ A(1,0)(x), and analogously for B(x, t=0). Parameters: DB/DA = 30, αB/αA = 4,

βB/βA = 2, h→∞ (a), h = 5 (b).
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2.5 Revisiting the absence of scaling in Turing patterns

the mode number s scales with system size L as can already be seen from the struc-

ture of the general linear stability matrix in Eq. 1.4. Thus, both interval bounds smin

and smax linearly depend on L as does the mode that becomes unstable first, when

changing one control parameter. Therefore, in a larger system, more and higher order

perturbation modes become unstable (64, 96, 148).

Nevertheless, the linear instability of the homogeneous steady state is only a necessary

condition for the formation of inhomogeneous patterns. The mode number s of the

perturbation can provide a first clue about the type of pattern that might form, yet

there is no general relationship between the growing perturbation modes and final

patterns. In fact, it is not even clear that an inhomogeneous steady state exists in a

system of finite size, even if the homogeneous steady state is linearly unstable. We

encounter such a situation in our system.

The Turing system possesses a rich dynamics including oscillations due to a finite

system size and the multistability of several steady states. — Fig. 2.8(a) summarizes

size ranges of existence (gray) and stability (black) of steady state patterns of our model.

For very small systems with L < L1, the homogeneous steady state is the only steady

state pattern that exists in agreement with reflecting (and also periodic) boundary

conditions. Still, the homogeneous steady state can be linearly unstable. As there are

no diverging terms in Eq. 2.18, we observe homoclinic orbits and oscillations. These

oscillations induced by boundary effects take place far away from the homogeneous

steady state. Thus, they appear even if all eigenvalues of the linear perturbation matrix

Ms are real.

For larger systems with L > L2, several inhomogeneous steady states coexist and

are linearly stable. We numerically determined the region of linear stability (black)

for several inhomogeneous steady states, see Appendix A.6.4. We did not find any

upper size limit for the linear stability for a particular pattern. However, we observed

increasingly smaller basins-of-attraction in systems of increasing size. Thus, lower order

patterns become unstable with respect to finite-amplitude perturbations in favor of

higher wavenumber patterns, as exemplified in Fig. 2.8(b).

In conclusion, steady state patterns of increasing wavenumber emerge with increasing

system size. — In particular, the interplay between the characteristic length scales λA

and λB and the system size L determines whether a certain pattern fits into the sys-

tem and whether it will preferentially form. For example, the (1, 1)-pattern is globally

stable only in a limited size range, see Fig. 2.8(a) (blue shading). Therefore, only if the

system is pinned to this blue region by changing the characteristic length scales with
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2. SCALING AND NON-SCALING IN MORPHOGEN SYSTEMS

system size, the (1, 1)-pattern emerges reliably from arbitrary initial conditions. In a

hypothetical case, in which λA and λB scale with L, while αAβB/(βAαB) stays con-

stant, we can hope to find a range of parameters, for which a particular (1, 1)-pattern

with a scaling source is the only stable steady state, see Eq. 2.26 and Fig. 2.7. In the

next Chapter, we introduce a corresponding feedback that couples the Turing system

to the dynamics of an expander molecule.

2.6. Summary

In this chapter we analyzed scaling of morphogen profiles in pre-patterned and self-

organized systems. For this, we especially paid attention to the difference between

(perfect) scaling of the profiles and profile expansion in a non-linear fashion.

For the case of pre-patterned systems, several scaling mechanisms have been proposed,

drawing on the idea of additional expander molecules, which encode system size (24, 26,

135, 233, 234). We distinguish two classes of scaling mechanisms. In the first class, the

expander reads out system size independently of the morphogen like in the expander-

dilution model. The second class comprises mechanisms of self-scaling by a feedback

loop between expander and morphogen like in the expansion-repression model. These

latter models typically yield robust profile expansion but often do not perfectly scale.

We highlight several requirements of such expander feedbacks, in particular the fact

that the amplitude of the morphogen profile has to vary with system size.

As a prototype example for self-organized patterning, we discussed a classical Turing

system with two players. Our specific choice of equations is especially suitable for

analytical treatment. We illustrated the absence of scaling in a comprehensive way:

Besides the linear stability analysis of the homogeneous steady state, we also assessed

existence and stability of the inhomogeneous patterns. We found a hierarchy of in-

homogeneous steady state patterns, for which higher order patterns are favored with

increasing system size. Thereby, the behavior is governed by the ratio of system size

L to the characteristic length scales λA and λB of the two considered molecules, indi-

cating that scaling might be achieved by adjusting these length scales with L. In fact

this ideas has already been explored in earlier works (90, 96, 148, 154). It has been

shown that by coupling λA and λB to an autonomous chemical size reporter like in the

expander-dilution model, the Turing patterns scale. In Chapter 3, we demonstrate that

we can also devise an expander feedback loop in the spirit of the expansion-repression

model to generate self-organized scaling of a Turing system.
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3. Scaling and regeneration

of self-organized patterns

3.1. Self-scaling and self-organization

Flatworms challenge previous theories of pattern scaling and self-organization. Regene-

ration from minute amputation fragments of strongly varying size prompts for patter-

ning mechanisms that are both: scalable and self-organizing. Turing systems, as promi-

nent frameworks for self-organized patterning, do not naturally scale (74, 148, 223).

They typically generate the same patterns repeated multiple times in a growing system

as depicted in Fig. 3.1. In Chapter 2, we have illustrated that this is due to fixed

characteristic length scales, which define the wave length of the patterns.

However, it has been demonstrated that Turing patterns can in fact scale if the charac-

teristic length scales are coupled to a chemical size-reporter, which we called expander

“Everywhere nature works true to scale, and
everything has its proper size accordingly.” —
D’Arcy W. Thompson, On Growth and Form,
1945 (217)

(90, 96, 148, 154). These previous works assumed

an expander that is independently controlled by a

pre-patterned system like in Section 2.4.2. Thus,

the proposed mechanisms account for scaling, but

not in a fully self-organized way. Conversely, self-

scaling mechanisms have been discussed previously (e.g. for fly development), yet for

systems that are not fully self-organized (11, 24, 27, 223, 234), see Section 2.4.3.

Now, in this chapter, we combine the two features of scaling and self-organization and

present a generic mechanism that yields fully self-organized and self-scaling patterns.

Importantly, the expander feedback in a Turing system with a self-organized source

follows a very different control logic than in systems with a pre-existing source. In con-

sequence, perfectly scaling steady states are stable across a wide range of system sizes.

Our novel class of self-scaling Turing patterning provides a conceptual framework to

address scaling and regeneration in flatworms and guides the design and interpretation

of experiments. This result has been published in Werner et al. (238).

First, we present a specific example which combines ideas from Turing patterning, dis-

cussed in Section 2.5, with theoretical concepts for the scaling of morphogen profiles,
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3. SCALING & REGENERATION OF SELF-ORGANIZED PATTERNS

(a) Classical Turing (b) Scaled Patterns

Figure 3.1.: Classical Turing patterns show more periodic repeats in larger systems

as a result of fixed intrinsic length scales (a), instead of being a scaled-up version of

the patterns in small systems (b).

analyzed in Section 2.4. We demonstrate that this system is capable of self-organized

scaling and explain the underlying mechanism. In a second step, we discuss generaliza-

tions of the mechanism and predictions for experiments in flatworms.

3.2. A minimal model for self-organized pattern scaling

Analogous to Section 2.4, we add another molecular species, termed expander, whose

concentration E will provide a read-out of system size L. As a specific case, we assume

the expander is produced homogeneously, spreads by diffusion and is subject to degra-

dation

∂tE = αE − βE E +DE ∂
2
xE . (3.1)

Again, αE denotes the respective production rate, βE the degradation rate and DE an

effective diffusion coefficient.

In order to achieve self-organized scaling, the dynamics of the three molecular species

have to be mutually coupled in a similar manner as for the expander feedback in

Section 2.4.3. As an illustrative example, we choose a feedback loop, in which the

inhibitor of the Turing system controls the degradation rate of the expander via

βE = κE B (3.2)

with a positive constant κE . This choice ensures that the expander concentration is

approximately homogeneous even for small DE because the inhibitor concentration

itself is typically rather homogeneous in a Turing system.

In turn, the expander also feeds back on the Turing system and changes the length

scales of the morphogen profiles, see Fig. 3.2(a). Analogously to Eq. 3.2, we choose a

regulation of the degradation rates by the expander (with κA, κB > 0)

βA = κAE , βB = κB E . (3.3)

Note that Eqs. 2.18 and 3.1 can be considered as a classical three component Turing

system, yet with specifically chosen coupling terms given by Eqs. 2.19, 3.2 and 3.3.

42
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3.3. Numeric solution shows scaling and pattern regeneration

Before analyzing this system of equations analytically, we numerically demonstrate that

the steady state pattern scales with system size over several orders of magnitude, see

Fig. 3.2(b)-(c). Small deviations from the perfect collapse of the concentration profiles

arise due to a finite diffusion coefficient of the expander and a finite h of the production

function. Still, the source size `∗ at steady state and the characteristic length scales λ∗A

and λ∗B show almost perfect scaling with system size. In the limit of an homogeneous

expander and a switch-like source with h → ∞, we analytically show in Section 3.4

that the scaling becomes exact.

Pattern scaling does not come at the cost of robustness for the Turing system. We

can challenge patterning by perturbations that mimic amputation experiments, see

Fig. 3.2(d). Here, the activator concentration A reliably adjusts to fit the smaller

system size. Note that it takes longer for the system part with the source until the

initially higher morphogen concentration becomes re-adjusted.

3.4. Dynamical systems analysis of scaling and regeneration

Next, we provide insight into how and why scaling works. First, we identify steady

states, each of which scales with system size. For the simple case of adiabatically slow

expander dynamics, we then show that the (1,1)-pattern is a stable steady state. A

phase space description allows us to characterize fixed points and understand the non-

linear dynamics. We illustrate the behavior by considering a two-dimensional projection

of the phase space of our dynamical system, spanned by the relative source size given

by Eq. 2.21 and the mean expander level, see Fig. 3.3(a).

An implicit scaling relation holds at steady state. — We first show that all steady

states of the extended Turing system are characterized by the same relative source

size `∗/L = 〈P ∗〉 independent of system size L. Thus, in Fig. 3.3(a) all steady states

(circles) are found on a horizontal line. By spatial averaging of Eq. 2.18 and 3.1, we

obtain for steady state concentrations B∗ and E∗

0 = αB〈P ∗〉 − κB〈B∗E∗〉 (3.4)

0 = αE − κE〈B∗E∗〉 . (3.5)

Hence, the relative source size in the steady state is constant

` *

L
=
αE κB
αB κE

. (3.6)
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Figure 3.2.: Scalable pattern formation in a Turing system with expander feedback.

(a) The Turing system and the expander mutually control their degradation rates, re-

sulting in a stable feedback loop. (b) Scaling corresponds to morphogen profiles that

collapse as a function of relative position x/L (normalized by respective concentrations

A0, B0, E0 at x = 0). (c) The feedback self-consistently adjusts the length scales λA

and λB of the morphogen profiles and thus the source size ` with system size (sym-

bols: numerical results; lines: analytical solution of Eqs. 2.18 and 3.1 at steady state

for homogeneous expander concentration and h→∞). Here, λ0 = [DA/
√
αAκA]1/2

denotes the characteristic length scale of the system. (d) Regeneration of concentra-

tion profiles: after cutting the system in two (initial size L/λ0 = 20), the expander

feedback adjusts the activator concentration to fit the smaller system size both in a

tail fragment (upper row) and head fragment (lower row). Repatterning of the tail

fragment takes significantly longer due to the initially higher morphogen concentration

(time given in units of τ0 = 1/
√
αAκA). Parameters: DB/DA = 30, DE/DA = 10,

αB/αA = 4, αE/αA = 0.4, κB/κA = 2, κE/κA = 2, h = 5.
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3.4 Dynamical systems analysis of scaling and regeneration

In contrast, the length scales defined in Eq. 2.25 are not constant anymore but change

with expander level:

λA =

√
DA

κAE
and λB =

√
DB

κBE
. (3.7)

We have seen in Fig. 3.2(c) that λ∗A and λ∗B at steady state scale with high precision

with system size. In order to explain this scaling behavior, we consider the limit

of a spatially homogeneous expander concentration E, for which we can show that

the scaling becomes exact. This limit corresponds to either a large expander range

λE =
√
DE/(κEB)� L or a large inhibitor range λB =

√
DB/(κBE)� L. The latter

condition is in compliance with the requirements for a typical Turing system and is

promoted by the scaling feedback.

If the expander level was imposed as constant E = E0, we obtain a Turing system

without expander feedback, as discussed in Section 2.5. Thus, it would reach one of

the (m,n)-patterns discussed in Section 2.5.1 with pattern length scales λA(E0) and

λB(E0). The relative source size f(m,n) = l/L of such a pattern depends on E0 only

via the dimensionless ratios λA(E0)/L and λB(E0)/L, compare to Eq. 2.26. This fact

is illustrated by Fig. 2.7, where the red curve displays f(1,1) in the limit of h → ∞.

Importantly, f(m,n) = f(m,n)(L
2E0) is only a function of L2E0 and changing E0 has

analogous effects on the relative source size as changing L2.

The same argument also implies that a (m,n)-pattern can only exist above a critical

value of E0, corresponding to the minimum system size for the existence of patterns in

Fig. 2.8(a). Below this critical value, f(m,n) is zero. Above this value, f(m,n) displays

a nonmonotonic dependence on E0, which results from opposing effects of the pattern

length scales of the activator and the inhibitor on the source size `, see Fig. 3.3(a).

The intersections of the curves f(m,n) (obtained from the steady states of the Turing sys-

tem without expander) with the constant value `∗/L given by Eq. 3.6 define the steady

states of the full system with expander feedback. For each pattern type (m,n), we

find two steady-state patterns, denoted (m,n)+ and (m,n)−, with respective expander

levels E+
(m,n) < E−(m,n), see the black and white circles in Fig. 3.3(a).

The fact that f(m,n)(L
2E∗) = `∗/L is independent of system size L by Eq. 3.6, implies

that also L2E∗ is independent of L for each steady state. We conclude E∗ ∝ L−2 and

thus λ∗A ∝ L, λ∗B ∝ L at each fixed point, consistent with our numerical results in

Fig. 3.2(c).

The stability in the vicinity of the scaling fixed points can be assessed in the simple limit

of adiabatically slow expander feedback. — In this limit, the source size first relaxes to
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Figure 3.3.: Fixed points and dynamics in a Turing system with expander feedback.

(a)-(b) Two-dimensional projection of the phase space: all fixed points (circles) are

characterized by the same relative source size. For adiabatically slow expander dy-

namics, the system relaxes along the nullclines of the Turing system f(m,n) (shown for

h→∞, λE � L, corresponding to Eq. 2.26). As each nullcline intersects the steady-

state condition of Eq. 3.6 twice, the system possesses two fixed points (n,m)+ and

(n,m)− for each pair (n,m). In the blue region, the (1,1)-pattern is the only stable

steady state of the Turing system, compare to Fig. 2.8, implying that all trajectories

starting there must converge to this fixed point. Here, E0 = (αA/κA)1/2 denotes a

characteristic concentration of the system. (c) Example trajectories, mimicking am-

putation experiments (labeled i,ii), and uniform, one-time injection of the expander

(labeled iii,iv); all converge to the same stable fixed point, an appropriately scaled

(1,1)-pattern. (d) Parameter regions for stable, self-scaling pattern formation (green),

and regions of expander divergence (orange, purple). Parameters of panel (c) and

Fig. 3.2 indicated by cross. Parameters: DB/DA = 30, DE/DA = 10, αB/αA =

4, αE/αA = 0.4, κB/κA = 2, κE/κA = 2, h = 5, L/λ0 = 10, unless indicated

otherwise.
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3.4 Dynamical systems analysis of scaling and regeneration

`/L = f(m,n)(L
2E) for some (m,n), corresponding to the fast time scale of the Turing

system. Then, by Eq. 3.1, the system moves slowly along this nullcline according to

∂tE = αE −
κE αB
κB

f(m,n)(L
2E) . (3.8)

Stability of steady-state patterns requires ∂Ef(m,n) > 0, which can be shown to hold

only for E+
(m,n), see Fig. 3.3(a).

Which branch f(m,n) is selected for arbitrary initial conditions by the fast Turing dy-

namics? As we consider the limit of slow expander feedback, the expander concentra-

tion is approximately constant within the time scale of the Turing relaxation. Thus,

the question of which pattern (m,n) is selected is formally equivalent to the stability

of (m,n)-patterns in the Turing system without expander feedback as a function of

system size L. The blue region in Fig. 2.8(a), in which the (1, 1)-pattern is the only

stable pattern, can be associated with the blue range of expander concentration in

Fig. 3.3(a). Therefore, we can deduce that this represents a basin-of-attraction for the

(1, 1)+-pattern.

A numerical analysis reveals a large basin-of-attraction for the first order pattern. —

Fig. 3.3(c) shows that the (1, 1)+-pattern is an attractive fixed point also for trajectories

starting outside this blue region and for nonadiabatic expander dynamics. Two example

trajectories, labelled (i) and (ii), corresponding to head and tail fragments, respectively,

converge to the (1, 1)-pattern, after a transient under- and over-shoot of the source size.

Two additional trajectories, labeled (iii) and (iv), simulating uniform injection of the

expander, likewise converge to this fixed point. We can understand these observations

by drawing on the results for the Turing system without expander in Section 2.5.1 and

2.5.2.

The dynamics for large expander concentrations are characterized by a successive move-

ment through higher order patterns. — The (1, 1)+-state is also attractive for trajec-

tories like (iv) with initially high values of E. Here, a (2, 2)-pattern with an additional

source is transiently emerging. Yet, according to the expander dynamics given by

Eq. 3.8, the system moves towards the fixed point (2, 2)+ as long as the (2, 2)-pattern

comprises a stable fixed point of the Turing system without expander. However, the

fixed point (2, 2)+ of the Turing system with expander lies in a region of the phase

space where the (2, 2)-pattern of the Turing system alone is unstable for our choice

of parameters. Thus, the fixed point (2, 2)+ is in fact a saddle point, attractive with

respect to the expander dynamics along the nullcline f(2,2) but unstable with respect

to the Turing system. Again, this can be understood from Fig. 2.8(a) by noting the
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3. SCALING & REGENERATION OF SELF-ORGANIZED PATTERNS

formal correspondence between changes in E for a fixed system size L and changes in

L2 for the classical Turing system without expander. Fig. 2.8(a) illustrates that the

(2, 2)-pattern is unstable outside the blue region. The result would be different for the

(1, 0)-pattern. Note that the nullclines of the (1, 0)-pattern and the (2, 2)-pattern are

congruent in our projection of the phase space. In consequence, there exists a trajectory

starting with a (1, 0)-pattern that looks identical to (iv), besides the fact that it ends

in the fixed point (1, 0)+, which is stable for our choice of parameters, as illustrated in

Fig. 2.8(a).

Dynamics of homogeneous states allows to understand regeneration of patterns. —

For small expander values, there are no inhomogeneous steady state patterns of the

Turing system, yet homogeneous patterns exist. To understand the relaxation of the

full system, we will discuss two limiting cases, assuming again the separation of time

scales between Turing dynamics and expander system:

a) In the limit of fast Turing dynamics, the Turing system will first approach the

homogeneous steady state, given by Eq. 2.22 for a certain value of E. On the larger time

scale of the expander relaxation, the system moves along the corresponding nullcline

`/L = f(0,0) according to

∂tE = αE −
αBκE
κB

f(0,0) with f(0,0) = P (A∗h, B
∗
h) . (3.9)

If f(0,0) < `∗/L, the expander level increases and consequently the Turing length scale

decreases until the homogeneous pattern becomes unstable and inhomogeneous patterns

can form.

b) As a second case, we consider the opposite limit, for which the Turing dynamics are

adiabatically slow and the inhibitor concentration B does hardly change within the time

scale of relaxation of the expander towards αE/(κE B). We find a qualitatively similar

behavior. It exists another homogeneous, yet dynamic solution of the Turing system,

in which the ratio χ = B/A and thus P (A,B) = g(χ) is approximately constant. The

ratio χ is determined by the following implicit relation, see Appendix A.7.1:

1

1 + χh
=
αE
κE

κA − κB
αA χ− αB

. (3.10)

In order for E to increase such that the system enters the regime where inhomogeneous

patterns exist, B has to decrease. According to

∂tB = αB g(χ)− κB αE
κE

, (3.11)

this requires that g(χ) < `∗/L.
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3.5 As single source pattern is attractive for a large region of the phase
space

Depending on the choice of parameters, both transient homogeneous states (corre-

sponding to the two limiting cases of a separation of time scales) can be observed when

mimicking regeneration experiments in the Turing system with expander. In Fig. 3.3(c),

the horizontal stretch of trajectory (i) corresponds to g(χ). Both production terms f(0,0)

and g(χ) of the transient homogeneous states have to be smaller than `∗/L, explaining

the transient undershoot during regeneration. Note that from g(χ) = `∗/L follows that

also f(0,0) = `∗/L. The set of parameters corresponding to this joint condition mark the

breakdown of robust regeneration, see horizontal line in Fig. 3.3(d). Beyond this thres-

hold, the homogeneous morphogen concentrations diverge while the expander vanishes

(purple region). If the parameters obey this constraint, the basin-of-attraction of the

(1, 1)-state extends towards small values of E outside the blue region in Fig. 3.3(a).

3.5. As single source pattern is attractive for a large region of

the phase space

Based on the discussion above, we expect the (1, 1)-pattern to be re-established even

when simulating more drastic amputation experiments, as shown in Fig. 3.4. Again,

we find the source `/L of each smaller system first approaching the horizontal line

corresponding to g(χ). Eventually, the expander value is sufficiently large such that

the homogeneous state becomes unstable and inhomogeneous patterns can form. Tran-

siently, the (2, 1)-pattern arises but as the (2, 1)+-solution is unstable with respect to

the Turing dynamics, the additional source vanishes and the system returns to the

(1, 1)-pattern.

Details of the relaxation dynamics and whether (1, 1)+ is the only stable fixed point

or whether a second stable fixed point (1, 0)+ with a smaller basin-of-attraction exists

like in our example, depends on the choice of parameters. In general, we observe

robust pattern scaling for a vast parameter range, provided (i) inhibitor diffusion is

sufficiently fast (a necessary condition for pattern formation in any Turing system) and

(ii) the expander feedback strength falls into an intermediate range, see Fig. 3.3(d). The

threshold above which the expander concentration vanishes, resulting in a divergence

of A and B (purple), can be analytically determined from the condition f(0,0) = g(χ) =

`∗/L. This corresponds to the fact that the expander should increase for homogeneous

morphogen concentrations.
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Figure 3.4.: Numerical solution of the Turing system with expander mimicking an

amputation experiment with 10 cuts. All trajectories converge to the fixed point (1, 1)+

after a transient formation of the (2, 1)-pattern. Parameters: DB/DA = 30, DE/DA =

10, αB/αA = 4, αE/αA = 0.4, κB/κA = 2, κE/κA = 2, h = 5, L/λ0 = 10.

3.6. Structural robustness for pattern scaling

Several generalizations of the proposed minimal mechanism are conceivable. First, the

feedback of the Turing system on the expander level could be likewise implemented via

the production rate, e.g. αE ∝ B, instead via the degradation rate βE = κEB. Then,

scaling would require βA ∝ 1/E , βB ∝ 1/E as well as a fast spreading expander,

yielding analogous steady states.

As a second possibility for pattern scaling, the feedback in Eq. 3.3 could also be me-

diated by A (instead of or additional to B), provided the expander diffuses sufficiently

fast. For example, the following system can be interpreted in the sense that A and E
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3.6 Structural robustness for pattern scaling

as well as B and E are only degraded together when bound to each other

∂tA = αA P (A,B)− κAAE +DA ∂
2
xA

∂tB = αB P (A,B)− κB EB +DB ∂
2
xB

∂tE = αE − κAAE − κB BE +DE ∂
2
xE . (3.12)

More generally, the degradation term does not even have to be linear in A, B and E.

Two increasing functions of A and E, and B and E, respectively, that fulfill the Turing

conditions together with P (A,B) are sufficient to generate robust scaling by the same

arguments as above, see Appendix A.7.2.

Remarkably, the feedback loop considered here, featuring two mutually suppressing

concentration profiles (B and E), would be unstable for a pre-patterned morphogen

source of fixed size as discussed for the expander feedback in Section 2.4.3. The feedback

mechanism becomes stable, only due to the self-stabilizing effect of the Turing system

itself.

Our mechanism yields pattern scaling by scaling of the morphogen profiles via a feed-

back on the degradation rates of A and B. As discussed in Section 2.3, scaling of expo-

nential profiles can in principle also be achieved by mechanisms affecting the diffusion of

morphogens. However, controlling only diffusion is not compatible with self-organized

pattern scaling as presented here. Our mechanism relies on a size-dependent amplitude

of the morphogen profiles, which is lacking for pure diffusion control, as discussed in

2.4.4.

The morphogen amplitude in our feedback scheme changes quadratically with system

size as can be seen from Eq. 2.23-2.24. It is interesting to note that the flux βAA has

a size-independent amplitude. The spatial profile of this flux could provide a read-out

of the scaling morphogen profiles independent of their amplitudes, see Appendix A.7.3.

For example, if degradation only happens by internalization upon binding to a receptor,

the concentration of down-stream targets of the morphogen A would be proportional

to the flux βAA.
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3. SCALING & REGENERATION OF SELF-ORGANIZED PATTERNS

3.7. Signatures of self-scaling patterns

Our minimal model for the scaling of self-organized patterns can act as a framework

to understand scaling and regeneration in flatworms. We find a number of signatures

characterizing this class of patterning mechanism, which can be identified in experi-

ments.

(i) First, the over-all morphogen levels depend on system size. As already discussed

in Section 2.4.4 for self-scaling feedback loops, this is necessary for the morphogens

to influence the expander in a size-dependent manner. However, downstream targets

might scale with a constant amplitude.

(ii) Second, for the simple scalable Turing systems discussed here, a size-dependent

morphogen amplitude requires the adjustment of degradation rates. For the experi-

ments, we have to take into account that many processes can effectively lead to a

change in degradation by expander molecules. For example, binding of the expander

could disintegrate or alter the morphogen such that it cannot fulfill its signaling task.

Alternatively, the expander could act as a co-receptor that facilitates internalization

and thus removes the morphogen from the system. Conversely, the expander might

reduce degradation by preventing disintegration, modifications or internalization by

binding to the morphogen or its suppressors.

(iii) Third, the expander by definition shows a size-dependent concentration. If the

expander level is proportionally to L2, it can couple linearly to the degradation rate

to achieve scaling. Note that the expander is likely not a single molecule but an entire

signaling module, for which some components might already be expressed in a size-

dependent manner. Thus, analyzing changes in expression levels between animals of

different size can help to identify the expander mechanism.

(iv) Fourth, a perturbation of the expander feedback by over-expression or gene knock-

out or also by hindered spreading is expected to lead to a change in the wave number of

the pattern. Depending on the coupling of the expander to the morphogen dynamics,

one might observe the most severe effects in either small or large animals.

(v) Fifth, the source is expected to exhibit a non-monotonic dynamics after ampu-

tation. In particular, an initially oversized source might show an undershoot during

regeneration.

(vi) Sixth, there might be additional fixed points of the system with small basins-of-

attraction. In our example, the (1, 0)+-pattern was also stable and locally attractive.

If the system is initialized close to this pattern, the pattern will be maintained, even in

the presence of small perturbations.
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3.8 Comparison to experiments in flatworms

3.8. Comparison to experiments in flatworms

The signatures discussed in Section 3.7 can to some extent be found in flatworms, in

particular for the Wnt/β-catenin pathway associated with head-tail polarity (4, 9, 51,

54, 81, 82, 141, 160). The Wnt molecules are expressed in the posterior part of the

animal and shape the graded β-catenin profile with a maximum at the tail, see Fig. 3.5.

The expression regions of components of the Wnt pathway as well as independent

anterior and posterior markers fit to the size of the worm (81). Furthermore, first

preliminary data by our experimental collaborators suggests that also the β-catenin

profile matches worm size with a constant amplitude, see (i).

After amputation, this graded cue has to be quickly scaled to fit the remaining body

fragment. Indeed, it has been observed that the position-dependent expression pattern

along the AP axis changes within the existing cells to adjust to the new fragment size

in the course of a few days (81, 82, 245). Thus, the robust re-establishment of a scaled

chemical pattern seems to predate the remodelling of the body plan. Thereby, the

expression region of one of the Wnt molecules is reported to show similar dynamics as

the source size in our model, see (v). After cutting the worm, the expression of Wnt11.5

is strongly reduced and undershoots its target range before it eventually scales up again

to fit the fragment size (81).

Knockdown of β-catenin leads to the formation of multiple heads (3, 51, 82, 82, 160).

Interestingly, after a transient drug treatment, the double-headed phenotype persists

even after consecutive amputations (117). This agrees with our discussed example for

which the second order pattern (and even more specifically the (1, 0)-pattern) seems to

be a locally attractive fixed point, see (vi).

Additionally, very narrow slices of the worm can also sometimes result in a double-

headed phenotype (4, 51, 117, 127). Again, this compares to our model, for which

the morphogen profile transiently flattens after amputation. In the model, the profile

becomes the more homogeneous the smaller the fragment. Starting from a homogeneous

profile can occasionally result in the emergence of a higher order pattern with a small

basin-of-attraction, see (vi).

Candidates for the expander molecules still have to be identified. However, a first

sequencing screen by our experimental collaborators found several genes which are

expressed in a size-dependent manner. Some of them are even approximately homoge-

neously expressed and show a strong (possibly quadratic) dependence on worm length,

see (iii).
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Figure 3.5.: The β-catenin concentration forms a gradient from tail to head defining

the AP axis in flatworms. Quantitative Western Blot by Tom Stückemann in the group

of Jochen Rink (lysate refers to dissolved cell material).

For a homogeneous effect of the expander on the morphogen, the expander might be a

rather small and fast diffusion molecule. Recently, it has been reported that blocking

of gap junctions leads to a higher wave length pattern in the worm (152), see (iv). This

suggests that distribution of the expander might be linked to gap junctions.

In summary, we could identify several signatures of our simple model, which help us to

lay out the route for further experiments such as targeted gene knockouts. Thereby, it

is important not to confuse patterns with processes. The same steady state pattern can

arise from very different underlying mechanisms. This is particularly true for the case

of Turing models (147). Already for a simple three component model as we discussed

in this chapter, the knockout of activator or inhibitor might easily provoke misleading

interpretations of the data, see Appendix A.7.4. Considering not an endpoint assay

but a time course of the system after amputations or gene knockouts might to some

extent circumvent this problem. The dynamics typically reveal additional, valuable de-

tails of the mechanism that might enable us to distinguish between different approaches.
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3.9 Summary and discussion

3.9. Summary and discussion

In this chapter, we introduced a new class of pattern forming mechanisms, which ge-

nerate patterns that scale with system size in a completely self-organized manner. The

patterning scheme relies on expander molecules that dynamically adjust the degradation

rates of morphogens in a Turing system. Thereby, the expander controls the pattern

length scales and the source size of the resulting Turing patterns. Conversely, the

expander concentration is dynamic itself and is regulated by the concentrations of the

Turing morphogens. For the feedback introduced here, the relative source size at steady

state is always independent of the system size, see Eq. 3.6. Furthermore, we showed

that a head-tail polarity pattern with a single source region scales as a function of

the system size, is stable with respect to perturbations, and regenerates in amputation

fragments.

Previous works have already discussed scaling of morphogen profiles and patterns in

pre-patterned systems. Either the morphogen source was specified by other pre-existing

cues (24, 26) or the morphogen profile was self-organized according to a Turing mech-

anism but scaling relied on a predefined geometry (90, 96, 148, 154). Such frameworks

are challenged by the regeneration capabilities of flatworms. In addition, we will show

in Chapter 5 that the length-width ratio of the worms does not stay constant during

growth, which is also not compatible with mechanisms relying on a fixed geometry.

Now, our self-organized model for pattern scaling is able to read out system size in

the absence of any pre-patterns and without depending strongly on specific geometrical

features.

Certainly, body plan patterns in flatworms do not emerge in the total absence of po-

tential pre-patterning cues. For example, it has been shown that the contact of dorsal

and ventral tissue at the wound site causes a regeneration response (102). Still, our

self-organized patterning system captures main characteristics of body plan scaling and

regeneration in flatworms and allows to discuss generic concepts. Thereby, it provides

the basis for further investigations and more sophisticated modeling approaches.

In the minimal theory formulated here, we neglected spontaneous expander degradation.

Such spontaneous degradation would cap the expander concentration and set a lower

size limit for pattern scaling. Additionally, in size-monitoring systems as considered

here, a key challenge relates to the simple fact that these obviously require long-range

communication across the scale of the system. This implies a trade-off between an

upper size limit for scaling, and the time-scale of pattern formation. Here, this time

scale is set by morphogen diffusion and system size. For example, assuming a maximum
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diffusion coefficient of 100µm2/s and a maximum organism size of 20 mm, relevant

for the flatworms considered, we infer a patterning time scale of 3−30 days, roughly

consistent with the experimental range of 1−2 weeks for the restoration of body plan

proportions after amputation (4, 140). Note that active, non-directional transport in

addition to passive diffusion could accelerate morphogen dispersal and thus allow for

faster pattern formation (76).

In fact, it has been suggested for flatworms that fast long-range communication might be

implemented via gap junctions or the central nervous system (9, 152, 157). Besides the

transmission of actual nervous signals, a molecular transport along the nerve cords was

proposed (9, 169, 245). Moreover, a gradient of membrane voltage has been discussed

to mediate long range patterning and scaling of body parts (22, 23, 115). Yet, even

when considering faster transport processes than normal diffusion, eventually we can

expect a physical limit to scaling, which would be revealed by the emergence of higher

order body plan patterns. Interestingly, it has been reported that a second head forms

in very large animals of some species (50, 98).

So far, we were mainly concerned with the Wnt/β-catenin system and the gradient for-

mation along the anterior-posterior (AP) axis. Yet, there are also two additional axes,

which are specified by other signaling molecules (141). For example, the Admp/Bmp

system appears to be responsible for the establishment of a dorsal and a ventral side

(61). In flatworms, these molecules seem to cross-react analogous to a Turing system.

Previously, they have also been proposed to be a Turing pair in the frog Xenopus laevis

(122) and a shuttling mechanism has been discussed as a means to adjust the Bmp

gradient to the size of the frog embryo (25).

The theory developed in this chapter provides a framework to understand robust axis

formation and scalable body plan patterning. In the future, it will be important to test

the generic concepts presented here in regeneration experiments and to quantify spatial

profiles of signaling molecules and genetic activity. With this, we aim to identify the

key modules leading to scaling and regeneration.
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4. Flatworm shape dynamics and motility

4.1. Modes, movement and morphology

While the previous chapters were concerned with the patterning of a specific body

layout, this chapter aims to analyze motility-induced and inter-species variations of the

body shapes as a first step to relate form and function. Ultimately, we would like to

understand why worms look and behave the way they do. Most of the results of this

chapter have been published in Werner et al. (239).

Evolutionary adaption to a specific environment manifests itself in the emergence

of characteristic body morphologies, which among others allow the organism to effi-

ciently sense its environment and steer its path. Thus, motility phenotypes reveal

abnormal body plan patterns. Flatworms usually display a smooth gliding motility,

“Whether it be the sweeping eagle in his flight, or
the open apple-blossom, the toiling work-horse,
the blithe swan, the branching oak, the win-
ding stream at its base, the drifting clouds, over
all the coursing sun, form ever follows function,
and this is the law.” — Louis H. Sullivan,
The Tall Office Building Artistically Considered,
1896 (210)

resulting from a coordinated beating of the cilia

in their densely ciliated ventral epithelium (8, 169,

179, 180). For the cilia to act in synchrony, they

have to be oriented in parallel to each other, which

is coordinated by a structural polarity of the epi-

thelial cells in the plane of the epithelial tissue.

This planar cell polarity system (PCP) comprises

several molecules that asymmetrically localize to

the anterior or posterior side of each cell, respectively, and bind through the membrane

to the corresponding counterpart in the neighbouring cells (51, 196, 226). It has been

described that the PCP system, which is based on local cell-cell interactions, couples to

global polarity cues provided by organism-scale / tissue-scale concentration gradients

of signaling molecules as discussed in the previous chapter (51, 196, 226). Together

with our experimental collaborators, we aim to explore this coupling by quantifying

the gliding speed after knocking out genes of the Wnt/β-catenin pathway as a long

range patterning system.

In a second approach, we analyze and characterize the movement patterns of flatworms

in detail. How do the worms steer their path? We find that a characteristic bending

posture correlates with active turning during gliding, presumably caused by unilateral
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4. FLATWORM SHAPE DYNAMICS AND MOTILITY

muscle contractions. Thus, during gliding motility, speed is generated by beating cilia

whereas steering is controlled by muscles. Occasionally, flatworms also show a second

type of motility behavior, called “inch-worming”, sometimes also referred to as “peri-

staltic movement” (8, 169, 179, 180). Switching to this motility mode is associated

with escape responses and impaired cilia functionality. We characterize inch-worming

by stereotypic width changes of these worms. Our method reveals regular lateral con-

traction waves with a period of about 4 s in inch-worming worms. Since then, body

contractions have been further analyzed and a recent publication reports on distinct

differences between “scrunching” as a quick escape response and “peristalsis” as a more

persistent gait if cilia functionality is impaired (38). We will compare these results to

our previous findings.

Finally, we employ shape analysis methods to characterize the morphologies of various

flatworm species, which come at very different shapes and sizes. The taxonomic identi-

fication is usually challenging, relying largely on the time-consuming mapping of inter-

nal characters. Here, we illustrate how to systematically and quantitatively distinguish

different flatworm species by head shape. The head is one of the most characteristic

external hallmarks of the flatworm body plan. Many sensory organs for various stimuli

(e.g. light, temperature, touch, chemical signals) are located in the head (21, 95). This

includes two eyespots and the auricles with a high density of nerve cells. Yet, also

other, less prominent shape characteristics might be crucial for the worm to survive,

for example by allowing for more efficient movement and navigation. The systematic

characterization and quantitative comparison of body plan morphologies provides the

basis for relating worm shape to fitness of a species in its specific environmental niche

(103, 199).

We analyzed the motility patterns of Smed and head shapes of different flatworm species

using shape mode analysis based on principal component analysis (PCA) (97, 99, 156).

The technique has been previously applied to biological data to e.g. analyze the dy-

namics of human arm postures, crawling C. elegans worms or swimming sperm cells

(58, 118, 189, 207, 208, 209). In contrast to those examples, which are well described by

their center line, the flatworm body is constantly deforming during movement depend-

ing on the contraction of their muscular plexus due to the absence of skeletal elements

or a rigid body wall. Thus, we adapted PCA to analyze and quantify motility patterns

of a closed non-convex boundary outline.

The starting point of PCA is typically a large data set comprising Na measurements

of Nb features. An example would be the curvature at Nb discrete positions along
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4.2 Worm motility reports on patterning defects upon gene knockout

a winding worm at Na time points. In biological data sets the individual features

are often correlated, e.g. the curvature at adjacent positions is similar due to a finite

stiffness of the body. Therefore, the data might be well described by a much smaller

set of characteristic shape modes. For example a sine wave might be a good first

approximation to the wiggling of a worm. The most descriptive shape modes are

found in a systematic way by determining the largest variations in the data set. At

best, a small number of empirical modes characterizes most of the data and can be

interpreted in a meaningful way. As a side-effect, this method reduces measurement

noise by averaging over several, partially redundant features. PCA can also be seen as

a rotation of the phase-space coordinate system such that it is more suitable for the

data at hand. Afterwards, the data can be projected with only negligible information

loss onto a subset of the phase-space spanned by a small number of axes. These axes

correspond to the shape modes.

4.2. Worm motility reports on patterning defects upon gene

knockout

We analyze movies of gliding worms as described in Appendix C and extract the center

line of the worm body. The midpoint of the center line is tracked to determine the

median worm speed. We observe that wild type worms actively regulate their gliding

speed up to a maximum of 2 mm/s with a weak dependence on size, see black circles

in Fig. 4.1(a). The range in speed is in quantitative agreement with earlier works

in Smed and Dugesia tigrina (155, 212). Next, we compare this result to the speed

of modified worms, for which pathway components of the Wnt/β-catenin patterning

system have been silenced by RNA interference (RNAi). Imaging of wild type worms

has been performed by Nicole Alt under the supervision of the author. The RNAi

experiments have been performed by Sarah Mansour in the group of Jochen Rink (two

RNAi feedings per week). All analysis has been done by the author.

The canonical Wnt/β-catenin signaling cascade is illustrated in Fig. 4.1(b) (82, 107). In

the absence of canonical Wnts, β-catenin is degraded by a destruction complex, which

includes APC as a key component. If Wnt ligands bind to the Frizzled receptors, the

destruction complex is inhibited via Dishevelled (Dvl). Thus, β-catenin can accumulate

in the cell and reach the nucleus to control transcription. Canonical Wnt/β-catenin

signaling has been associated with tail formation (82). Knockout of Dvl by RNAi

feedings leads to the emergence of multiple heads, while knockout of APC leads to the

formation of a second tail after head amputation.
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Figure 4.1.: (a) Speed of wild type worms (black circles) and worm speed after APC

RNAi feeding for one week (red dots), two weeks (green dots) and three weeks (blue

dots), respectively (705 wild type worms, 41/38/39 RNAi worms). (b) Canonical Wnt

pathway: binding of Wnt ligands leads to β-catenin translocation to the nucleus (via

Dvl activation and subsequent APC inhibition), adapted with permission from (82).

(c) Quantification of the APC RNAi experiment in panel (a) for small worms (1-3

mm2) and large worms (3-7 mm2). At week 4 worms still show body contractions but

no net displacement anymore. (small: 271 wild type worms, 20/15/14 RNAi worms;

large: 130 wild type worms, 19/22/12 RNAi worms) (d) Speed measurements after 3

weeks of Dvl RNAi feeding (322 wild type worms, 12 RNAi worms of size 1-4 mm2).

(e) Speed measurements after 3 weeks of RNAi of the non-canonical Wnt2 and Wnt5

(154 wild type worms, 17 Wnt2 RNAi worms and 25 Wnt5 RNAi worms of size 2.2-

5 mm2). (Imaging of wild type worms by Nicole Alt under the supervision of the

author. RNAi experiments by Sarah Mansour. All analyses performed by the author.

Asterisks denote the significance level of the p-value test: * 5% and ** 1%. Error bars

correspond to standard deviations.)
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4.2 Worm motility reports on patterning defects upon gene knockout

In intact worms, we observe a motility phenotype for APC RNAi, see colored points in

Fig. 4.1(a). Worm speed is reduced over the course of the experiment. We can quantify

this trend for two size classes and see a significant effect already after two weeks of

RNAi feeding, see Fig. 4.1(c). It remains to determine whether APC acts directly on

the PCP pathway or whether a graded β-catenin signal is required to maintain planar

cell polarity.

Similarly, when knocking down both Dvl genes of Smed , we observe a reduced speed

suggesting a disoriented cilia carpet, see Fig. 4.1(d). In fact, it is known that Dvl is not

only a component of the canonical Wnt signaling cascade, leading to a translocation

of β-catenin to the nucleus, Dvl also acts in non-canonical Wnt signaling, where it

activates the PCP pathway (8, 60, 107). It has been shown that silencing Dvl leads to

a less, shorter and more disorganized cilia (8, 9).

In order to determine to what extent non-canonical Wnt signaling is related to PCP in

flatworms, Sarah Mansour performed RNAi of Wnt2 and Wnt5. Unlike the canonical

tail Wnts, Wnt2 is expressed in the head and Wnt5 is expressed around the body

margin and especially along the central nervous system (9, 81). Especially Wnt5 has

been discussed to act in non-canonical signaling in flatworms and is also involved in

PCP systems of other organisms (9, 59). Fig. 4.1(e) shows no movement phenotype for

Wnt2 RNAi, but Wnt5 RNAi results in a significant reduction in speed. Interestingly,

the Wnt5 phenotype is rather subtle. While for APC and Dvl RNAi, the worms seem

to loose the ability to glide, switch to inch-worming motility and eventually cease being

motile altogether, the Wnt5 RNAi worms are still capable of normal gliding motion, just

slower. It is an interesting question, whether this is due to an incomplete knockdown

or the particular effect of Wnt5 on the PCP system.

In summary, analyzing worm movement upon RNAi is a simple and non-lethal approach

to identify patterning phenotypes. The method reveals even subtle effects as for Wnt5

and inspires further more elaborate measurements of cilia orientation and gene expres-

sion profiles.
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4. FLATWORM SHAPE DYNAMICS AND MOTILITY

4.3. Shape mode analysis of 2D worm outlines

Next, we analyze the behavioral repertoire of flatworms in greater detail. Different

movement strategies are reflected in bending of the worm body. Due to the large body

plasticity, motility-induced changes in body posture are not well described by only

the center line but require an analysis of the perimeter dynamics. Thus, we face the

challenge of characterizing the shape of closed, planar curves. For non-convex shapes,

this can be non-trivial.

We extract the midline and the perimeter of the worms from movie sequences as de-

scribed in Appendix C, see Fig. 4.2(a). The imaging has been performed by Nicole Alt

under the supervision of the author. The worm shape corresponds to a closed curve

described by a position vector r(s) as a function of arc-length s along its circumference,

see Fig. 4.2(b). We use the tip of the worm tail as a distinguished reference point r1 that

specifies the position of s = 0. We further specify a center point r0, using the midpoint

of the tracked center line of the worms. The profile of radial distances ρ(s) = |r(s)−r0|

measured with respect to the center point r0 characterizes outline shape, even for non-

convex outlines. Shapes of convex curves might also be characterized by a profile of

radial distances ρ(ϕ) as a function of a polar angle ϕ. However, this definition does

not generalize to non-convex curves (or, more precisely, to curves that are not radially

convex with respect to r0). To adjust for different worm sizes, we normalize the radial

distance profiles by the mean radius ρ = 〈ρ(s)〉 as ρ̂ = ρ(s)/ρ and plot it as a function

of normalized arc-length ŝ = s/L, where L is the total length of the circumference.

As a mathematical side-note, we remark that using the signed curvature κ(s) = (∂2
sr(s))·

(∂sr(s)) along the circumference, instead of the radial distance profile ρ(s), would

amount to a significant disadvantage: The property that a certain curvature profile

corresponds to a closed curve imposes a non-trivial constraint on the set of admissi-

ble curvature profiles. For the normalized radial distance profiles, however, there is

a continuous range of distance profiles that correspond to closed curves, making this

choice of definition more suitable for applying linear decomposition techniques such

as shape mode analysis. In fact, given a particular normalized radial distance profile,

the corresponding circumference length L/ρ is reconstructed self-consistently by the

requirement that the associated curve must close on itself, see Appendix D.1.
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Figure 4.2.: Three shape modes characterize projected flatworm body shape dyna-

mics. (a) Our custom-made MATLAB software tracks worms in movies and extracts

worm boundary outline (red) and centerline (blue). (b) The radial distance ρ(s) be-

tween the boundary points and midpoint of the centerline (r0, red dot) is calculated

as a parameterization of worm shape. We normalize the radial distance profile of each

worm by the mean radius ρ. (c) Covariance matrix of the radial distance profiles: the

second symmetry axis (dotted line) corresponds to statistically symmetric behavior of

the worm with respect to its midline (745 worm movies, imaging by Nicole Alt under

the supervision of the author, all analysis performed by the author). (d) The three

shape modes with the largest eigenvalues account for 94% of the shape variations. The

first shape mode characterizes bending of the worm and alone accounts for 61% of the

observed shape variance. We show its normalized radial profile on the left as well as

the boundary outline corresponding to the superposition of the mean worm shape and

this first shape mode (solid red: B1 = 1, dashed red: B1 = −1, black: mean shape

with B1 = 0). The second shape mode describes lateral thinning (B2 = 0.3), while

the third shape mode corresponds to unlike deformations of head and tail (B3 = 0.8),

giving the worm a wedge-shaped appearance. (e) The first shape mode with score B1,

describing worm bending, strongly correlates with the instantaneous turning rate of

worm midpoint trajectories. (f) We manually selected 30 movies where worms clearly

show inch-worming and 50 movies with no inch-worming behavior. The variance of

score B2 and B3 increases for the inch-worming worms. (g) The autocorrelation of

mode B3 and the crosscorrelation between mode B2 and mode B3 reveals an inch-

worming frequency of approximately 1/4 Hz, hinting at generic behavioral patterns.
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4. FLATWORM SHAPE DYNAMICS AND MOTILITY

4.4. Shape dynamics during crawling and inchworming

4.4.1. A bending mode and two width-changing modes

We extracted Nw = 29 993 worm outlines from a total of 745 analyzed movies. We

computed normalized radial distance profiles as described above, each profile being

represented by Nr = 200 radii, resulting in a large Nw ×Nr data matrix Ri,j = ρ̂i(sj).

From the average of all radial profiles, we define a mean worm shape that averages out

shape variations ρ̂0(s) =
∑Nw

i=1 ρ̂i(s)/Nw, see Fig. 4.2(d) (right inset, black). From this,

we can devise a Nw ×Nr matrix R0
i,j = [ρ̂0; ...; ρ̂0], for which all the rows are equal to

the mean profile. Next, we computed the Nr ×Nr covariance matrix

C = (R−R0)T (R−R0) (4.1)

between the individual radial profiles, using the centered (mean-corrected) data ma-

trix, see Fig. 4.2(c). The covariance matrix is by construction symmetric along the

dashed line. The approximate symmetry of the covariance matrix along the dotted

diagonal shows that shape variations are statistically symmetric with respect to the

worm midline. For example the worm bends as often to the left as to the right.

The Nr eigenvectors vj(s) or shape modes of this covariance matrix correspond to

axes of a new coordinate system. In this coordinate system, the variation of the data

along each axis is linearly uncorrelated and the corresponding variance is given by the

respective eigenvalue. The shape modes with the largest eigenvalues are those with

maximal descriptive power. We can uniquely express the worm shape as

ρ̂(s) =

Nr∑
j=1

Bjvj(s) , (4.2)

where the shape scores Bj can be computed by a linear least-square fit. Due to corre-

lations, many data sets can be well described by a truncated sum, using only a small

number of shape modes with the largest eigenvalues.

Fig. 4.2(d) shows the first three shape modes, which together account for 94% of the ob-

served variation in shape. We find that the dominant shape mode v1 is anti-symmetric,

describing an overall bending of the worm. In contrast, the second and third mode de-

scribe symmetric width changes of the worm: The second shape mode v2 characterizes

a lateral thinning of the worm associated with a pointy head and tail. Correspondingly,

a negative contribution of the second shape mode with B2 < 0 describes lateral thicke-

ning of the worm (with a slightly more roundish head and tail). The third shape mode
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4.5 Discriminating flatworm species by shape

v3, finally, is associated with unlike deformations of head and tail, giving the worm

a wedge-like appearance. Superpositions of these three shape modes describe in-plane

bending of the worms, and a complex width dynamics of head and tail.

We find that shape changes control the direction of gliding motility and thus steer the

worm’s path: Fig. 4.2(e) displays a significant correlation between the rate of turning

along the worm trajectory and the first shape score B1, which characterizes bending

of the worm. The sign and magnitude of this “bending score” directly relates to the

direction and rate of turning. For simplicity, we restricted the analysis to a medium

size range of 8-10 mm length, analogous results are found for other size classes.

4.4.2. The second and third modes characterize inch-worming

In addition to cilia-driven gliding motility, flatworms employ a second, cilia-independent

motility pattern known as inch-worming, which provides a back-up motility system in

case of dysfunctional cilia (8, 169, 179, 180). We test whether modes two and three

might relate to this second motility pattern. For this, we analyzed movies of small

worms known to engage more frequently in this kind of behaviour. We manually clas-

sified 80 movies of worms smaller than 0.9 mm that had been starved for 10 weeks,

yielding a number 30 inch-worming and 50 non-inch-worming worms for a differentiated

motility analysis (cases of ambiguity were not included). We find that the second and

third shape mode, which characterize dynamic variations in body width, are indeed

more pronounced in inch-worming worms, see Fig. 4.2(f). Next, we computed the tem-

poral autocorrelation of time series of the second shape mode B3, see Fig. 4.2(g) (solid

blue). We observe stereotypical shape oscillations with a characteristic frequency of

0.26 Hz. From the cross-correlation between B3 and B2 in Fig. 4.2G (dashed black),

we find that both shape scores oscillate with a common frequency and relative phase lag

of −0.6π (where B2 lags behind). Thus, both shape modes act together in an orches-

trated manner to facilitate inch-worming, hinting at coordinated muscle movements

and periodic neuronal activity patterns.

4.5. Discriminating flatworm species by shape

After having developed tools to measure shape changes of the same species over time, we

next explored the utility of shape mode analysis for comparing different species. The

model species Schmidtea mediterranea is but one of many hundred flatworm species

existing worldwide (50, 116). We aim to introduce shape mode analysis as a technique
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Figure 4.3.: (a) Application of our method to parametrize head morphology of four

different flatworm species. For each species, time-lapse sequences of 4 different worms

were recorded as two independent runs of 16 frames each. The head is defined as

the most anterior 20% of the worm body. Radial distances ρ(s) are computed with

respect to the midpoint of the head (red dot at 10% of the worm length from the

tip of the head). (b) By applying PCA to this multi-species data set, we obtain two

shape modes, which together account for 88% of the shape variability. Deformations

of the mean shape with respect to the the two modes are shown (black: mean shape,

red: superposition of mean shape and first mode with B1 = ±0.4 and second mode

with B2 = ±0.2, respectively). We represent head morphology of the four species in

a combined shape space of these two modes. Average head shapes for each species

are indicated by crosses, with ellipses of variance including 68% (dark color) and 95%

(light color) of motility-associated shape variability, respectively. (Imaging by Nicole

Alt and Miquel Vila-Farré, data analysis by the author)

to facilitate taxonomic classification of these species. PCA enables us to extract typi-

cal shape variations between species without “a priori” assumptions on characteristic

features.

Having available a large live collection of flatworm species, we choose four species repre-

senting the genera Girardia, Phagocata, Schmidtea and Polycelis. Besides potentially

size-dependent variations in aspect ratio, the four species differ by their characteristic

head shapes, see Fig. 4.3(a). Accordingly, we restrict the shape analysis to the head

region only (defined as the most anterior 20% of the worm body). In analogy to the

procedure described above for the full worm body, we characterize each head shape by

a vector of distances from the midpoint of the head (red dot, 10% of the worm length

from the tip of the head) to the outline ρ(s) of the head region. Next, PCA is applied

to the normalized radial distance profiles like before.
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4.6 Discussion

We found that the first two eigenmodes captured 88% of head shape variability within

this multi-species data set. Fig. 4.3(b) shows species-specific mean shapes for each

of the four species in a combined head shape space, as well as ellipses of variance

covering 68% (dark color) and 95% (light color) of motility-associated shape variability,

respectively. Shape reconstruction from individual modes is explained in Appendix D.2.

The first mode seems to describe the extent of the auricles while the second mode can

be associated with the auricle position. This comparison of flatworm species represen-

ting four genera illustrates linear dimensionality reduction as a simple means to map

morphological differences across species.

4.6. Discussion

In this chapter, we have discussed several approaches to relate form and function in

flatworms focussing on motility. Movement patterns are generated by various features

of the body plan such as cilia and muscle layout. By analyzing worm motility, we gained

first insights into their functionality and coordination. In a first approach, we measured

worm speed in wild type and RNAi treated animals and could quantify subtle motility

phenotypes, which hint at patterning defects of the PCP system.

In a second approach, we analyzed the shape variations during movement, adapting

principal component analysis in order to apply it to 2D outlines. We characterized

inchworming as a second motility mode, different from cilia-based gliding motility,

which is driven by well-coordinated muscle contractions with a characteristic frequency

of about 0.26 Hz. In a recent work, contractile motility gaits have been further analyzed

(38). Cochet-Escartin et al. distinguish between two behavioral traits: (i) scrunching

as a transient and fast response to cutting as well as electrical, acidic and temperature

shocks, (ii) peristalsis as a more persistent and slow movement strategy if cilia func-

tionality is impaired. The authors could induce the latter by RNAi of the iguana gene

leading to defective ciliogenesis or by increasing the viscosity of the media by adding

16% ficoll. Interestingly, they extracted frequencies of the area oscillations during pe-

ristalsis and obtain 0.28 ± 0.03 Hz (iguana) and 0.26 ± 0.02Hz (ficoll), respectively.

These values are very similar to our result. Together, the three conditions illustrate a

very generic inchworming/peristalsis behavior despite their higher level of complexity

compared to other model organisms such as C. elegans (173, 184, 208, 244). It remains

to determine how this relates to the underlying structure of the muscular plexus and

the nervous system.
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4. FLATWORM SHAPE DYNAMICS AND MOTILITY

In a third approach, we apply PCA to head shapes of different flatworm species as a tool

for taxonomic classification. We captured the main characteristics of head shapes of four

species belonging to different genera by just two shape modes. The result suggests that

head morphogenesis is mainly controlled by two molecular networks: one to determine

the head width and a second one for the anterior positioning of the auricles. The

availability of transcriptome sequence data for these species will now provide us with

the opportunity to test this hypothesis. We also have planned to extend the analysis

to many more species of the collection in the laboratory of Jochen Rink and relate

the characteristic body plan features to the conditions in the respective environmental

niche. A similar inter-species comparison with respect to evolutionary selected traits

has been performed for beaks of Darwin finches, phalanxes of vertebrates, heads of ants

and wings of bats (103, 199). Based on these analyses, we expect for flatworms that a

small number of shape modes with the largest eigenvalues spans the feature space, in

which most of the shape variations take place. Highly specialized species have typically

rather extreme morphologies and can be found at the corners of the observed shape

set. In contrast, generalists show mixtures of different traits, which simultaneously

optimizes the fitness to fulfil several tasks. It will be interesting to test this hypothesis

for flatworm species, some of which inhabit extreme environments.
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5. Quantitative study of

flatworm growth and cell turnover

5.1. Homeostasis is a dynamic steady state

Multicellular organisms in their adult stages have a relatively constant outward ap-

pearance but the integrity of a functional body is only maintained due to a permanent

replacement of damaged or lost cells (158). In humans, it has been estimated that the

total mass of cells we replace every year is almost as much as our entire body weight

(166). The time scales of the cellular turnover range from a few days for blood cells

and the stomach to several years for cells in the heart and the skeleton (124). Only a

small fraction of cells like some nerve cells might never be replaced.

From the point of view of dynamical systems theory, a constant outward appearance in

the face of permanent turnover can be considered as a steady state, for which inflows

(i.e. the generation of new cells) and outflows (i.e. the loss of old cells) are balanced.

“ποταμοῖσι τοῖσιν αὐτοῖσιν ἐμβαίνουσιν
ἕτερα καὶ ἕτερα ὕδατα ἐπιρρεῖ.” (On those
stepping into rivers staying the same other and
other waters flow.) — Heraclitus of Ephesus,
500 BC (105)

The underlying processes of cell division and cell

loss have to be well controlled in order to avoid a

disintegration of the organism or an uncontrolled

overgrowth such as cancer. For this to function

robustly, there is likely a communication between

the dying cells in the tissue and the dividing stem cells in their niche, see Fig. 5.1. A

limited capacity to replace cells is related to sickness and aging of organisms (158).

During growth, the balance between inflows and outflows is shifted to an increased cell

division in comparison to cell loss. Importantly, growth is not only controlled by a

developmental program but also influenced by the availability of food (113, 244). In

many organisms, nutrition levels affect the speed of growth and the final size.

In this chapter, we address the link between the microscopic scale of cell turnover and

the macroscopic growth in our favourite multicellular organism Smed . Previous research

has mainly been devoted to cell death and cell division as individual processes but little

is known about how these two processes are jointly regulated and mutually influence

each other to result in coordinated growth at the organism scale (158). Flatworms are
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(a) Replacement & Repair

?

division loss

stem cells differentiated tissue

(b) Growth & Degrowth

loss

division

Figure 5.1.: (a) Stem cell division and the loss of cells have to be balanced to maintain

a constant size of the tissue. (b) For growth and degrowth, the balance of these

processes is slightly shifted in a well controlled manner.

suitable model organisms to study cell turnover and growth in a comprehensive way

as they permanently replace all of their cells within a few weeks and reversibly grow

over a 40-fold range in size (16, 140, 151, 158, 170). Thereby, the cell size appears to

be approximately constant and the reversible growth mainly corresponds to a change

in cell number (16, 140, 150, 193). Interestingly, changes in worm size has been pre-

viously related to aging and small worms have been described to be more juvenile. In

Appendix E.1, we discuss signatures of aging in sexual and asexual flatworms.

Two basic models of growth and turnover control have been discussed for flatworms:

(i) stem cell control and (ii) cell death control (159), see Fig. 5.2. In the first scenario,

dividing stem cells or their descendants induce cell death in differentiated cells for

replacement. In order to generate growth, the replacement must not be perfect. We

might hypothesize that cells only respond with a certain probability (maybe depending

on their age or fitness) to the death signal from the stem cell pool. In the second

scenario, the dying cells send out signals to enhance cell division and recruit progenitor

cells to the tissue. In both cases, an additional input from the nutritional status of the

worm is needed for growth.

By studying flatworms as a model system, we aim to bridge the scales between cellular

turnover processes and growth and degrowth on the organismal level. First, we measure

the size of the worms as well as growth dynamics and find a non-trivial size-dependence
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(a) stem cell control (b) cell death control

Figure 5.2.: Two paradigms of turnover control: (a) stem cells and their descendants

induce the death of differentiated cells, (b) dying cells induce cell division and recruit

progenitor cells to the tissue. In both cases feeding enhances cell division.

of the growth and degrowth rates. All experiments were performed in the laboratory

of Jochen Rink. Several members have been involved in this close collaboration as we

will explicitly state for each data set. In a second step, we theoretically discuss three

paradigmatic models for how cell division and cell loss might be linked to the metabolic

status of the worm. Each model is able to explain the observed behavior within the

accuracy of the measurements. We obtain several predictions of the models that can be

tested in further experiments. The results directly relate to the questions of how these

worms can survive long starvation periods and what determines the limits to growth.

Finally, we establish the theoretical framework for future measurements to reveal the

control logic of turnover processes.

5.2. Size-dependent growth and degrowth dynamics in

flatworms

5.2.1. Allometric scaling laws

5.2.1.1. Measurements of area, cell number and mass of the worm

The first step towards measuring growth dynamics is to accurately determine worm size.

Together with our experimental collaborators we performed experiments to extract the

outer dimensions like length and width as well as the cell number and the mass of the

worms. From these measurements we obtained allometric scaling laws that relate the

various quantities for cross-validation and to gain further information about the body

plan of Smed, see Fig. 5.3.

One important quantity is the area of the worm, which refers to the 2D-projection

of the worm body. Area as well as other outer dimensions are readily accessible by

microscopic imaging and we have developed a protocol to measure these quantities in

a precise and reproducible way, see Appendix C. Several student helpers in the group
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of Jochen Rink have been involved in the imaging of the worms. The author designed

the experiments, provided training and supervision and performed the analysis of the

data.

Fig. 5.3(a) reveals an allometric scaling relation between worm area and length with

an exponent of 1.81±0.01. Thus, large worms are relatively thinner than small worms.

Remarkably, the scaling law holds across the entire size range with a very small trans-

verse spread and a high reproducibility. These worms were starved for at least a week.

The respective scaling law for well fed worms can be found in Appendix E.2. There we

also discuss the details of the data analysis. The scaling exponents have been deter-

mined using a robust regression algorithm with bi-squared weights implicitly obtained

from the spread of the data.

Ultimately, we are most interested in the changes in cell number because this quantity

directly relates to the rates of cell division and cell death. However, measurements of cell

numbers are fatal for the worms. As a solution, we establish a functional relationship

between cell number and worm area. By using the worm area as a read-out for size,

we can reduce the number of worms needed for various experiments and perform time-

course experiments with well-defined initial sizes.

The cell number itself has been measured in two different ways by Albert Thommen in

the group of Jochen Rink. First, he determined the amount of histones in the worm.

Histones are structural units that organize the DNA in eukaryotic cells (68). The DNA

strands are wrapped around the histones in the nuclei for compaction. Histones are

only synthesized during cell division and the amount of histones was measured to be

constant throughout the lifetime of the cells. After the amount of histones per cell has

been determined, the total amount of histones in a worm can be used as a read-out for

cell number. For this, the amount of histones was measured via Western blotting in a

known fraction of the total protein mass. In a second experiment, cell numbers were

obtained by disintegrating the worm into individual cells and automatically counting

cells in microscope images of a well defined volume fraction of the worm.

The resulting cell numbers are plotted in Fig. 5.3(b) as a function of worm size. We

find that the number of cells scales almost linearly with the area of the worms with a

scaling exponent of 1.11± 0.02. The most simple explanation would be that the height

hardly changes and also the large worms remain rather flat. Alternatively, the size of

cavities like the gut might increase over-proportionately, compensating for an potential

increase in height for larger worms. Furthermore, it might be possible that the fraction

of cell types changes, which might also explain a linear scaling despite variations in
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Figure 5.3.: Allometric scaling laws: (a) Width and length of the worm do not change

proportionately. Large worms are thinner than small worms (Imaging by Nicole Alt

under the supervision of the author, analysis by the author, 722 measurements of star-

ving worms). (b) Cell numbers are measured by direct cell counting (green circles)

and by histone quantifications (blue dots). The cell number changes almost propor-

tionally with worm area (Imaging and cell number quantifications by Albert Thommen,

analysis by the author, 31 and 45 worms, respectively). (c) In contrast, the dry mass

increases stronger than area and cell number (Imaging and mass measurements by

Albert Thommen, analysis by the author, 21 worms).
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height. Still, the scaling exponent shows that our area measurements are a good proxy

for cell number.

Finally, we also determine the dry mass of the worms. Again, the experiment has been

carried out by Albert Thommen, while the analysis of the movies has been performed

by the author. Although more data is needed for a more reliable result, the analysis of

the first data points suggests that the scaling exponent of 1.33± 0.06 for the dry mass

is larger than the exponent for the cell number. Therefore, the mass per cell seems to

slightly increase with size. Interestingly, some preliminary measurements suggest that

in contrast the protein mass per cell is independent of worm size, see Appendix E.2.

5.2.1.2. Comparison and interpretation of scaling laws

Previously, contradictory results have been published on scaling laws in Smed and other

related species, see Tab. 5.1. For Planaria maculata, the scaling of worm mass with

area to the power of 1.38 agrees well with our result (227). For Dugesia lugubris, Lange

measured the volume in serial sections and found a quadratic relationship with length,

which is in agreement with our scaling law for the cell number (110, 111). Baguñà

et al. have measured cell number and worm volume in Smed (13, 16). In agreement

with our data, they find similar values for the cell numbers and from them we can

obtain a quadratic scaling with the length of the worm. However, a few years later,

the same group published various scaling laws for four different species including sexual

and asexual flatworms which do not agree with our results.

Further, more recent measurements of the worm mass by Oviedo et al. also deviate

from our scaling law (150). However, a scaling with L0.9 is a rather questionable result

considering that the worm width also increases. In the same paper, the authors counted

the number of cintillo cells, which are found around the margin of the head and are

involved in mechanosensing. If we assume that the head can be approximated by a

semicircle and that the number of cintillo cells increases proportionately to the head

margin, the width of the worm at the head follows L0.68, see Appendix E.2, which

is similar to our results. For Schmidtea polychroa, the wet weight and the protein

content have been measured (133). At least the protein content might show a similar

dependence on area as in our experiment. Finally, Takeda et al. measured the total

DNA mass in Dugesia japonica and find an approximately linear dependence on body

length (211). As the cell number can be assumed to be roughly proportional to the total

DNA mass, this is not in agreement with our measurements in Fig. 5.3(b). In analogy

to the argument about the worm mass of Oviedo et al., such a linear relationship of
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scaling law species our result (Smed) reference

M ∝ A1.38 Planaria maculata? M ∝ A1.33 (227)

V ∝ L2.02 Dugesia lugubris† (N ∝ L2.01) (110, 111)

N ∝ L2 Smed N ∝ L2.01 (13, 16)

N ∝ L1.81 N ∝ L2.01

N ∝ A1.44 Smed N ∝ A1.11 (177)

A ∝ L1.26 A ∝ L1.81

Mwet? ∝ L0.9 Smed M ∝ L2.40 (150)

Mwet ∝ A Schmidtea polychroa† M ∝ A1.33 (133)

Mprot ∝ A Schmidtea polychroa† Mprot ∝ A1.13 (133), Appendix E.2

N ∝ L Dugesia japonica† N ∝ L2.01 (211)

Table 5.1.: Scaling laws for various flatworm species found in the literature. Our

experiments are done in asexual worms, † denotes the sexual strains, ? marks a species,

which cannot be taxonomically classified.

cell number with length is unlikely given the significant increase in worm width in

larger worms. Note that the spectroscopic quantification of flatworm DNA is rather

unreliable because it interferes with the absorption peak of the pigments. Hence, we

apply different approaches.

Thus, while we could confirm several measurements of scaling laws in flatworms ob-

tained before 1980, we find much less agreement with recently published results. This

discrepancy with respect to our data might only in parts be explained by species-

specific variations and differences between sexual and asexual strains and could relate

to the general problem of size measurements in animals with flexible body shapes. In

our experiments, we have paid particular attention to accuracy and reproducibility by

analyzing movie sequences of individual worms, following a strict protocol. Exten-

sive cross-checks as well as consistency-checks between redundant measurements were

performed.

Our results on the scaling of the cell number suggest that flatworms indeed stay rather

flat. As the worms lack a blood system, this would ensure that all cells can be provided

with oxygen by diffusion from the outer epithelium. While this is the most likely

yet not the only explanation for the observed scaling relation in Fig. 5.3(b), further

measurements of worm heights are necessary to confirm our hypothesis. More data

points are also needed for the scaling relation of the dry mass. The data at hand

suggests that the characteristics of the cell population depend on size in the sense that
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in larger worms there are more cells with an increased mass. Note, however, that a first

approximate estimation of protein content in the worm does indicate that the protein

content per cell roughly stays constant, see Appendix E.2. Thus, a possible explanation

for the increase in cell mass could be the storage of lipids as energy resources in larger

worms.

Having established size measurements, next, we aim to analyze growth dynamics.

5.2.2. Characterizing the immediate growth response upon feeding

Worms respond to feeding with a fast mitotic peak within the first 12 hours that lasts

for 3 − 5 days (12, 13, 16, 71, 139, 142). We would like to relate this mitotic feeding

response to the increase in worm size. Fig. 5.4(a) shows the changes in worm area

immediately after feeding. After an initial increase of the worm area, the worms shrink

again and return to their initial sizes within approximately two weeks.

Note that the worm area already approaches its maximum very rapidly within the

first 12 hours after feeding, although the mitotic response lasts for following next days.

Thus, we were wondering which part of the peak can be explained by pure stuffing

of the gut and which part reflects the actual cell division response. To this end, we

measured the growth response also for irradiated animals without stem cells, see red

curves in Fig. 5.4(b). Interestingly, the stuffing effect last for at least the first 4 days

until the irradiated worms dissociate. Thus, the initial increase in worm area after

feeding actually reflects stuffing.

Nevertheless, these measurements provide us with the following information: First,

the food fills the gut for at least 4 days, most likely providing the dividing cells with

nutrients during this time. Second, the growth response appears to be rather generic

and food intake is approximately proportional to worm size. We also have not found an

obvious dependence on feeding history. Growth peaks after longer starvation periods

look similar to the results above, see Appendix E.2. Finally, the growth effect decays

within two weeks. Thus, worms should approximately keep their size when being fed

every two weeks. After one week, the worm size has been roughly increased by 2%.

Further experiments will aim to extract changes in cell number upon feeding to reveal

the actual growth response.
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Figure 5.4.: Growth response upon feeding (after one week of starvation): (a) The

worm area increases rapidly within the first day and returns again to its initial value

after 2 weeks. The area is normalized by the average of day 0−7. The individual worm

tracks are shown in gray, the black line illustrates the average behavior across all worms

(Imaging by Johanna Richter, Jordan Ferria and Nicole Alt under the supervision of

the author, analysis by the author, 21 worms). (b) Irradiated worms (red) and non-

irradiated worms show the same initial increase in area due to intake of food. The

area is normalized by the average of day 0−4 (Imaging by Ashutosh Mishra under the

supervision of the author, analysis by the author, 5 irradiated and 5 non-irradiated

worms each).
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5.2.3. Small worms grow and degrow faster than large worms

5.2.3.1. Measurement of growth rates

Even though we have learned that stuffing effects compromise tracking of the short

term growth pulse, we can still quantify the averaged growth behavior on the time

scale of weeks and in particular analyze how the growth and degrowth rates depend

on feeding. Fig. 5.5(a)-(c) shows the growth tracks for individual worms of different

sizes for three feeding conditions: starvation, feeding every second week and feeding

every week. In agreement with Fig. 5.4, the worms that are fed every second week

approximately maintain a constant size. One can clearly recognize the growth response

upon feeding that decays until the next feeding event. The concatenation of short-term

growth pulses results in a zig-zag line. For the other two cases, we compute average

growth rates, see Fig. 5.5(d). The data is very noisy for the well-fed worms because

of the stuffing effect and the excretion of digested food. Still, we can obtain a clear

linear trend using two independent fitting procedures. Besides the robust regression of

the growth rates (black, with 95% confidence intervals), we construct a master curve

from the growth tracks assuming negligible effects of the feeding history, see Fig. 5.5(e).

The growth tracks of Fig. 5.5(c) are shifted horizontally in an iterative procedure to

minimize the variance from the average curve. Finally, we fit a Fermi function as the

master curve, which corresponds to a growth rate that linearly depends on size. Both

approaches agree well with each other.

Fig. 5.5(d) shows a clear size-dependence of the growth and degrowth rates. Small

worms appear to grow faster than large worms. Surprisingly, small worms also degrow

faster. This trend appears to be rather independent from the feeding history, see

Fig. 5.5(f). Even the largest worms have a positive growth rate, meaning worms usually

undergo fissioning before reaching the limits to growth.

5.2.3.2. Discussion of growth and degrowth dynamics

As for the allometric scaling laws, our results on the growth dynamics rather agree with

very early measurements and less so with more recent publications.

At the beginning of the 20th century, Abeloos investigated growth dynamics in another

flatworm species (1). In analogy to our conclusion, he found that the increase in dry

mass is stronger for smaller species.

Baguñà et al. have analyzed growth and degrowth dynamics of Girardia tigrina for

various feeding conditions (15, 18). We can extract from these data sets that their

growth rates are also decreasing with size during feeding, see Appendix E.2. The
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Figure 5.5.: (a)-(c) Measurements of worm area for different feeding conditions (Ima-

ging by Nicole Alt und Johanna Richter under the supervision of the author, analysis

by the author includes 66, 41 and 48 worms, respectively). (d) Degrowth rates (red

circles) have been computed from data in panel (a) by linear fits across three windows

with 6 data points each using a robust algorithm. The size dependence is fitted by the

function c1 + c2A/(c3 + A) with c1 = −3.17 ± 0.38 %/day, c2 = 2.72± 0.33 %/day,

c3 = 2.11± 1.26 mm2 (black curve). (continued on next page)
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Figure 5.5.(continued from previous page): Growth rates (blue cicles) have been

determined from the growth tracks in (c) by an exponential fit across two windows with

5 data points each. The trends in the growth rates are fitted by the robust regression

c1 − c2A with c1 = 4.18± 0.35 %/day, c2 = 0.10± 0.03 %/day/mm2 (black line with

95% confidence intervals in gray). A direct fit of the master curve in (e) agrees well

(red). (e) Growth tracks in (c) can be shifted horizontally (blue) to collapse onto

a master curve (red), which is fitted by the Fermi function c1/(c2 + c3 e
−c1t) with

c1 = 4.4± 0.3 %/day, c2 = 0.077±0.012 %/day/mm2, c3 = 19±5 %/day/mm2. Inset

with log-linear plot illustrates the deviation from an exponential law. (f) Magnification

of the degrowth rates for different weeks after the initial feeding shows no obvious

dependence on feeding history. Error bars represent the standard error of the mean.

growth rates are smaller than in our case, which could be a species-specific effect but

also due to the lower temperature of 12◦C, while our experiments are conducted at

20◦C. More importantly, the degrowth rate during starvation does not seem to depend

on the size of the worm in contrast to our data.

Other groups have also measured growth dynamics and typically fitted exponential

functions with constant growth rates (34, 71, 215). González-Estévez et al. pooled

all worms together and therefore their data cannot discriminate between constant and

weakly size-dependent rates (71). Nevertheless, the value of 1.8 %/day for the degrowth

rate agrees well with our results in the considered size range of 1 − 5 mm2. Thomas

et al. tracked the growth of individual worms but did not explicitly analyze a size-

dependence of the rates (215). They obtain values below 5 %/day and most of them

lie in the range of 2− 3 %/day, which is in good agreement with our data.

Oviedo et al. even claim to find linear functions for growth and degrowth (150). In

consequence, the absolute values for growth and degrowth rates become smaller in

larger worms like in Fig. 5.5(d). Yet, otherwise the result does only roughly agree with

our data, mainly for the case of starvation, see Appendix E.2. Although they even

feed twice a week, they obtain very low growth rates, which are even lower than their

degrowth rates.

Finally, it has previously been claimed that nutritional status and not size determines

the growth dynamics (71). Yet, the respective measurements might not be able to

resolve this issue because it does not compare size matched worms of different feeding

histories. In fact, our data with a controlled feeding history supports the opposite

hypothesis.

In summary, our measurements of growth dynamics agree in some cases quantitatively

and in others qualitatively with studies published by other groups but also go signifi-
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state sizes (crosses). (b) Trends of the growth rates in terms of cell numbers for Smed

obtained from fits to the growth rates of Fig. 5.5(d) and the conversion curve to cell

numbers of Fig. 5.3(b).

cantly beyond. In particular, we were able to reveal the size dependence of the growth

rates by establishing a strict protocol of feeding and imaging and a highly accurate

image analysis. Furthermore, we were tracking individual worms and our measure-

ments span the full range in size in contrast to the previous works discussed.

Our analysis clearly shows that small worms show faster growth and degrowth dynamics

than large worms. Fig. 5.6 illustrates why this is a non-trivial observation. Naively one

could have assumed that there is one limiting quantity that makes the use of food less

efficient in larger worms, resulting in a decreasing growth rate with size, see Fig. 5.6(a).

Different amounts of food would result in a shift of the curve. In consequence, worms

would approach a steady state size, depending on the feeding frequency (crosses). In

contrast, the trends of the curves for Smed change between feeding and starvation and

the worms either grow or degrow. Fig. 5.6(b) shows our result in terms of cell numbers.

It suggests that there might be two different effects that depend in opposite ways on

the size of the worm and each of which dominates for either starvation or maximum

feeding. In the next section, we explore three theoretical models that can account for

this observation.
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5.3. Theoretical descriptions of cell turnover dynamics and

energy flux

Fig. 5.6(b) shows nontrivial growth dynamics in flatworms depending on feeding con-

ditions. Growth corresponding to a change in cell number can be described by the two

processes of cell division and cell loss with effective rates kdiv and kloss, respectively:

Ṅ = kdivN − klossN . (5.1)

With this, the growth rates plotted in Fig. 5.5(d) are given by

Ṅ/N = kdiv − kloss . (5.2)

Thus, K = kdiv − kloss has to depend on N such that it decreases with N for feeding

and increases with N for starvation.

One possible scenario to explain this behavior is a change in the fraction of stem cells. In

fact, it has been reported that the neoblast fraction in Dugesia lugubris (110, 111) and

Dugesia tigrina (13, 16, 18) decreases as the worm grows. A higher stem cell fraction

in smaller worms would lead to a larger growth rate during feeding. Additionally, it

might be associated with a higher basal cell turnover, yielding a faster degrowth rate

in the absence of food. However, the difference in the neoblast fraction was estimated

to be less than 10%, which can not account by far for observed size dependence of the

growth rates. Thus, it is rather unlikely that the fraction of neoblasts in Smed varies by

a factor of 2 or 3 like the growth rates. In fact, preliminary experimental data obtained

by the group of Jochen Rink suggests that the stem cell fraction stays rather constant

in animals of different sizes.

Feeding has a major effect on the growth dynamics. Therefore, we propose to consider

the metabolic energy Et in the worm as a limiting factor that influences cell proliferation

and cell death. At this point, we need to properly define this quantity, even though

the conclusion will be largely independent of the exact definition. For the rest of the

chapter, Et refers to the total amount of ATP and the ATP equivalent of any other

molecule storing metabolic energy like glucose and lipids, whether it is found inside

or outside the cells. Analogous descriptions can be found if only the freely available

energy outside the cells is considered or if one takes into account the abundance of

other limiting molecules like amino acids that need to be taken up by the food and that

are necessary for the worm to stay healthy and alive.
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In a minimal model, the total energy Et increases due to net influx Jf by feeding and

decreases due to consumption by metabolic housekeeping with rate µ:

∂tEt = Jf − µN . (5.3)

A typical value for the metabolic consumption per cell µ would be of the order of 10 pW

as estimated for Schmidtea polychroa (133). In humans with 4 ·1013 cells and an energy

consumption of 107J/day (124), we estimate µ ≈ 1 pW. Further values obtained for

228 mammalian species from shrimp to elephant also show a decrease with size across

the range of 1− 10 pW (240).

Eq. 5.3 assumes for simplicity that the energy stored in the dying cells can be completely

taken up by the remaining cells. We could consider an additional term of the form

−ρloss ec klossN , accounting for imperfect recycling upon cell death. Here, ec denotes

the metabolic energy per cell and ρloss is the fraction of it that is lost per dying cell.

The main conclusions of this chapter remain unchanged even for ρloss > 0.

We define the metabolic energy per cell as ec = Et/N and find for its dynamics

∂tec = jf − µ−K ec . (5.4)

Here, jf = Jf/N is the net influx per cell and the last term describes a dilution effect.

As the worm grows, the same amount of energy has to be shared among a larger number

of cells.

In the following, we discuss three basic models on how the metabolic energy per cell

might effect cell division and loss. Given the simplicity of the models, they all fit

the noisy data reasonably well. Yet, they result in very different predictions about

the respective variables and parameters such as metabolic consumption and storage of

energy, which will be tested in future experiments.

The models describe three distinct scenarios of energy storage: (i) dynamic energy

storage, for which feeding increases the fraction of energy stored in the worm, (ii)

energy storage of fixed proportion, for which the worm is not able to store additional

amount of energy upon feeding, and (iii) size-dependent energy storage, for which the

fraction of energy stored depends on the size of the worm and not explicitly on feeding.

In the first model, the metabolic energy per cell ec changes as a direct read-out of size

and feeding conditions and directly regulates cell division and cell loss. In the second

and third model, the metabolic energy is quickly regulated to a physiologically preferred

target value e0 by adjusting the cell turnover rates. Thereby, the mechanism implicitly

draws on the idea of integral feedback control, which is commonly used in engineering

applications to drive a dynamic variable to a pre-set value.
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5.3.1. Model 1: Dynamic energy storage

In a most simple model for metabolic growth control, the cells are assumed to directly

respond to the amount of metabolic energy per cell ec. If there is an excess in energy,

cells divide more often, and if there is a lack of energy, the death rate increases. Let us

consider a simple case, for which the growth rate depends linearly on ec:

K = K0 (ec/es − 1) (5.5)

with the constant parameters K0 and es, which determine the rate of growth and the

energy, for which the worm switches between growth and degrowth, respectively.

The change in energy ėc as a function of ec is plotted in Fig. 5.7(a). During starvation

periods, when jf = 0, the growth rate is decreasing, which requires ėc < 0 (red curve).

The maximum of ėc is at ec = es/2 and from ėc < 0 follows that µ > esK0/4.

During feeding with jf > µ, the curve in Fig. 5.7(a) is shifted upwards and ec ends up

in a regime, for which the organism grows (blue). If jf was constant, there would be

a stable steady state with e∗c = es/2 +
√

(es/2)2 + (jf − µ)es/K0. We see that e∗c > es

for jf > µ and the system is in the growing regime. In order for the growth rate to

decrease with worm size as seen in Fig. 5.6(b), the influx due to feeding jf (N) must

not be constant but has to be a decreasing function of N .

Fig. 5.7(b) illustrates a time course of N , when going through several rounds of feeding

and starvation, always switching at a certain size (horizontal lines). Especially in the

beginning of the starvation interval, we see an overshoot, for which the worm still

grows although the feeding has stopped. Nevertheless, we want to stress that the

growth and degrowth behavior is rather generic. The growth and degrowth rates in

Fig. 5.7(c) collapse and show the same size-dependence, irrespectively of the initial

values for energy and cell number. Any perturbation decays quickly and there is no

strong dependence on feeding history.

We can fit this model to the experimental data, see Fig. 5.8(a). The plots shows the

size dependence of the influx jf and illustrate that the metabolic energy per cell ec acts

as a read-out for both feeding conditions and size at the same time.
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Figure 5.7.: Model 1 assumes that cell division and cell death directly depend on

the metabolic energy per cell ec, which represents a dynamic energy store. (a) During

starvation, ec and thus the degrowth rate decreases. During feeding, ec approaches

the growing regime. Note that e∗c > es is not a steady state of the total system

because the influx jf (N) = j0/(1+
√
N) decreases with N . (b) Time course of the cell

number when switching between feeding (blue) and starvation (red) for N = 0.5 · 106

and N = 4.5 · 106, respectively (dashed lines). (c) We observe a generic dynamics,

irrespective of the initial cell number, energy or feeding scheme.
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5.3.2. Model 2: Fixed proportion energy storage

We now assume that the energy per cell ec is quickly regulated to a physiologically

preferred target value e0. In this scenario, there might still be specialized energy stores

like fat cells but they are only formed proportionally to the worm size and not in

response to feeding. Any metabolic energy outside the cells is also quickly regulated,

which is typical for the metabolism of animals. For example, sugar levels in the human

blood are under tight regulation by the insulin pathway and insulin-like molecules

are found even in the simplest unicellular eukaryotes (114). Yet again in contrast to

humans, here we assumed that no additional long-term storage cells are formed upon

feeding. Instead, the metabolic energy is regulated by adjustment of cell division and

cell death. We can picture an integral feedback scheme, according to which K changes

depending on the difference between ec and e0:

τKK̇ = K0(ec/e0 − 1) (5.6)

This control theoretic approach substantially differs from the case of model 1 in Eq. 5.5.

Given a fast regulation to the target value e0 (τK → 0), K relaxes to

K∗ =
jf − µ
e0

, (5.7)

which defines the nullcline of ėc = 0 according to Eq. 5.4.

Fig. 5.6(b) shows that the degrowth rate is decreasing during starvation, where jf = 0.

Thus, µ has to increase for smaller worms. Fig. 5.8(b) illustrates the size-dependence of

µ based on our measurements. This can be interpreted in the sense that the metabolism

is less efficient in smaller animals, which is in agreement with the typical metabolic sca-

ling laws found across the animal kingdom (7, 190) and which have also been observed

in flatworms (71, 92, 133).

During feeding the growth rate decreases with size. Thus, jf has to decrease with N

and even has to overcompensate for the opposite effect of µ. This suggests that food

uptake is less efficient in larger animals, see Fig. 5.8(b).

Taken together, we assumed that the metabolic energy is the limiting factor determined

by the corresponding nutrition influx and consumption, to which turnover rates are

adjusted accordingly. We obtained two functions, one for µ and one for jf , which

depend on worm size in opposite ways and therefore can account for the opposite

trends in the growth and degrowth dynamics.

As a side note, one might question what is cause and what is consequence. While

it is likely that the metabolic energy is the limiting factor during starvation periods,
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(b) Model 2: Fixed proportion energy storage
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Figure 5.8.: (a) Model 1 is characterized by energy stores that are filled and depleted

depending on feeding and worm size. The stored energy per cell ec as well as the

metabolic rate µ and the feeding influx jf are obtained by minimizing the variance

between the experimental data and numerical solutions of our model. The values

are given relative to the energy es, for which the worm switches between growth and

degrowth. (b) Model 2 draws on energy stores with fixed proportions. We compute µ

and jf relative to the energy per cell from the fits to the growth and degrowth rates

in Fig. 5.5(d). The energy per cell ec = e0 is assumed to be constant. (c) In model 3

with size-dependent energy stores, the energy per cell ec changes in a size-dependent

manner, while µ = µ0 and jf are constant. Degrowth and growth rates are fitted by

the same function with a different amplitude corresponding to the feeding influx. (d)

Basic scheme of model 3: During feeding, small worms invest their metabolic energy

in growth, yet large worms store an increasing fraction of the available energy. During

starvation, large worms degrow more slowly as they can deplete their energy stores.
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this is not necessarily the case for maximum feeding. In the presence of an abundance

of food in the gut, cell division response could rather be limited by other factors as

the maximum rate of DNA replication and the available number of stem cells. This

would invert the argument: there would be a generic, yet size-dependent response of

cell division (and maybe cell death) and the size dependence of the net influx jf is

merely a consequence of it.

5.3.3. Model 3: Size-dependent energy storage

In the scenario above, we introduced a constant target value e0 for the metabolic energy

that determined the turnover rates. In our third and final model, we again consider

a quick relaxation to such a target energy, but now this energy e0(N) changes with

worm size. For example, the fraction of energy-rich cells could increase in large worms.

We again obtain Eq. 5.7 but now µ and jf are assumed to be constant for simplicity,

while e0 depends on N . The three variables are plotted in Fig. 5.8(b). Even with only

one size-dependent quantity, we obtain a reasonable fit to the data. If additionally

µ was allowed to change as suggested by the measurements of metabolic scaling laws

(7, 92, 133, 190), the fits would even improve.

The basic logic of such a mechanism based on energy storage cells is shown in Fig. 5.8(d).

While small worms invest all available energy into growth, large worms store part of

their energy uptake and thus grow more slowly. In consequence, large worms deplete

these energy stores during starvation and initially degrow more slowly. Importantly,

we assume that the size of the stores scales with worm size. Thus, only an effective

size-dependence of growth and degrowth is observed, but no explicit dependence on

feeding history.

5.3.4. Discussion of the turnover models

We have explored three models that are based on very different assumptions and dif-

fer greatly in the microscopic details, yet they all can account for the observed size-

dependent growth behavior. This is an interesting observation, which one should gen-

erally take into consideration when comparing microscopic models to more macroscopic

data. A theoretical model is typically associated with a specific coarse-graining level.

As a necessary condition, it needs to agree with observations on larger scales, but this

is not sufficient for the model to be unique. In order to distinguish between several

microscopic models, one usually needs measurements on the same level.
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In our case, the theory makes specific testable predictions about the influx, consump-

tion and storage of energy, as illustrated in Fig 5.8. In close collaboration with our

experimental colleagues, we have planned further experiments to measure these quan-

tities and to parametrize the models. First, it needs to be verified that the fraction of

stem cells is approximately constant in Smed and cannot explain the growth dynamics.

Furthermore, our collaborators are conducting experiments at the time of writing to

determine metabolic rates and feeding influx. Additionally, they aim to identify po-

tential stores for the metabolic energy and probe the effects of inhibiting them. The

existence of fat cells has already been reported for other flatworm species (93).

Fig. 5.4 already shows that the stuffing peak is approximately proportional to worm size.

If therefore the average amount of food that becomes available per cell is independent of

the size of the worm, it would support the third model. Furthermore, we have discussed

in Section 5.2.1 that the scaling laws for worm mass and total protein mass might also

be in agreement with an increased storage of lipids or glycogen in larger worms. It

remains to be answered whether the scaling of metabolic rates and storage cells can

explain the growth and degrowth behavior in Smed .

Even though the models are highly simplified, we can extract information about the

underlying processes from the fits to the data. For example, we can estimate from all

three models that each cell stores on average as much energy as needed to maintain it for

approximately ec/µ = 50 to 150 days. In comparison, the metabolic rate in humans is

µ ≈ 1 pW and the total energy stored in human fat cells (as the main energy storage) is

4 · 108 J (124). Thus, ec = 10−5 J, which amounts to a similar ratio of ec/µ = 130 days.

Furthermore, based on measurements in the flatworm Schmidtea polychroa and on the

typical metabolic scaling laws (124, 133, 240), we expect the metabolic rate of Smed to

be in the range of µ ≈ 10 pW per cell. Thus, according to our models, each cell stores

as much as ec ≈ 10−5 to 10−4 J. Note that this estimate is based on the assumption

of perfect recycling of the energy upon cell death. For imperfect recycling, the value is

reduced.

Metabolic energy can be stored in various ways: in lipids or glycogen, in specialized fat

cells or distributed among many different cell types. An interesting observation in this

respect is the presence of germ line precursor cells in asexual flatworms. Cells without

a purpose should vanish during evolution. Thus, we might speculate that the germ

line precursors in asexual worms might have an additional function for the metabolic

housekeeping. In analogy to the third model, they are especially prominent in large

worms and can potentially serve as energy stores during starvation.
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5.4. Control logic for cell turnover and growth

5.4.1. Measuring cell turnover on various scales

So far, we have investigated how the cellular behavior might depend on feeding condi-

tions and worm size but we have not explicitly distinguished between the adjustment of

cell division on the one hand and cell loss or death on the other hand. In this section,

we now discuss how these individual processes might be controlled. In order to unravel

the control logic, we propose experiments on various scales, ranging from the level of

individual cells to a whole tissue and to the averaged behavior across the entire worm.

The main questions are:

• Does feeding and worm size affect rather cell proliferation or cell death?

• How do both processes influence each other?

• To what does extent aging play a role on the cellular scale?

The first question will be addressed mainly at the cellular level and the second and

third question at the tissue level.

Turnover dynamics at the cellular level. — Previous measurements indicate that there

is an anabolic default state during starvation periods, in which cell loss dominates over

cell division. Upon feeding, there are short-term mitotic bursts leading to growth, as

sketched in Fig. 5.9 (12, 13, 16, 71, 101, 139, 142, 170). However, it is not clear whether

the cell loss rate also changes as part of the feeding response and to what extent division

and loss depends on feeding history. It has been suggested that apoptosis rates might in

fact increase after the flatworms have been fed, especially after long starvation periods,

as a means of cell renewal (71, 159).

Assessing these questions is complicated by the fact that cell loss is poorly defined.

Apart from the classical apoptosis pathway many other processes might contribute to

cell loss such as other mechanisms of programmed cell death but also uncontrolled

shedding of epidermis cells. In contrast, cell division can be well characterized. In

Appendix E.3 we discuss a measurement scheme to extract division rates. By comparing

cell division to worm growth, we will also be able to determine to what extent cell death

rates are regulated.

Turnover dynamics at the tissue level. — By monitoring the turnover dynamics in

epidermis cells, we can exemplify how cell addition and removal work together to result
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Figure 5.9.: A hypothetical model that comprises (i) an anabolic default state, for

which the cell loss rate (dashed green) is larger than the cell division rate (solid red),

and (ii) short proliferation responses upon feeding.

in a well controlled size regulation. In the next section, we introduce a respective

measurement protocol. We show preliminary data, which suggests that cell death

depends on the age of the cells.

We also discuss further experiments to confirm the effect of aging and to investigate

how the individual turnover processes influence each other. On the one hand, turnover

could be a rather stochastic process, in which cells are inserted in the tissue and deleted

independently, yet on average at balanced rates. On the other hand, insertion and

deletion could be tightly linked such that a cell is preferentially removed in the presence

of a new cell that replaces it. We suggest a double labeling experiment which can

potentially distinguish the two control paradigms.

Turnover dynamics at the organismal level. — After constructing a comprehensive

model on how turnover and growth is regulated based on the experiments on the cellular

and the tissue scale, we can validate the model by measurements across the entire

worm. To this end, we adapt a protocol that has originally been developed to analyze

cell turnover in human brain cells (203). In Appendix E.4, we provide the theoretical

framework to set up the experiment.

5.4.2. Analyzing turnover of the epidermis as an example tissue

Epidermis cells as the outermost skin cells can be non-invasively labeled by soaking

the worms in CFSE solution (carboxyfluorescein diacetate succinimidyl ester). It has

been observed that the labeled cells disappear within days as a result of turnover of

the epithelial tissue. From this experiments, we can estimate turnover rates of the

91



5. QUANTIFYING FLATWORM GROWTH AND CELL TURNOVER

tissue and investigate whether older cells are more prone to die. We will also propose

a protocol with two consecutive labeling pulses, which might enable us to understand

how insertion and deletion of cells is coordinated.

5.4.2.1. Measuring turnover rates by single pulse labeling

Cell turnover processes. — We describe turnover in a cell population by three different

processes: (i) deletion of cells, (ii) insertion of cells and (iii) replacement of cells (i.e.

coupled insertion and deletion), see Fig. 5.10(a). Note that deletion potentially includes

many different processes: the induced removal by long range signals or quorum sensing

in the tissue, cell-autonomous decisions as well as uncontrolled shedding.

In order to measure turnover dynamics, we label all cells in the epidermis by soaking

in CFSE and count the fraction of labeled cells in the field of view after time t, see

Fig. 5.10(b)-(c). The experiments were performed by Sarah Mansour in the group of

Jochen Rink. The author analyzed the data by automatically counting the cells with a

custom MATLAB code.

Dynamics of a labeled cell population. — Let us consider the number density n(a) of

cells of a certain age a. The total number of cells N in the tissue and the number of

labeled cells N` are given by

N =

∫ ∞
0

n(a) da , N` =

∫ ∞
t

n(a) da . (5.8)

Due to cell turnover, these quantities change in time as follows

Ṅ = (ki − k̄d)N (5.9)

Ṅ` = −(k̄d` + k̄r`)N` . (5.10)

Here, we consider the rate for cell insertion ki and average rates for the replacement of

labeled cells k̄r` as well as for the deletion of labeled and unlabeled cells k̄d` and k̄d:

k̄r` =

∫ ∞
t

kr(a)n(a)

N`
da , k̄d` =

∫ ∞
t

kd(a)n(a)

N`
da , k̄d =

∫ ∞
0

kd(a)n(a)

N
da .

(5.11)

When taking snapshots of only part of the tissue, we do not obtain absolute numbers

but the fraction of labeled cells in the field of view Φ` = N`/N , which obeys

Φ̇` = −
(
k̄r` + ki + (k̄d` − k̄d)

)
Φ` . (5.12)

The fraction of labeled cells might not only decrease due to replacement (first term),

but also due to a dilution effect as unlabeled cells get inserted into the tissue (sec-

ond term). Furthermore, the third term arises if labeled cells and unlabeled cells are
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Figure 5.10.: (a) We distinguish three processes of cell turnover. (b) Labeled epider-

mis cells (CFSE staining - green) disappear within a few days due to turnover. Nuclei

are labelled in blue (Hoechst staining). (c) Measurement scheme of the CFSE labeling

experiment. (d) Fraction of labeled cells at a certain time after the label is applied. We

fit an exponential curve with a constant tissue turnover rate ktis = 0.27/day (dashed

blue) as well as linear function corresponding to a fixed life time of the cells amx = 7.8

days (red). (e) Measurement scheme with irradiated (stem cell depleted) worms. (f)

For T = 1 day, the turnover in irradiated worms (green) compares to non-irradiated

worms (black). Yet, for T = 5 days after irradiation, the labeled epidermis cells do

not vanish from the tissue anymore (red). All measurements were performed by Sarah

Mansour in the group of Jochen Rink. The author analyzed the data and fitted the

models.
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deleted at different rates (e.g. in an age-dependent manner). In contrast, if cells are

deleted stochastically (e.g. according to a Poisson process), kd(a) is constant and the

corresponding term vanishes: k̄d` − k̄d = 0.

Feeding conditions and the size of the worm are approximately constant during the

course of the experiment. Thus, if the turnover does not depend on the age of the cells

(i.e. kd and kr are constant), we can expect an exponential solution Φ` = Φ`,0 e
−t ktis to

Eq. 5.12 with a constant rate ktis = kr + ki. Yet, the preliminary data in Fig. 5.10(d)

does not strongly support an exponential law (dashed blue).

Another limiting case is that cells have a fixed live span and only die at age amx. Thus,

the rates of deletion and replacement are kd(a) = δ(a− amx) and kr(a) = δ(a− amx).

Note that the worms only grow and degrow by a few percent per day, such that we can

assume that the tissue size only changes very little in comparison to the turnover time

scales of a few days. In consequence, the age distribution n(a) will be approximately

homogeneous and the solution to Eq. 5.12 a linear function Φ` = Φ`,0 − t/amx. This

simple linear model (solid red) appears to agree better with the data in Fig. 5.10(d).

In fact, the truth might be in between the two limiting cases. This would resonate with

an age-dependent turnover of the cells in the tissue such that old cells are more prone

to deletion or replacement.

The time dependence enters because the age distribution of label cells is shifted over

time. In order to extract in what way the cellular age influences deletion or replacement

and which of the two processes is mostly affected, we need more sophisticated experi-

ments as discussed below. Also note that the presented data is only very preliminary

and has to be confirmed by further measurements.

Labeled cell fraction in irradiated worms. — We briefly comment on a second pilot

experiment by Sarah Mansour, see Fig. 5.10 (e)-(f). Here, the measurement started

at varying times T after the worms were depleted of all stem cells by γ-irradiation.

First, we observe that tissue turnover is not directly affected by the loss of stem cells:

for small T the label fraction (green) decreases in the same way as for non-irradiated

worms (black). Labeled cells are replaced by progenitor cells, which were not deleted by

irradiation. Thus, there seems not to be a long-range signaling effect from the stem cell

pool. In contrast, T = 5 days after irradiation (red), the fraction of labeled cells does

not decrease anymore. In conclusion, dividing cells (which are affected by irradiation)

or corresponding signals need 5 days to reach the epidermal tissue.
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5.4.2.2. Monitoring cell turnover by double pulse labeling

We propose a double-labeling experiment using a second labeling pulse of a different

marker (DDAO-SE) applied after a short time interval ∆t, see Fig. 5.11(a). As a result,

there are two labeled cell populations – cells with both labels N2 and young cells with

only the second label N1:

N1 =

∫ t+∆t

t
n(a) da , N2 =

∫ ∞
t+∆t

n(a) da . (5.13)

Similar to Eq. 5.12, the ratio Φ12 = N1/N2 obeys

Φ̇12 = −
(
(k̄d1 − k̄d2) + (k̄r1 − k̄r2)

)
Φ12 , (5.14)

which includes the deletion and replacement rates of both labeled cell populations.

Additionally, we propose an irradiation experiment as depicted in Fig. 5.11(b). For this,

we choose the time interval T such that there are still new cells arriving in the epidermis

during ∆t but not so after the second labeling pulse. According to our measurements

with a single label in Fig. 5.10(f), T + ∆t ≈ 5. In consequence, (k̄r1 − k̄r2) = 0 during

the time interval t:

Φ̇12,irr = −(k̄d1 − k̄d2) Φ12 . (5.15)

Now, Φ12,irr only changes for age-dependent deletion rates. Thus, by comparing the

dynamics of Φ12 in non-irradiated and Φ12,irr in irradiated worms given by Eq. 5.14 and

5.15, respectively, we can deduce whether deletion or replacement depends on the age of

the cell, as illustrated in Fig. 5.11(c). If Φ12,irr changes according to a time-dependent

rate, deletion is related to the age of the cells. If instead only the dynamics of Φ12 are

determined by a time-dependent rate, replacement relies on the age of the cells.

Furthermore, we can extract actual rates for the individual processes by comparing the

results of the experiments. For example, k̄d2 + k̄r2 in Eq. 5.14 is equivalent to k̄r` + k̄d`

of the experiment with a single label. By combining these measurements, we can find

the functional relationship for how deletion and replacement changes with the age of

the cells.

The same experiments can be performed in starving and well fed animals to reveal

the connection between feeding status and turnover rates. One hypothesis would be

that there is no insertion during starvation, yet replacement dominates and the tissue

slowly shrinks due to a small deletion rate. After feeding, insertion leads to growth of

the tissue.
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Figure 5.11.: Double pulse labeling scheme in (a) non-irradiated and (b) irradiated

animals. (c) The double labeling experiment allows us to deduce whether deletion or

replacement depend on the age of the cells.

5.5. Summary

Our aim is to study cell turnover and growth in a comprehensive way, bridging the

scales from a single cell to the average behavior at the level of the organism. For this,

we have carefully designed several experiments to determine the flatworm size and to

characterize its growth dynamics. In particular, we developed a protocol for precise

measurement of the worm area based on the analysis of movie sequences with a custom

MATLAB routine. The data was compared to previous studies, which in parts yielded

controversial results.

We observed that the growth and degrowth rates are dependent on worm size. Smaller

worms grow and shrink faster. This resonates with the picture that small worms might

be more juvenile with a potentially higher turnover rate and a different metabolism

(71, 111). Based on the idea that the available metabolic energy is the main determinant

for growth, we have developed several microscopic models, which can all be fitted to the

macroscopic growth data. The models describe different modes of energy storage and

make specific predictions that are tested by our collaborators in current experiments.

In particular, they also differ in the way energy inflow (i.e. digestion of food) and

energy outflow (i.e. metabolic consumption) varies with size, which directly relates to

the question about the limits to growth.

Finally, we propose further experiments, which can unravel the control logic of cell and

tissue turnover. We provide the theoretical framework and discuss first preliminary

data suggesting an age-dependent death of cells. The experiments will by performed in

the laboratory of Jochen Rink by the author and other members of the group.
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6. Summary and outlook

In this thesis, we analyzed various aspects of growth and body plan scaling, drawing

particular inspiration from the flatworm Schmidtea mediterranea (Smed) as a model

animal. For this purpose, we combined theoretical descriptions and analysis of experi-

mental data.

As a first approach, we analyzed previously proposed mechanisms for self-organized

pattern formation as well as pattern scaling in Chapter 2. We systematically extracted

the requirements for scaling and demonstrated that they are challenged by the fas-

cinating regeneration and re-patterning capabilities of flatworms. On this basis, we

presented a minimal model for fully self-organized and self-scaling pattern formation

in Chapter 3. This mechanism is capable of spontaneously generating concentration

gradients and expression regions of involved molecules that robustly adjust to the size

of the system.

In the future, it will be interesting to further compare the theoretical framework and

the derived predictions to the Wnt/β-catenin system, which is associated with head-tail

(AP) polarity in Smed (4, 9, 81, 82). Preliminary measurements by our collaborators

indicate that the β-catenin gradient as well as expression profiles of various Wnts in

fact scale with worm size. Our theory enables us to interpret the data and to suggest

additional experiments to unravel the mechanism of scaling in flatworms. Further

beyond, the results might also enrich the discussions on signaling gradients in other

systems, such as the developing fly wing, for which it is still a matter of debate how

scaling is established (11, 26, 55, 233).

Smed only recently evolved to become a model organism, thus the basic mechanisms for

axis specification are far from being well understood (117). It is known that components

of the Wnt/β-catenin system are especially present in the tail (4, 9, 81, 82). However,

there could be an additional patterning system originating from the head or even a

compartmentalization by several systems along the body axis. If there are several

anterior-posterior (AP) polarity systems, how do they interact? And to what extent is

the patterning self-organized or relies on pre-existing cues such as a polarized tissue or

wound-specific signals after amputation? We are currently analyzing a large data set
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comprising the spatial changes in gene expression after RNAi treatment and expression

time courses during regeneration in order to answer these questions.

Perpendicular to the AP axis, there are also two more body axes in dorsal-ventral and

medial-lateral direction (117). How do the patterning systems for the different body

axis influence each other? Is there a hierarchy of axis formation or do the axes emerge

simultaneously? One particular curious case is the formation of a straight midline

as an important signaling center. The experimental data suggests that a repulsive

signal from the body margin positions the midline (3, 117, 121). Yet, is it sufficient to

account for this narrow, straight row of distinct cells, which tends to re-emerge from

the anterior and posterior poles during regeneration? As a complementary approach,

we have started to design a model explaining midline formation on the basis of cell

proliferation and resulting cellular flows in the tissue.

Besides these long-range patterning mechanisms that are classically assumed to rely on

secreted, motile molecules, there are also other polarity cues. For example, the planar-

cell-polarity (PCP) system is based on direct cell-cell interactions and results in cellular

polarisation consistently across the tissue. In order to determine the coupling between

both mechanisms, we have started analyzing the motility of flatworms, when various

Wnt-pathway components have been knocked out by RNAi feeding, see Chapter 4.

Resulting movement phenotypes report on a dysfunctional cilia carpet associated with

an impaired PCP system.

For a further, more detailed investigation of worm motility, we adapted principal com-

ponent analysis to apply it to the highly deformable worm body. We could demonstrate

that during normal gliding motion worms steer their path by bending in the preferred

direction of movement. Additionally, we provided the first quantitative account of an

alternative motility mode, called inchworming. This appears to be a tightly controlled

behavioral response to impaired cilia functionality with a characteristic frequency of

about 1/4 Hz. Such stereotypic behaviors have been previously described in the much

simpler nematode C. elegans (207, 208, 209). It is a fascinating observation that more

complex organisms such as flatworms still show very generic motility patterns, which

might have emerged during evolution as an optimized strategy and are expected to

relate to the structure of the muscular plexus and the nervous system. Similarly, we

were able to demonstrate the applicability of shape mode analysis to the variable head

shapes between different species. We are planning to extend this analysis to many more

species of the large flatworm collection in the laboratory of Jochen Rink. As both, spe-

cific morphologies and specific movement strategies, are expected to emerge due to the
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evolutionary pressure in the respective environmental niche, our analysis provides the

basis for future research relating form and function.

In the last chapter, we quantified growth and turnover dynamics in flatworms. Interes-

tingly, we obtained size-dependent growth rates. Small worms appear to grow and

degrow faster than large worms. This particular growth and degrowth behavior of the

worms is the coarse-grained result from the underlying processes of cell division and

cell loss. Thus, we devised several microscopic models describing specific rules on the

cellular scale to explain the observed growth dynamics on the macroscopic level of the

organism. The models are based on the idea that there is a limiting quantity that

“Nothing in biology makes sense except in the
light of evolution.” — ditto, Theodosius
Dobzhansky, 1973 (41)

(i) is provided by feeding, (ii) is permanently con-

sumed by the cells and (iii) affects the division

and loss rates of cells. As an example, we expli-

citly consider the metabolic energy as the limiting

quantity. All of our three models fit the growth data equally well. Importantly, each

model is based on distinct assumptions on how the energy is stored and how the energy

availability affects the division and loss rates. Furthermore, each model makes specific

predictions about how the three considered processes of energy influx by feeding, energy

storage and energy consumption have to depend on the size of the worm to account for

the measured growth data.

With this result in mind, we contribute to the design of future experiments that will

enable us to distinguish between the models. Thereby, we aim to bridge scales by

providing an explanation for the organismal growth dynamics on the macroscopic level

in terms of cellular behavior on the microscopic scale. The outcome might also hint at

systemic limitations to growth. For example, if the food uptake is size-dependent and

relatively decreases with worm size, there will be an upper limit at which the worm

is not capable to sustain growth anymore. It then poses the question whether this

is a physical limit set by constraints of the worm body or whether evolution has not

selected for a more efficient uptake because worms anyways do not grow bigger for

other reasons. Similarly, energy stores that depend on either size or feeding will trigger

further investigations on the specific cells that store the energy. Are there specialized

fat cells or does a broad range of cells store the energy? An interesting idea is related

to the formation of the germ line. For sexual flatworms, there might be a tradeoff

between growth and the development of a reproductive system. Small worms would

rather grow to survive, large worms would rather invest in reproduction. Yet, germ

line precursor cells still exist in the asexual strain used in the experiments. From an
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evolutionary viewpoint, this might hint at a dual role of these cells, suggesting that

they are involved in growth control or energy storage.

The level of detail in the theory reflected the coarse-graining level of the experimental

data. In a next step, we aim to go beyond and include further measurements to dissect

the control logic of growth and cell turnover. Which of the two processes of cell division

and loss is affected by feeding status and worm size in which way? How do the two

processes influence each other? To what extent are these turnover processes related to

aging of the cells as well as aging of the organism? There are many open questions and

we started looking into some of them. For example, we have discussed a theoretical

framework for measurements from the cellular to organismal scale and also analyzed

preliminary data, which suggests an age-dependent replacement of cells. Eventually,

we aim to develop a comprehensive picture of how cell turnover and organism growth

is controlled.

This thesis addressed aspects of growth, cell turnover and scalable body plan patterning

in flatworms. We applied physical concepts to quantitatively analyze and interpret

experimental data. Importantly, the gained insights enabled us to ask new questions

and to suggest future experiments, which will help us to grow our general understanding

of homeostasis and growth, development and regeneration in multicellular organisms.
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A. Reaction-diffusion systems:

fixed points and scaling

A.1. Morphogen dynamics with linear degradation

A.1.1. Reaction, diffusion, advection and dilution

Here, we consider general morphogen dynamics in a growing tissue. We assume that

the morphogens are produced by a source term ν = ν(~r) and spread in the system with

an effective diffusion coefficient D while being subject to linear degradation with rate

β. The dynamics can be described by the following convection-diffusion equation for

the morphogen concentration C = C(t, ~r) (11, 31)

∂tC = D∇2C − β C + ν −∇
(
~uC
)
. (A.1)

The last term corresponds to dilution and convection due to tissue growth with a

velocity field ~u = ~u(t, ~r). Because many systems can be considered to be homogeneous

with respect to all but one direction, often graded profiles only form along this remaining

direction (e.g. the x-direction) and are independent of the other coordinates C =

C(t, x). In this case, the differential equation simplifies to

∂tC = D∂2
x C − β C + ν − ux∂xC − C∇~u

= D∂2
x C − (β + ∂yuy + ∂zuz)C + ν − ∂x(uxC) . (A.2)

Note that dilution by growth in the directions perpendicular to the graded profile can

effectively be described by a degradation term. For slow growth dynamics, we can

neglect the convection-dilution terms and recover Eq. 2.1.

A.1.2. Steady state solution neglecting tissue growth

The steady state solution of Eq. A.2 can be found in (31). Yet, often the effect of

tissue growth is considered to be negligible or a second order perturbative effect to

the solution of Eq. 2.1. Thus, for simplicity, we also consider this limit of slow tissue

growth. Furthermore, D and β are assumed to be constant in space across the tissue
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and constant in time within the time scale of the morphogen dynamics. As a result,

the morphogen concentration approaches a steady state profile of the form

C∗(x) = c1 exp(x/λ) + c2 exp(−x/λ) . (A.3)

The steady state solution for reflecting boundary conditions is given by

C∗(x) =
α

β

1− sinh(L/λ−w/λ)
sinh(L/λ) cosh(x/λ) for 0 ≤ x < w

sinh(w/λ)
sinh(L/λ) cosh(L/λ− x/λ) for w ≤ x ≤ L

(A.4)

In the limit of a small source and a large system (w � λ, λ � L), the steady state

simplifies to

C∗(x) ≈ αw√
Dβ

{
e−x/λ forx� L

2 e−L/λ forx = L .
(A.5)

The square-root of D and β in the amplitude also emerges if there is no degradation in

the source region, see Appendix A.1.4.

A.1.3. Relaxation to the steady state

The degradation rate defines the time scale of relaxation to the steady state of Eq. 2.1.

Let us consider a concentration C(t, x) = C∗(x)+εC(t, x) that deviates from the steady

state by a perturbation εC(t, x). The dynamics of εC(t, x) are described by

∂t εC = D∂2
x εC − β εC . (A.6)

The concentration in Fourier space ε̃C = ε̃C(t, s) obeys

∂t ε̃C = −
(
(2πs)2D + β

)
ε̃C ⇒ ε̃C = ε̃C,0 e

−
(

(2πs)2D+β
)
t (A.7)

and the back-transform yields (see Eq. B.7 for details)

εC(t, x) = e−βt
∫ ∞
−∞

dx′ εC(0, x′)
e
−(x′−x)2

4Dt

√
4πDt

. (A.8)

Besides the term for diffusive spreading that homogenizes the initial perturbation

εC(0, x), there is an exponential dumping term. Thus, the perturbation of the steady

state C∗ decays on a time scale of 1/β.
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A.2 Gradient scaling with expander

A.1.4. Steady state without morphogen degradation in the source

The reaction-diffusion equation without morphogen degradation in the source region is

∂tC = D∂2
x C − β C Θ(x− w) + αΘ(w − x) . (A.9)

With reflecting boundary conditions as in Eq. 2.2, we obtain

C∗(x) =


αw√

Dβ tanh(L/λ−w/λ)
+ α

2D (w2 − x2) for 0 ≤ x < w

αw√
Dβ sinh(L/λ−w/λ)

cosh(L/λ− x/λ) for w ≤ x ≤ L
(A.10)

While we obtain a power law inside the source, the expression outside the source is

identical to the one in Eq. A.4 in the limit of w � λ.

A.2. Gradient scaling with expander

A.2.1. On scaling with an autonomously controlled expander

We provide a very generic approach and consider a three-dimensional domain of volume

V = AL, in which the graded morphogen profile forms along the x-direction of length

L, wheres A denotes the cross-sectional area. Now, we aim to achieve scaling with

respect to some part of the system L1 with L = L1 +L2. For example, L1 could be the

whole system if L2 = 0 or the target tissue without the morphogen source if L2 = w.

The expander dynamics are described by

∂tE = DE ∇2E − βE E + νE (A.11)

with a constant diffusion term DE and the terms for degradation βE = βE(x) and

production νE = νE(x) that depend on the position in the tissue. In the limit of a fast

diffusing expander, the general steady state of Eq. A.11 is given by

E∗ = 〈νE〉 / 〈βE〉 , (A.12)

where

〈βE〉 =
1

V

∫
βE dV and 〈νE〉 =

1

V

∫
sE dV (A.13)

denote the spatial averages. In order to achieve scaling of the morphogen profile with

respect to L1, the expander level has to be a function of L1 in the steady state, which

means that 〈νE〉 and 〈βE〉 have to show a different functional dependence on L1.
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If the expander is degraded everywhere in the system part of length L1 und produced

in a source of constant width wE like in Eq. 2.9, we recover the result from Eq. 2.10 by

computing

〈βE〉 =
βE AL1

V
, 〈νE〉 =

αE AwE
V

. (A.14)

The steady state of the expander would be a function of L1 and thus could couple to

the morphogen dynamics to generate scaling. Analogously, degradation could happen

only at the boundary in a width wE and production everywhere along the length L1,

thus

〈βE〉 =
βE AwE

V
, 〈νE〉 =

αE AL1

V
(A.15)

would also make E∗ a function of L1.

A.2.2. Scaling by expander feedback with a switch-like production

We assume that the expander is suppressed by the morphogen in a switch-like manner

according to Eq. 2.9 and discuss implications for scaling and robustness of the feedback

schemes.

By combining Eq. 2.14 and the steady state solution for reflecting boundary conditions

given by Eq. 2.3, we obtain

α

β∗
sinh(w/λ∗)

sinh(L/λ∗)
cosh(wE/λ

∗) = Cth . (A.16)

We can derive a relationship between β∗ and E∗ by replacing w∗E using Eq. 2.15

β∗ =
α

Cth

sinh(w/λ∗)

sinh(L/λ∗)
cosh

(
βE LE

∗

αE λ∗

)
. (A.17)

In order to illustrate the behavior of the feedback system, we are considering the two

limiting cases of (i) a scaling morphogen source with w = χwL and (ii) a constant

morphogen source. For both, we assume that there exists a scaling steady state with

λ∗ = χλL with a constant scaling factor χλ. Next, we show what this implies for the

coupling between expander and morphogen and discuss the consequences.

(i) For a scaling morphogen source, the following relation between β∗ and E∗ has to

hold in order for the morphogen profile to scale in the steady state:

β∗ =
α

Cth

sinh(χw/χλ)

sinh(1/χλ)
cosh

(
βE
αEχλ

E∗
)
. (A.18)

The coefficient χλ is a free parameter encoding the effect of the expander on β. Note

that it is not possible to achieve scaling by only adjusting the diffusion coefficient D.

The result challenges the stability of the feedback loop because according to Eq. A.18
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the expander has a suppressing effect on the morphogen (at least in the steady state),

while according to our Eq. 2.9 the morphogen also suppresses the expander. Thus, this

feedback tends to be unstable.

(ii) For a constant morphogen source, we obtain(
β

sinh(w
√
β/D)

)∗
=

α

Cth sinh(1/χλ)
cosh

(
βE
αEχλ

E∗
)
. (A.19)

Now, either of both, β or D, can be adjusted for scaling. The question on the stability

is a bit more complicated than in the case above, where an increase in β results in a

decrease of the morphogen level everywhere in the system. In contrast, for example,

an increase in D results in a decrease of the morphogen level close to the morphogen

source and an increase at the other side of the system because the morphogen is dis-

tributed more homogeneously. In consequence, the feedback can be stable in a limited

size range, as long as the resulting expander source is sufficiently far away from the

morphogen source. As the size of the expander source changes stronger than linearly

with L (compare to Eq. 2.10), the system will eventually reach a size at which this is

not fulfilled anymore. Analogously, if β is adjusted, there also is a size limit. At this

size, β is too small such that the effect of E on β is positive according to Eq. A.19.

The size limit corresponds to λ larger than w, which is likely the case for most of the

systems as w is kept constant.

A.2.3. Scaling by expander feedback with a graded production

The step-like production term in Eq. 2.12 yields rather complicated relationships be-

tween expander and morphogen dynamics, see Eq. A.18 and A.19. Instead, when

considering a non-linear production term

∂tE(t, x) = DE ∂
2
xE(t, x)− βE E(t, x) + αE C(x)h (A.20)

with an arbitrary real number h, one obtains analogous results in a more general and

much clearer fashion. The exponent h can be positive or negative, corresponding to

an enhancing or a repressing effect on the source size, respectively. The term can

be understood as an approximation to a Hill function for concentrations below the

saturation.

The expander concentration in the steady state for the limit of fast diffusion is

E∗ =
αE λ

βE L

∫ L/λ

0
C(x′)h dx′ with x′ = x/λ . (A.21)
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Again, we will distinguish between the limiting cases of (i) a scaling morphogen source

and (ii) a morphogen source of constant size.

(i) For a scaling source, we obtain from Eq. 2.3

E∗ =
αE
βE

(
α

β∗

)h
I1(L/λ∗) ⇒ β∗ ∝ E∗−1/h , (A.22)

where I1 is a short-hand form of the integral term. In analogy to the switch-like source

in Section A.2.2, we cannot obtain scaling by solely adjusting the diffusion properties.

If the degradation rate is adjusted, the steady state tends to be unstable, irrespec-

tive of the exponent h that characterizes whether the morphogen has an enhancing or

suppressing effect.

(ii) If we assume w is constant, it follows

E∗ =
αE
βE

(
α sinh(w

√
β/D)

β

)∗h
I2(L/λ∗) +O(w/λ∗)2 (A.23)

⇒ (β D)∗ ∝ E∗−2/h for w � λ∗ (A.24)

with I2 denoting the integral. A corresponding expression can be derived without the

limit w � λ if there is no morphogen degradation in the source, see Appendix A.1.4.

As before, there can be a stable scaling fixed point if either β or D is controlled, yet

only in a limited size range.

A.3. Linear stability analysis of a Turing system

A.3.1. Eigenvalues of the linearized reaction-diffusion matrix

The linearized reaction-diffusion system in Fourier space given by Eq. 1.2 is character-

ized by the 2× 2-matrix Ms of Eq. 1.4:

Ms =

(
M1
s M2

s

M3
s M4

s

)
(A.25)

The two eigenvalues qIs , q
II
s of Ms determine the linear stability of the homogeneous

steady state, about which the system is linearized. If the real parts of both eigenvalues

are negative, the steady state is stable, otherwise the steady state is unstable.
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Figure A.1.: (a) The trace-determinant plot summarizes the properties of the two

eigenvalues of the 2× 2-matrix Ms. (b) The two eigenvalues of the matrix Ms for the

parameters used in Section 2.5 with finite DB (red) and DB → ∞ (blue). For our

choice of parameters and reflecting boundary conditions only the first mode (s = 0.5)

is linearly unstable, compare to Fig. 2.8. Parameters: DB/DA = 30, αB/αA = 4,

βB/βA = 2, λA/L =
√

0.1 ≈ 0.3, λB/L =
√

1.5 ≈ 1.2, h = 5 (if not stated otherwise).

The eigenvalues are given by(
M1
s − qI/IIs

)(
M4
s − qI/IIs

)
−M3

sM
2
s = 0 (A.26)

(
qI/IIs

)2
− Tr[Ms] q

I/II
s + Det[Ms] = 0 (A.27)

qI/IIs =
Tr[Ms]

2
±

√(
Tr[Ms]

2

)2

−Det[Ms] , (A.28)

where “Tr” denotes the trace and “Det” denotes the determinant. The properties of

the eigenvalues can be summarized in the Tr-Det-diagram in Fig. A.1(a). If Tr[Ms]
2 <

4 Det[Ms], both eigenvalues are complex and, in fact, are complex conjugates of each

other. For Tr[Ms] < 0 both real parts are negative, otherwise both real parts are

positive.

Instead, if Tr[Ms]
2 < 4 Det[Ms], both eigenvalues are real. For Det[Ms] > 0 both

eigenvalues have the same sign: a positive sign for Tr[Ms] > 0 and a negative sign for

Tr[Ms] < 0. This can be easily seen from

qIs + qIIs = Tr(Ms) and qIs · qIIs = Det(Ms) . (A.29)
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Finally, for Det[Ms] < 0 both eigenvalues are real but of opposite sign.

For the homogeneous steady state to be stable with respect to homogeneous perturba-

tion (s = 0), both real parts of the eigenvalues qI0 , q
II
0 have to be negative. Thus, the

matrix M0 should be located in the second quadrant, where

Tr(M0) < 0 and Det(M0) > 0 . (A.30)

For the homogeneous steady state to be unstable with respect to inhomogeneous per-

turbation (s 6= 0), at least one of the eigenvalues qIs , q
II
s has to have a positive real

part. It turns out that by changing s, the trace cannot become positive if Tr(M0) < 0:

Tr(Ms) = M1
s +M4

s = M1
0 +M4

0 − (DA +DB)(2πs/L)2 < 0 . (A.31)

Thus, the instability for s 6= 0 has to correspond to the third quadrant, for which both

eigenvalues are real and one of them is positive:

Det(Ms) < 0 with s 6= 0 . (A.32)

Note that Tr(Ms) decreases with increasing s, while Det(Ms) first decreases and later

increases again according to

Det(Ms) = Det(M0)− (DAM
4
0 +DBM

1
0 )(2πs/L)2 +DADB (2πs/L)4 . (A.33)

As a consequence, the eigenvalues of a Turing system depend on the mode number s as

depicted in Fig. A.1(b). For an intermediate range of s one eigenvalue is positive and

the system is linearly unstable with respect to the corresponding modes.

A.3.2. The principle of local activation and lateral inhibition

We derive necessary conditions for spontaneneous pattern formation in a two-component

reaction diffusion system. This section is based on analogous derivations in the litera-

ture (64, 65, 146, 195, 221). For the following, we define

RAA = ∂ARA
∣∣
A∗h,B

∗
h
, RAB = ∂BRA

∣∣
A∗h,B

∗
h
,

RBA = ∂ARB
∣∣
A∗h,B

∗
h
, RBB = ∂BRB

∣∣
A∗h,B

∗
h
. (A.34)

The conditions in Eq. A.30 and A.32 result in the relations

RAA +RBB < 0 (A.35)

RAARBB −RAB RBA > 0 (A.36)(
RAA −DA(2πs/L)2

)(
RBB −DB(2πs/L)2

)
< RBARAB . (A.37)
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The last two inequalities can be combined to

RAADB > −RBB DA +DADB (2πs/L)2 . (A.38)

Eq. A.35 tells us that at least one of the two species has to have a self-inhibiting effect.

Here, we choose species B: RBB < 0. From Eq. A.38, we see that the other one, i.e. A,

has to be self-enhancing: RAA > 0. From Eq. A.36 follows that RAB RBA < 0. The

cross-reaction terms must be of opposing signs.

As RBARAB < 0 and RBB −DB(2πs/L)2 < 0 in Eq. A.37, it follows that

RAA −DA(2πs/L)2 > 0 . (A.39)

The diffusion coefficient DA of the self-activator has to be sufficiently small for certain

modes to become unstable (“local activation”). This becomes even more apparent if we

consider the reaction term RA = αAP (A,B) − βAA like in Eq. 2.18. Now, the char-

acteristic wavelength of the reaction-diffusion equation has to be sufficiently small in

comparison to the system size: (λA/L)2 < (αA∂AP
∣∣
A∗h,B

∗
h
/βA − 1)/(2πs)2. The weaker

the self-activating effect and the larger the wave number s of the perturbation, the

smaller λA has to be.

Finally, from Eq. A.38, we obtain RAADB > −RBB DA. With Eq. A.35, hence

RAA < −RBB, we see that the self-inhibitor has to diffuse faster than the self-activator

(“lateral inhibition”):

DB > DA . (A.40)

A.4. Motivation for the Hill function

The production function P (A,B) is a switch-like element that takes two inputs and com-

pares them. In a biological system the inputs are the concentrations of two molecules

that bind to the receptors of a cell. We discuss two possibilities to compare the concen-

trations of activator A and the inhibitor B by simple generic mechanisms that describe

binding and unbinding to receptors. The number of unbound receptors on a cell is

given by Q. The output could be the number of receptors QA that are bound to the

activator molecule.

1. The activator A binds to the receptor Q while the inhibitor B leads to unbinding of

A. The dynamic equation for concentration of receptors bound to A is

Q̇A = γ1A
h1 Q− γ2B

h2 QA − γ3QA , (A.41)
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where h1 and h2 describe cooperativity effects for binding and unbinding. For example,

if the activator only binds in pairs, h1 = 2. The coefficients γ1, γ2 and γ3 are the rates

of binding as well as induced and spontaneous unbinding. If the total concentration of

receptors Q0 = Q+QA is constant, the steady state reads

QA =
γ1A

h1 Q0

γ3 + γ2Bh2 + γ1Ah1

h=h1=h2−−−−−−→
γ3=0

γ1Q0
(A/B)h

γ2/γ1 + (A/B)h
. (A.42)

If the cooperativity exponents are the same and the activator rarely unbinds spona-

neously, the standard Hill function is recovered. A finite γ3 6= 0 allows to compute the

limit A = B = 0.

2. We have seen that if the inhibitor facilitates the unbinding of the activator, we ob-

tain a Hill function for the concentration of receptors bound to the activator. A second

option for implementing the inhibiting effect is competitive binding. Here, the inhibitor

binds to the same receptors as the activator and thus blocks activator binding. Now,

the dynamic equations are

Q̇A = γ1A
h1 Q− γ2QA (A.43)

Q̇B = γ3B
h2 Q− γ4QB (A.44)

Q̇ = −(γ1A
h1 + γ3B

h2)Q+ γ2QA + γ4QB . (A.45)

In the steady state Eq. A.43 results in

Q =
γ2

γ1Ah1
QA (A.46)

and Eq. A.44 yields

QB =
γ3B

h2

γ4
Q =

γ3B
h2(Q0 −QA)

γ4 + γ3Bh2
(A.47)

with Q = Q0 −QA −QB, again assuming a constant total receptor number Q0. When

inserting these two equations in the steady state of Eq. A.45, we finally get

−(γ1A
h1 + γ3B

h2)
γ2

γ1Ah1
QA + γ2QA + γ4

γ3B
h2(Q0 −QA)

γ4 + γ3Bh2
= 0

γ2 γ3B
h2

γ1Ah1
QA + γ4

γ3B
h2

γ4 + γ3Bh2
QA = γ4

γ3B
h2

γ4 + γ3Bh2
Q0

γ2 γ4 + γ2 γ3B
h2

γ4 γ1Ah1
QA +QA = Q0

QA =
γ4 γ1A

h1 Q0

γ2 γ4 + γ2 γ3Bh2 + γ4 γ1Ah1
. (A.48)
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This is also a Hill function with exactly the same structure as the one above. It becomes

apparent that this function stands for a wide class of realizations of a logical element

that compares the magnitude of two inputs in a biological system.

A.5. Homogeneous steady state of our Turing system

The homogeneous steady state of our choice of Turing system given by Eq. 2.18 is

characterized by

A∗h =
αAβB
αBβA

B∗h (A.49)

P (A∗h, B
∗
h) =

βA
αA

A∗h . (A.50)

Fig. A.2 illustrates the steady state in terms of A∗h for the Hill function of Eq. 2.19 and

the step function of Eq. 2.20. The solid red line corresponds to the left side and the

dotted line to the right side of Eq. A.50. The intersections mark the steady state value

of A∗h. There is a second case for the step function (purple dashed line).

We use a specific definition of the theta function at position zero

Θ(0)
!

=

0 if αAβB
αBβA

≤ 1

1 if αAβB
αBβA

> 1 .
(A.51)

These two cases correspond to A∗h ≤ B∗h and A∗h > B∗h, respectively. This definition is

chosen to ensure the existence of a steady state and to avoid artificial oscillations in the

simulations. Moreover, it establishes the correspondence between the theta function

and the Hill function in the limit of h→∞.

Next, we will show that only the case of A∗h ≤ B∗h ensures spontaneous pattern formation

irrespectively of h. For this, we explicitly perform a linear stability analysis of our

specific Turing system. The matrix of Eq. A.25 for the linearized system reads

Ms =

αA ∂AP ∣∣A∗h,B∗h − βA −DA(2πs/L)2 αA∂BP
∣∣
A∗h,B

∗
h

αB ∂AP
∣∣
A∗h,B

∗
h

αB∂BP
∣∣
A∗h,Bh

− βB −DB(2πs/L)2

 .

(A.52)

It includes the derivatives of the Hill functions with respect to A and B at steady state:

∂AP
∣∣
A∗h,B

∗
h

=
hβA/αA

1 + (A∗h/B
∗
h)h

(A.53)

∂BP
∣∣
A∗h,B

∗
h

= −
A∗h
B∗h

∂AP
∣∣
A∗h,B

∗
h
. (A.54)
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(a) (b)

1

Figure A.2.: Homogeneous steady state of our Turing system for (a) a Hill function

and (b) a theta function. Solid red (and dashed purple) lines correspond to the the

left side of Eq. A.50, dotted red lines to the right side.

The limit of h→∞ diverges for αAβB ≤ αBβA:

∂AP
∣∣
A∗h,B

∗
h
→

∞ if αAβB
αBβA

≤ 1

0 if αAβB
αBβA

> 1
. (A.55)

This is in in agreement with the theta function, for which the derivative diverges at

position zero and is zero everywhere else.

The determinant of the matrix Ms is

Det(Ms) =
(
βA +DA(2πs/L)2

)(
βB +DB(2πs/L)2

)
− βA βb (2πs/L)2 h

1 + (A∗h/B
∗
h)h

(
λ2
B − λ2

A

)
.

(A.56)

Thus, the instability condition of Eq. A.32 is given by(
βA +DA(2πs/L)2

)(
βB +DB(2πs/L)2

)
<
βA βb (2πs/L)2 h

1 + (A∗h/B
∗
h)h

(
λ2
B − λ2

A

)
. (A.57)

First of all, this requires λB > λA, typical for Turing systems. Furthermore, in order

to fulfill this inequality for arbitrary h and in particular in the limit h→∞, it follows

that

A∗h ≤ B∗h ,
αAβB
αBβA

≤ 1 (A.58)

Our choice of parameters in Chapter 2 amounts to (αAβB)/(αBβA) = 1/2. The second

set of conditions of Eq. A.30 result in

h

1 + (A∗h/B
∗
h)h

(βA − βB) < βA + βB (A.59)

βA + βB > 0 (A.60)
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While Eq. A.60 is trivially fulfilled, Eq. A.59 requires βA < βB in order to hold for

arbitrarily large h. In our parameter sets of Chapter 2, we have chosen βB/βA = 2.

A.6. Inhomogenous steady states of our Turing system

A.6.1. First order steady state solution

First, we solve Eq. 1.1 of our Turing system with a step-like production function by

assuming a single source region which is touching the boundary as shown in Fig. A.3(a).

We refer to this as the (1, 1)-pattern. The general steady state solution for A∗(1,1) is a

piecewise function

A∗in(x) = Ain,1 e
x/λA + Ain,2 e

−x/λA +
αA
βA

for 0 < x ≤ ` (A.61)

A∗out(x) = Aout,1 e
x/λA + Aout,2 e

−x/λA for ` < x < L (A.62)

for the region inside and outside the source. In order to determine the four constant

factors, we use the two reflecting boundary conditions and two continuity conditions at

the source boundary:

∂xA
∗
in(x)

∣∣
0

= 0 (A.63)

∂xA
∗
out(x)

∣∣
L

= 0 (A.64)

A∗in(`) = A∗out(`) (A.65)

∂xA
∗
in(x)

∣∣
`

= ∂xA
∗
out(x)

∣∣
`
. (A.66)

From Eq. A.63-A.64, we obtain Ain,1 = Ain,2 and Aout,1 = Aout,2 e
−2L/λA , respectively.

Thus, the solution becomes

A∗in(x) = Ain,0 cosh

(
x

λA

)
+
αA
βA

for 0 ≤ x ≤ ` (A.67)

A∗out(x) = Aout,0 cosh

(
x− L
λA

)
for ` < x ≤ L (A.68)

Finally, from Eq. A.65-A.66, we compute the (1, 1)-solution

A∗(1,1) =
αA
βA

1− sinh(L/λA−`/λA)
sinh(L/λA) cosh(x/λA) for 0 ≤ x ≤ `

sinh(`/λA)
sinh(L/λA) cosh(x/λA − L/λA) for ` < x ≤ L .

(A.69)

The solution for B∗(1,1) is determined analogously, see Eq. 2.24.
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(a) (b)

0
0

1

0.5

Source size

Figure A.3.: (a) The concentration profile of A∗(1,1) can be written as a piecewise

function for the part inside and outside the source. (b) The intersections (circles) of

the blue and the red curves mark the steady state source size according to Eq. A.71.

Parameters like in Section 2.5: DB/DA = 30, αB/αA = 4, βB/βA = 2, λA/L =√
0.1 ≈ 0.3, λB/L =

√
1.5 ≈ 1.2.

A.6.2. Source size of the first order steady state

For the step-like production function, the source size is defined by

A∗(1,1)(`) = B∗(1,1)(`) (A.70)

FA(`) =
αBβA
αAβB

FB(`) (A.71)

with

F(`) =
sinh(`/λ)

sinh(L/λ)
cosh(`/λ− L/λ) =

1

2

(
1− sinh(L/λ− 2`/λ)

sinh(L/λ)

)
. (A.72)

Next, we show that the source size ` has only one non-trivial solution. First, we compute

F(0) = 0 , F(L/2) = 1/2 , F(L) = 1 , (A.73)

and we see that ` = 0 is always a solution to Eq. A.71. The curve is a shifted hyperbolic

sine function und is monotonously increasing

∂`F(`) =
cosh(2`/λ− L/λ)

λ sinh(L/λ)
> 0 . (A.74)

The largest slope is found at the interval bounds:

∂`F(`)
∣∣
0

= ∂`F(`)
∣∣
L

=
1

λ tanh(L/λ)
. (A.75)
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In particular, we see that

∂λ

(
1

λ tanh(L/λ)

)
=

2L/λ− sinh(2L/λ)

2λ2 sinh(L/λ)2
< 0 because L/λ > 0 . (A.76)

Thus, the larger λ the smaller the slope at ` = 0 and ` = L. In consequence, the

curve for λB lies below the curve for λA if ` < L/2 and above if ` > L/2, as shown in

Fig. A.3(b). We can demonstrate this fact explicitly by computing

∂λF(`) =
(L− `) `

λ3 sinh(L/λ)2

(
sinh(2`/λ)

2`/λ
− sinh(2L/λ− 2`/λ)

2(L− `)/λ

)
≶ 0 if ` ≶ L/2 .

(A.77)

Therefore, FA(`) and FB(`) always have three intersection points at 0, L/2 and L. If

we now consider Eq. A.71 with αAβB < αBβA and λA < λB (as required for the Turing

system to form patterns, see Section A.6), ` = L is no solution anymore and the second

solution is shifted to smaller values of `.

In summary, there is always a solution with ` = 0 (no source). Additionally, for our

Turing condition αAβB ≤ αBβA, there can be a second solution with a finite source

size ` < L/2 if
αBβA
αAβB

λA tanh(L/λA) < λB tanh(L/λB) . (A.78)

For αAβB < αBβA, there are not more than these two solution. The condition of

Eq. A.78 marks a bifurcation point of the system, beyond which the (1, 1)-solution

exists in addition to the (0, 0)-solution.

From Eq. A.78, we see that λA is constrained by either L or λB, depending on which

one is smaller. If L� λB, the equation becomes

tanh(L/λA) <
αAβB
αBβA

L/λA . (A.79)

For αAβB < αBβA, this is only fulfilled if L/λA is large enough. If L� λB, we obtain

λA <
αAβB
αBβA

λB . (A.80)

For αAβB < αBβA, this is only fulfilled if λA is sufficiently smaller than λB.

Finally, we consider two limiting cases of Eq. A.72:

F(`) =
1

2

(
1− sinh(L/λ (1− 2`/L))

sinh(L/λ)

)
→

{
`/L for L/λ� 1

1/2 for L/λ� 1 .
(A.81)

Note that the absolute value of 1 − 2`/L is smaller than 1. Thus, for L � λB and

L� λA, we obtain `/L = (αAβB)/(2αBβA), see Fig. 2.7.
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A.6.3. Hierarchy of higher order steady states

We can successively derive the higher order steady states. First, we consider the

second order solution with two sources at the boundaries, denoted as (2, 2)-pattern,

see Fig. A.6.4(a). Thus, there are maxima of concentration A∗(2,2) and B∗(2,2) at each

boundary. Furthermore, there is a minimum for each concentration in between the two

source regions. We now prove that the system is completely symmetric as depicted in

Fig. A.6.4(b). For that it is sufficient to show that the minima for A∗(2,2) and B∗(2,2) are

at the same position, i.e. LA = LB. Let us consider the solutions left of the respective

minima in Fig. A.6.4(a). These solutions correspond to the (1, 1)-pattern, which we

have characterized above. If the minima are at the same position (LA = LB), there

is at most one ` with 0 < ` < L in agreement with A∗(1,1)(`) = B∗(1,1)(`). However,

B∗(1,1)(`) is a strictly monotonic function of LB if ` > 0:

∂LBB
∗
(1,1)(`) = −αB sinh(`/λB) cosh(`/λB)

sinh(L/λB)2λB
< 0 . (A.82)

Therefore, there is no other choice of LB also solving the equation for `. In consequence

we conclude that LA = LB in the steady state.

For LA = LB, we can cut the (2,2)-pattern at this position, which results in two (1,1)-

patterns. But since these two (1,1)-patterns have in fact the same concentration A at

their common boundary, their system size must be equal. An analogous reasoning can

be applied to the (1, 0)-pattern. Finally, Fig. A.6.4(b) exemplifies that any higher order

pattern can be considered as a concatenation of (1, 1)-patterns as the basic building

blocks. Each adjacent pair of these fundamental sections is either a (1, 0)-pattern or a

(2, 2)-pattern and thus completely symmetric. In consequence, any higher order pattern

can be constructed by a concatenation of (1, 1)-patterns of identical size.

A.6.4. Stability of the inhomogeneous steady state of our Turing system

We are probing the stability of the inhomogeneous steady states in various ways. First,

we can add a set of small perturbations to the steady state profiles and monitor the

relaxation behavior in numerical simulations. Second, we can start with a linear com-

bination of two steady state patterns with varying weights and observe to which steady

state they converge, as shown in Fig. 2.8(b). Finally, for the case of the Hill-type pro-

duction function, we can numerically perform a linear stability analysis, as we will show

next.
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(a) (b)

Figure A.4.: (a) The concentrations A and B of the (2, 2)-pattern possess maxima

at boundaries and one minimum each between the source regions. (b) All patterns

can be constructed by a concatenation of (1, 1)-patterns of identical size. Parameters

like in Section 2.5: DB/DA = 30, αB/αA = 4, βB/βA = 2, λA/L =
√

0.1 ≈ 0.3,

λB/L =
√

1.5 ≈ 1.2.

Let us consider small perturbations a(t, x) and b(t, x) about the inhomogeneous steady

states:

A(t, x) = A∗(m,n)(x) + a(t, x) , B(t, x) = B∗(m,n)(x) + b(t, x) . (A.83)

The linearized dynamics of the perturbations is given by

∂t

(
a

b

)
=

(
P1 P2

P3 P4

)(
a

b

)
(A.84)

with the operators

P1 = αA ∂AP
∣∣
A∗

(m,n)
,B∗

(m,n)

− βA +DA∂
2
x (A.85)

P2 = αA∂BP
∣∣
A∗

(m,n)
,B∗

(m,n)

(A.86)

P3 = αB ∂AP
∣∣
A∗

(m,n)
,B∗

(m,n)

(A.87)

P4 = αB∂BP
∣∣
A∗

(m,n)
,B∗

(m,n)

− βB −DB∂
2
x . (A.88)

Now, we express the perturbations in terms of a set orthonormal modes that agree with

the reflecting boundary conditions:

a(t, x) =
∑
j=0

aj(t)mj(x) with mj(x) =
√

2 cos(j x) . (A.89)
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Figure A.5.: Maximum eigenvalue of the linear operator matrix for the (1, 0)-pattern

as a function of system size. The pattern becomes stable at L/λA ≈ 5.5, see also

Fig. 2.8. Approximation with 20 modes and a spatial discretization of the profiles

with 200 grid points. Parameters like in Section 2.8: DB/DA = 30, αB/αA = 4,

βB/βA = 2, h = 5.

The coefficients aj(t) can be determined by

aj(t) =

∫ L

0
a(t, x)mj(x) dx . (A.90)

The linearized system in terms of these modes is

∂t



a1

a2

...
b1
b2
...

 =


∫ L

0 mjP1mi dx
∫ L

0 mjP2mi dx

∫ L
0 mjP3mi dx

∫ L
0 mjP4mi dx





a1

a2

...
b1
b2
...

 (A.91)

If the largest eigenvalue of the linear operator matrix is negative, the steady state

is stable and this maximum eigenvalue provides the time scale of relaxation of the

slowest decaying mode. If at least one eigenvalue is positive, the steady state is linearly

unstable.

Fig. A.5 shows the maximum eigenvalue for the (1, 0)-pattern as a function of the system

size. We can determine the lower bound for which this pattern becomes stable, as

illustrated in Fig. 2.8. For none of the inhomogeneous patterns, we observe a maximum

system size, at which these patterns would become unstable again.
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A.7. On our scalable Turing system

A.7.1. A homogeneous dynamic state for low expander levels

For low expander values, the concentrations in the Turing system with expander feed-

back become homogenous. Here, we consider the adiabatic limit for which the expander

relaxation is much faster than the dynamics of the Turing molecules. In consequence,

the expander tightly follows the much slower dynamics of the inhibitor concentration

B:

E =
αE
κE B

. (A.92)

It exists a dynamic state of the Turing system for which the concentrations A and

B relax in synchrony such that the ratio χ = B/A stays constant. As a result, the

Hill-type production function has a constant value P (A,B) = g(χ) given by

g(χ) =
1

1 + χh
. (A.93)

The ratio χ is is obtained from

∂tχ = 0

αBg(χ)− κBEB − αAg(χ)χ+ κAEB = 0

g(χ) =
αE
κE

κA − κB
αA χ− αB

. (A.94)

The system can leave the homogeneous regime if E increases. For this, B has to

decrease, according to Eq. A.92. We have discussed for Eq. 3.11 that this requires

g(χ) < `∗/L, where `∗/L = (αEκB)/(κEαB). For the threshold where g(χ) = `∗/L, we

obtain

αE
κE

κA − κB
αA χ− αB

=
αEκB
κEαB

(A.95)

χ =
αBκA
αBκB

. (A.96)

Thus, the ratio B/A equals the ratio of the homogeneous steady state concentrations

B∗h/A
∗
h. Therefore, from g(χ) = `∗/L follows that f(0,0) = `∗/L.
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A.7.2. Generalized scalable Turing system

We can generalize our approach of scalable Turing patterning by considering the fol-

lowing generic equations for A, B and E

∂tA = αA P (A,B) + RA(A,E) +DA ∂
2
xA (A.97)

∂tB = αB P (A,B) + RB(B,E) +DB ∂
2
xB (A.98)

∂tE = αE + LE

(
RA(A,E),RB(B,E)

)
+DE ∂

2
xE . (A.99)

Here, RA and RB are generic functions fulfilling the Turing conditions and LE is a

linear function of RA(A,E) and RB(B,E). By computing the spatial averages in the

steady state, one obtains

αE + 〈LE
(
RA(A,E),RB(B,E)

)
〉 = 0 (A.100)

αE + LE

(
〈RA(A,E)〉, 〈RB(B,E)〉

)
= 0 (A.101)

αE + LE

(
αA〈P 〉, αB〈P 〉

)
= 0 . (A.102)

If RA, RB and LE are chosen such that L̃E(〈P 〉) = LE(αA〈P 〉, αB〈P 〉) is a monotonic

function in 〈P 〉, this uniquely determines the source size in the steady state. Thus, if

a steady state exists, the size of the source will be independent of the system size.

Let us again consider a homogeneous expander distribution. Furthermore, we assume

that the relaxation of the Turing system is much faster than the relaxation of the

expander. Thus, Eq. A.97-A.98 define the size of the source as a function of slowly

varying E. The intersection of this nullcline with the solution for 〈P 〉 from Eq. A.102

provides the steady state values of E. For the steady state to be linearly stable, it

requires that ∂〈P 〉L̃E(〈P 〉) · ∂E〈P 〉|E∗ < 0.

A.7.3. Scaling of downstream targets with a constant amplitude

One important feature of our scalable Turing system is that the amplitude of the

morphogens increases quadratically with L, see Section 3.7. This is a general property

of such scaling mechanisms for which the degradation rate is adjusted, see Section 2.4.4.

As the degradation rate changes proportional to L−2, the products βAA and βBB are

characterized by a constant amplitude independent of system size. If the cell responds

to this flux, the expression of down-stream targets scales with a constant amplitude.

Yet, how might the cell read out the degradation flux?

Signaling often requires binding of the molecules to receptors on the cell surface. The

concentration of activator molecules bound to receptors is Ab ∝ βAbA, where βAb
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A.7 On our scalable Turing system

is the binding rate. If the molecules become internalized or degraded upon binding,

this binding removes the molecules from the system and the binding rate βAb in fact

contributes to the degradation rate βA.

As a simple example, let us consider the following dynamics of the bound molecules

∂tAb = βAbA− βAr Ab . (A.103)

Free molecules bind with rate βAb and bound molecules are removed with rate βAr.

The steady state of this equation is

A∗b =
βAb
βAr

A∗ . (A.104)

If spontaneous degradation of the free molecules can be neglected in comparison to

binding, it follows that βA = βAb and the cells read out the flux βAA. In this scenario,

the expander could be a co-receptor that controls the binding rate and thus the effective

degradation rate in a size-dependent manner. The downstream targets would scale with

a constant amplitude.

A.7.4. On knockout experiments in scalable Turing systems

In Chapter 3, we presented a simple mechanism that couples a classical Turing system

including two molecules of concentration A and B to the dynamics of an additional

expander molecule. Here, we will show that knockout of A or B (for example by RNAi

feedings) can yield misleading results.

If the production of the activator is blocked, one observes that both concentrations fade

away, see Fig. A.6(a). Thus, one would correctly conclude that A activates B. Yet,

after removing the inhibitor from the system, both concentrations decrease as well. In

particular, A is vanishing after an initial increase because of the indirect effect via E.

In consequence one would conclude that B is activating A, despite its direct inhibiting

effect within the Turing feedback loop.

In the case of the flatworms, the Wnt/β-catenin system has an instructive role for tail

identity. RNAi experiments indicate that respective pathway components are expressed

in the tail and have a positive effect on themselves and each other. In contrast, the

inhibitors of this system reside in the head. This is not in agreement with any of the

two most simple Turing systems based on two key players. Fig. 1.10 illustrates that we

would expect either additional inhibiting effects of molecules that are expressed in the

same region or additional activating effects of molecules that are expressed on opposite

ends of worm. Including an expander feedback could solve this problem, as shown in
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A. REACTION-DIFFUSION SYSTEMS: FIXED POINTS & SCALING

Fig. A.6(b). A Turing system of the first type, with both Turing molecules expressed in

the same region, might appear like a mutually enhancing feedback during gene knock-

out. A Turing system of the second type, with both Turing molecules expressed on

opposite ends, might appear like a mutually suppressing feedback.

Monitoring the dynamics of the concentrations upon RNAi feeding over time is more

informative than endpoint assays, see Fig. A.6(a). After knockout of the inhibitor, the

activator first expands before the pattern vanishes, hinting at the suppressive effect of

B.
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Figure A.6.: (a) The scalable Turing system discussed in Chapter 3 can appear like

a mutually activating feedback loop in knockout experiments of A and B (dashed lines

are the initial steady states, fading of colors denote the time evolution). Parameters

like in Chapter 3: DB/DA = 30, αB/αA = 4, βB/βA = 2, λA/L =
√

0.1 ≈ 0.3,

λB/L =
√

1.5 ≈ 1.2, h = 5. (b) Examples of the two possible Turing topologies

plus an appropriate expander feedback and the interpretation of knockouts of the two

Turing molecules. The results compare to experimental observations with respect to

the Wnt/β-catenin system in flatworms.
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B. On the numerical solution

of reaction-diffusion equations

B.1. Euler method and Courant criterion

A reaction-diffusion equation of type

∂tC(t, x) = −β C(x, t) +D∂2
xC(t, x) (B.1)

describes diffusion and linear degradation of a chemical species of concentration C in a

one-dimensional domain. It can be solved numerically by discretizing time and space

and using the Euler method as the most simple approach (163). The concentration Ci

at position i at time t+ ∆t is then given by

Ci(t+ ∆t) = Ci(t)− β Ci(t) ∆t+
D∆t

∆x2

(
Ci+1(t)− 2Ci(t) + Ci−1(t)

)
. (B.2)

In order for the Euler update to be numerically stable and not to violate causality, the

following Courant-Lévy-Friedrich criterion has to be fulfilled (163)

∆t <
2∆x2

4D + β∆x2
. (B.3)

In this thesis, we often analyze systems of several coupled reaction-diffusion equations.

At least one of which usually contains a very fast diffusing chemical species, like the

inhibitor in the Turing system or the expander in Chapter 2 and 2. Usually 4Df �

β∆x2 with Df of the fastest diffusing species and β of any species. Thus, ∆t <

∆x2/(2Df ) has to be chosen to be very small. Note that ∆x is bounded from above

especially by the non-homogeneity of the slowest diffusing species. Yet, the time scale

of relaxation to the steady state is determined by the reaction rates β. The number of

iterations to reach the steady state is at the order of O
[
1/(β∆t)

]
= O

[
2Df/(β∆x2)

]
,

which is very large as stated above.
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B.2 Algorithmic speed-up using convolution with Gauss kernel

B.2. Algorithmic speed-up using convolution with Gauss kernel

If diffusion of one or several species is fast in comparison to the other processes of

the system, we can apply a separation of time scales to avoid long simulation times.

During one rather large time step of the Euler scheme that would violate the Courant

criterion due to the fast diffusion but is still in agreement with the other slow processes,

we account for the fast diffusion by using the analytical solution of the pure diffusion

equation

∂tC(t, x) = D∂2
xC(x, t) . (B.4)

A Fourier transform yields

∂tC̃(t, s) = −(2πs)2DC̃(t, s) (B.5)

with the solution

C̃(t, s) = C̃0(s) e−(2πs)2Dt (B.6)

in Fourier space. The back-transform yields an integral with a Gauss kernel

C(t, x) =

∫ ∞
−∞

ds C̃(t, s) e2iπxs

=

∫ ∞
−∞

ds

∫ ∞
−∞

dy C0(y) e−2iπys e−(2πs)2Dt e2iπxs

=

∫ ∞
−∞

dy C0(y)

∫ ∞
−∞

ds e
−4π2Dt

(
s+

i(y−x)

4π2Dt

)2

e
−(y−x)2

4Dt

=

∫ ∞
−∞

dy C0(y) e
−(y−x)2

4Dt
1√

4πDt
. (B.7)

This solution can be used to describe the propagation within one time step of the Euler

scheme.

The solution has to be computed in discrete spatial coordinates. It can be written as

C(t+ ∆t, x) =
∑
j

∫ yj+∆y/2

yj−∆y/2
dy C(t, y) e

−(y−x)2

4D∆t
1√

4πD∆t
. (B.8)

We define Cj(t) as the average of C(t, y) in the interval [yj −∆y/2, yj + ∆y/2]. If ∆y

is sufficiently small, such that C(t, y) ≈ Cj(t) (i.e. approximately homogeneous) in the

interval [yj −∆y/2, yj + ∆y/2], we find

C(t+ ∆t, x) ≈
∑
j

Cj(t)

2

(
Erf

[
(yj + ∆y/2)− x√

4D∆t

]
− Erf

[
(yj −∆y/2)− x√

4D∆t

])
, (B.9)
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EQUATIONS

including the error function Erf[z] = 2√
π

∫ z
0 e
−ξ2

dξ. In order to obtain the discretized

concentration at the next time point, we compute the average

Ci(t+ ∆t) =
1

∆x

∫ xi+∆x/2

xi−∆x/2
dxC(t+ ∆t, x)

≈
∑
j

Cj(t)

2

(
(i− j + 1) Erf

[
(i− j + 1)∆x√

4D∆t

]
(B.10)

−2(i− j) Erf

[
(i− j)∆x√

4D∆t

]
+ (i− j − 1) Erf

[
(i− j − 1)∆x√

4D∆t

]

+

√
4D∆t

∆x
√
π

(
e
−(i−j+1)2∆x2

4D∆t − 2e
−(i−j)2∆x2

4D∆t + e
−(i−j−1)2∆x2

4D∆t

))
.

Here, we set ∆x = ∆y and identified xi−yj = (i−j)∆x. Note that this approximation

is well justified for small ∆x, in particular ∆x <
√

4D∆t. Next, we demonstrate that

for ∆x �
√

4D∆t the result is not in agreement with Eq. B.4. We can substitute

k = i− j and ∆r = ∆x/
√

4D∆t.

Ci(t+ ∆t) ≈
∑
k

Ci−k(t)

2

(
(k + 1) Erf

[
(k + 1)∆r

]
+ (k − 1) Erf

[
(k − 1)∆r

]

−2kErf
[
k∆r

]
+
e−(k+1)2∆r2 − 2e−k

2∆r2
+ e−(k−1)2∆r2

∆r
√
π

)

=
Ci(t)

2

(
2 Erf

[
∆r
]

+
2 e−∆r2 − 2

∆r
√
π

)
(B.11)

+
Ci−1(t)

2

(
2 Erf

[
2∆r

]
− 2 Erf

[
∆r
]

+
e−(2∆r)2 − 2 e−∆r2

+ 1

∆r
√
π

)

+
Ci+1(t)

2

(
2 Erf

[
2∆r

]
− 2 Erf

[
∆r
]

+
e−(2∆r)2 − 2 e−∆r2

+ 1

∆r
√
π

)

+
∑
|k|>2

Ci−k(t)

2

(
(k + 1) Erf

[
(k + 1)∆r

]
− 2kErf

[
k∆r

]
+

(k − 1) Erf
[
(k − 1)∆r

]
+
e−(k+1)2∆r2 − 2e−k

2∆r2
+ e−(k−1)2∆r2

∆r
√
π

)

The Taylor expansion of the error function is given by

Erf[1/x] = sign[x]− e−x2

(
x√
π

+O[x3]

)
. (B.12)
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Thus, we obtain

Ci(t+ ∆t) ≈ Ci(t) +
Ci+1(t)− 2Ci(t) + Ci−1(t)

2
√
π∆r

= Ci(t) +

√
D∆t√
π∆x

(
Ci+1(t)− 2Ci(t) + Ci−1(t)

)
= Ci(t) +

Deff∆t

∆x2

(
Ci+1(t)− 2Ci(t) + Ci−1(t)

)
, (B.13)

with Deff =
√
D/(π∆t)∆x. Even though the result looks similar to Eq. B.2 of the

Euler method, the diffusion appears to be effectively faster than D. As we consider the

limit ∆x�
√

4D∆t, it follows that(√
4D∆t

∆x

)2

<

√
4D∆t

∆x

D∆t

∆x2
<

√
D∆t

2∆x
<

√
D∆t√
π∆x

D <

√
D

π∆t
∆x = DEff . (B.14)

The effectively faster diffusion comes from the fact that the concentration within each

interval [yj −∆y/2, yj + ∆y/2] becomes equally distributed instantaneously by setting

C(t, y) = Cj(t).

In order to avoid this numerical effect, ∆x <
√

4D∆t is required. In a system with a

slow and a fast diffusion species (Ds � Df ) which combines the Euler method with a

Gauss kernel, two conditions have to be fulfilled:

∆x2

4Df
< ∆t <

2∆x2

4Ds + βs∆x2
. (B.15)
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C. Worm handling and

measurements of size and shape

C.1. Worm handling

If not specified otherwise, we use a clonal line of an asexual strain of Schmidtea mediter-

ranea (28, 185). Worms were maintained at 20◦C as described in (35). Other flatworm

species were taken from the flatworm collection established by the lab of Jochen Rink

(CBG, Dresden).

Large worms kept in isolation increasingly tend to fission, while social crowding is

known to reduce fissioning rates (48, 161). In order to prevent fissioning during long

term measurements but still track individual worms, we added small worm pieces in the

dishes of large worms. In long term experiments, we occasionally also added antibiotics

(ciprofloxacin, gentamicin) to ensure that the worms stay healthy during the entire

time course.

C.2. Image acquisition

Flatworms were placed one at a time into a plastic petri dish (90 mm) and filmed using

a Nikon macroscope (AZ 100M, 0.5x objective) and a Nikon camera set-up (DS-Fi1,

frame rate 3 Hz, exposure time 6 ms, total observation period 15 s, resolution 1280 x 960

pixel, conversion factor 44 pixel/mm). The movies were converted from AVI (provided

by the Nikon imaging software) to MP4 using Handbreak, reducing the bit-size by a

factor of 30 and facilitating further processing. For this purpose, we wrote a bash script

which calls HandbrakeCLI (the command line interface version) and transcodes the AVI

files using the H.264 standard for video compression and fixed optimized settings. We

carefully tested the conversion procedure to exclude distorting effects on the data. It

turns out that the worm tracking and shape analyses are even more robust if we first

transcode the files in comparison to loading the AVI files directly into the MATLAB

program.
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C.3 Extracting size and shape from worm movies

For the size measurements, we aimed to obtain movies in which the worms are mov-

ing rather straight and stretched out. This behavior corresponds to a flight response

which can be seen after the worms being have been exposed to light. After the worms

are placed in the center of the petri dish, they try to escape the illumination of the

macroscope by moving towards the slightly darker region near the rim of the dish. The

stage is adjusted such that the worms traverse the field of view and are imaged just

after an initial acceleration phase. Student helpers have been thoroughly trained at the

macroscope to strictly adhere to the fixed imaging protocol.

C.3. Extracting size and shape from worm movies

Movies were analyzed off-line using custom-made MATLAB software, see Fig. C.1. A

first shape proxy was determined from movie frames via edge detection using a canny-

filter, followed by a dilation-erosion cycle and a filling of the shape. If possible, the

shape was extracted twice for each frame – with and without background correction.

By comparing the two results, the program can reduce errors from particles touching

the worm boundary. In a subsequent refinement step, the worm perimeter was adjusted

by finding the steepest drop in intensity along directions transverse to the perimeter

proxy. This procedure together with interpolation steps allowed us to extract the worm

shape with sub-pixel accuracy,

After the perimeter was determined, we were able to compute further quantities such as

the worm area. The midline was obtained by searching for points with equal distances

to both sides of the worm boundary. Due to the large body plasticity, the measured

quantities such as worm area or length can easily vary by up to 30% during normal,

rather stretched gliding motion. It requires an extensive imaging training and a large

number of worms to extract reliable and reproducible data. Often, we analyzed several

movies per worm and experimental condition. In contrast, the analysis software works

very robustly and can cope with different noise levels and manyfold intensity variations.
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C. WORM HANDLING AND MEASUREMENTS OF SIZE AND
SHAPE

Figure C.1.: Extracting size and shape information from worm movies.
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D. Shape reconstruction

and worm bending

D.1. On the reconstruction of a closed worm outline

In order to reconstruct a worm shape from a given radial distance profile, we have to

determine the constant increment dŝ along the worm perimeter such that the outline

closes on itself. This corresponds to ∑
i

αi = 2π (D.1)

with the angle αi between two consecutive radii ρ̂i and ρ̂i+1. The angle αi is monotonously

increasing with dŝ for radially convex shapes.
∑

i αi can even be monotonously in-

creasing with dŝ if the shapes are not strictly radially convex but close to it. For a

monotonously increasing
∑

i αi, there exists one choice for dŝ such that Eq. D.1 is

fulfilled. Small variations of the radial distance profile yield similar results for dŝ.

D.2. On the reconstruction of head shapes

The head perimeter does not completely close on its own. Instead of Eq. D.1, the

following condition has to be fulfilled∑
i

αi = 2π − α0 , (D.2)

including the opening angle α0 towards the trunk. The angle α0 can be determined un-

der the assumption of an approximately symmetric head shape. For N radial distances

describing the head, we obtain

α0 = arccos(ρ̂N/2/ρ̂1) + arccos(ρ̂N/2/ρ̂N ) . (D.3)
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E. On growth and cell turnover

E.1. Signatures of aging in flatworms

Large and small worms are not only different in size but also show size-dependent

changes in system behavior, which have been previously related to characteristics of

more adult or juvenile animals, respectively (15, 18, 71, 111, 133). For this, we need

to distinguish between two different notions of “aging”. The first one refers to the

progression of the physical time since birth. Secondly, there would be physiological

aging that is determined by varying characteristics of the body such as sexual maturity

and also symptoms of decline as well as an increased mortality. Aging in the second

sense might potentially be independent of the life time of the organism and might rather

depend on its size or environmental conditions.

For sexual flatworms, it has in fact been reported that growth, metabolic rate, regene-

ration abilities and reproduction change with age (1, 86, 92, 111). Additionally, aging

has been attributed to a decreasing length of telomeres (i.e. the end regions of the

chromosomes) with each cell division. Indeed, this telomere erosion has been described

in sexual Smed and it correlates with the total life time of the worm (213). In contrast,

other features seem to rather depend on size instead of the life time. For example,

sexual flatworms develop reproductive organs when growing but also reabsorb their

germ line cells again when shrinking during starvation periods (30, 33, 140, 193).

For asexual worms, as we consider in the experiments, aging effects are even more

difficult to discuss. There is no well-defined birth and, at most, fissioning could be

considered as death and birth at the same time. Nevertheless, asexual Smed still show

size-dependent physiological changes. For example, the fissioning rate increases for

large worms (215) and precursor cells of the germ line, which still exist in asexual

flatworms, show a similar size-dependence as the germ line in sexual worms (84, 230).

Telomere erosion has also been observed in asexual Smed , yet the length is restored

during regeneration in contrast to the sexual strains (213). In this sense, physiological

aging in asexual worms might be considered to be reversible and regeneration might be

interpreted as a rejuvenation event, which also includes the renewal of many somatic
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cells during remodeling (50, 86). It is an interesting question whether the worms also

show a physiologically rejuvenation while starving (86, 91, 140).

In summary, there is some evidence that sexual worms show irreversible signatures of

aging with progression of their life time while asexual strains might be able to return

to a more juvenile state. As a sidenote, sexual worms survive longer than asexual

worms after irradiation (229), which could be due to a reduced turnover rate. One

might speculate that sexual worms rather invest in producing a germ line on the cost

of body maintenance. Such a potentially insufficient replacement of damaged cells

and the corresponding deterioration of function alongside with a higher mortality can

be considered as a hallmark of aging (158). However, most importantly, the discussion

shows how difficult it is to unambiguously characterize aging, especially as it is in general

lacking a clear definition (53). It will be left for future works to investigate whether

size-dependent changes in flatworms might be linked to aging and rejuvenation.

E.2. Additional size measurements and growth dynamics

In this section, we provide more details and additional measurements of worm sizes and

growth dynamics to back up our discussion in Section 5.2.

We define the worm area for a particular measurement as the average over the 10 frames

with the largest values. Scaling laws are fitted by a robust algorithm with bi-squared

weights. Thus, the spread of the data is assumed to correspond to the measurement

uncertainty. This circumvents the difficulties with estimating the error for each data

point from the size measurements. Fig. E.1(a) shows the scaling relation between area

and length for well-fed worms (3 days after feeding). The fit yields a scaling exponent

of 1.69± 0.01, which is slightly lower than for the starving worms in Fig. 5.3(a).

As a byproduct of the cell number measurements using histones, Albert Thommen also

determined the protein mass in the worms. Even though the measurements are not

sufficiently calibrated to obtain absolute numbers, the respective scaling laws might

still be meaningful. While the total mass per cell seems to change with worm size, the

protein content per cell appears to stay rather constant, see Fig. E.1(b). It remains to

validate this result with additional experiments and to investigate whether it could be

linked to potential lipid stores.

Oviedo et al. have counted the number of cintillo cells around the head margin (150). If

we assume an equidistant positioning of these sensory cells and approximate the head

by a semi-circle, the width of the worm head can be considered to be proportional to

the number of cintillo cells, see Fig. E.1(c). The resulting scaling law for the width
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Figure E.1.: (a) Relationship between area and length in well-fed worms. The red

curve represents the result of a robust fit in the double-logarithmic plot (inset). The

dashed line denotes the scaling of starved worms with exponent 1.8 (Imaging by Nicole

Alt under the supervision of the author, analysis by the author includes 281 measure-

ments 3 days after feeding). (b) Protein content per cell does not depend on worm

size, absolute values only approximately (measurement by Albert Thommen, analy-

sis by the author, 45 worms). (c) Scaling of the number of cintillo cells around the

head margin with worm length. Data measured by Oviedo et al. (150). (d) Feeding

response after two weeks of starvation (Imaging by Ian Smith under the supervision

of the author, analysis by the author, 20 worms).
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Figure E.2.: (a) Growth dynamics in Girardia tigrina based on measurements by

Baguñà et al. (15, 18). (b) The plot of our data for Smed corresponding to the plot

in (a) shows a similar trend for the growth rates (blue) but a different behavior for

the degrowth rates (red). (c) Growth and degrowth rates extracted from the data of

Oviedo et al. for Smed are shown as black curves (150). These curves (for starvation

and feeding twice a week) show a similar trend to our data (for starvation and feeding

once a week), yet they do not agree quantitatively.

with an exponent of 0.67± 0.03 is in agreement with our measurements of area versus

length.

Upon feeding, worms show a characteristic growth response. The immediate increase

in worm size is mainly due to stuffing as discussed in Section 5.2.2. When comparing

the feeding response after two weeks of starvation with the peak after one week of

starvation of Fig. 5.4, we see no obvious dependence on feeding history.

When being fed regularly, worms grow and degrow depending on the feeding frequency.

Baguñà et al. have determined the rates of addition and removal of cells in Girardia

tigrina for various feeding conditions (15, 18). From this data, we can back-calculate

the growth rates which they originally measured, see Fig. E.2(a). While the growth

trends are similar to our results, the degrowth rates seem not to vary with size in

contrast to our data, see Fig. E.2(b).

Oviedo et al. have obtained linearly increasing and decreasing functions of the worm

length with time during feeding and starvation, respectively (150). We can compute

growth and degrowth rates from their data sets and compare them to our measurements

in terms of worm length, see Fig. E.2(c). The linear growth behavior yields L̇/L ∝

±1/L. Thus, the absolute rates are decreasing for large worms in agreement with our

results. However, the curves do not fit our data points very well. They are shifted

downwards even though the growing worms are even fed twice a week. In particular,

the absolute values for the growth rate are smaller than for the degrowth rate, which

contradicts our observation.
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Figure E.3.: Dividing stem cells progress through four distinct cell cycle stages, which

can be identified by respective markers. DNA replication happens in S-phase and cells

divide in M-phase, while G1 and G2 are merely resting phases including check points

for error control. We discuss an experiment to measure the cell division rates by

blocking the transition from M-phase to G1 (red cross).

E.3. Measuring cell cycle times

Stem cells move through four distinct cell cycle phases, which can be characterized by

different biochemical markers: pcna (all stem cells), clumping pcna (S-phase), cycling

B (G2-phase), H3P (M-phase), see Fig. E.3. An increase of H3P marker has been

measured upon feeding (71). Under the assumption that the duration of the M-phase is

relatively constant, this can be interpreted as an increase in cell division rate. However,

one cannot extract actual rates from this measurement if one does not know the duration

of the M-phase.

Baguñà et al. have performed experiments from which they obtained cell division

rates (12, 13, 15, 18, 176, 178). They blocked the progression through M-phase us-

ing colchicine as indicated by the red cross in Fig E.3, which results in an increasing

number of cells in M-phase. Under the assumption that the M-phase has a constant

duration and cell death can be neglected, the time derivative of the number of accumu-

lating cells in M is a direct read-out of cell division rate. We plan to perform similar

experiments using the cell cycle markers discussed above which have not been available

for the previous works. In particular, we aim to reveal how the division rates depend on

size and feeding. By subtracting division rates from growth rates, we will also be able

to extract the corresponding cell loss rates. Thus, we will be able to reveal whether the

control points of cell turnover are located in the mechanisms for the addition or loss of

cells.

Furthermore, the time scale of the first response upon feeding might also hint at how the

cell division rate is controlled. It has been discussed that there might be a population

of slowly cycling cells that mainly stay in G2 to allow a fast regeneration and feeding
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response (12, 13, 139, 142, 170, 182). This represents a major investment of cellular

resources as G2 cells already have a duplicated DNA. It would also be in contrast to

the arrest in G1, typically observed for other organisms. If we were to measure a very

fast division response, it would support the hypothesis of G2 arrested cells.

E.4. Measuring cell turnover dynamics on the organism level

Here, we discuss the theoretical framework for measuring turnover dynamics on the

organismal level. It will enable us to test and compare various models with specific

assumptions on how cell division and loss rates depend on feeding and worm size.

The experimental approach relies on Histone labeling by heavy isotopes (SILAC). It

is inspired by the measurements of neurogenesis dynamics in adult humans exploiting

the known C14 concentration in the atmosphere due to nuclear bomb tests (203). First,

we present the main principles of this paper. Next, we apply the idea to flatworms

suggesting an adapted experimental protocol. Finally, we discuss details of histone

labeling.

E.4.1. Measurement of C14 reveals dynamics of neurogenesis in humans

First, we briefly review the main ideas of the work by Spalding et al. (203) and introduce

our notation. The paper describes a measurement of the turnover of hippocampal

neurons in humans. It is based on the known C14 concentration in the atmosphere due

to nuclear bomb tests, which becomes incorporated into the DNA as a label when a new

cells is made. From this, we can compute the total C14 concentration in the DNA of a

person of a particular age if we assume a particular model for the turnover dynamics.

This result can then be benchmarked using the measured C14 in dead people.

The starting point is that we have a list of several possible scenarios for how cell birth

and cell death depends on each other as well as on the age of the cells and the age of

the person. For each of these scenarios, we can compute a distribution n(A, a) that

describes the number of cells of age a in a person of age A. This distribution changes

over time because of aging (left) and because of cell death (right)

∂A n(A, a) + ∂a n(A, a) = −kloss(A, a)n(A, a) , (E.1)

where kloss is the loss rate which might depend on the age of the person as well as the

age of the cell. Cell birth is considered by the boundary condition

n(A, 0) = n0(A) , (E.2)
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Figure E.4.: Schematic representation of the C14 experiment for the measurement of

turnover dynamics in human neurons (203).

where n0(A) is the influx of cells due to cell division. Cell birth might depend on the

age of the person explicitly but also implicitly by e.g. depending on the number of dying

cells at each time point.

Furthermore, as an initial condition it is assumed that a first set of cells is made in the

embryo half a year before the person is born, resulting in an initial condition

n(−0.5, a) = δ(a) . (E.3)

This includes a delta function δ (which is zero for a 6= 0), describing the fact that cells

are born with age 0.

By solving the system of Eqs. E.1 - E.3, we determine the number of cells n(A, a) of

age a for any age A of the person, given a specific model for kloss(A, a) and n0(A). In

particular, we can predict the age distribution n(Ad, a) in a person who died at age Ad.

If the person has died in year td, this tells us how many of the present cells were born

at the time point td − a before.

If the concentration Cin(t) of C14 inside the body (which could thus be incorporated in

new cells) is known at any time point, we can compute the total concentration of C14

label in the dead person by

C(td, Ad) =

∫ Ad+0.5

0

Cin(td − a)n(Ad, a)

N(Ad)
da . (E.4)

The integral sums over all cells of all ages, multiplied by the amount of label Cin at the

respective time of birth td − a.

The result is normalized by the total number of all considered cells in a dead person,

which is given by N(Ad) =
∫ Ad+0.5

0 n(Ad, a) da. The upper bound of integration reflects

the maximum age obtained by cells, which persist during the full life span of the person.

138



E.4 Measuring cell turnover dynamics on the organism level

Note that the summand of 0.5 was missing in the original publication.

The concentration Cin of C14 inside the body is estimated from the known C14 concen-

tration in the atmosphere by introducing a heuristic time lag of one year. Variations

in the time lag are claimed not to significantly change the result.

Different turnover models can be rated using the Akaike Information Criterion (AIC),

which avoids over-fitting when comparing models with a different number of parameters.

In brief, this technique calculates the likelihood that a certain model has generated the

measured data. As a more complex model with more parameters tends to fit the data

better, it introduces a simple but mathematically well-justified penalty term for the

number of parameters based on information theory.

E.4.2. Adapting the C14 technique to cell turnover in flatworms

In contrast to the neurogenesis paper, we need to consider a different label than the C14

concentration in the atmosphere for flatworms. We choose to use the SILAC protocol

(stable isotope labeling of amino acids) (32). The worms are fed with mouse liver,

in which more than 96% of the amino acid lysine is replaced by the heavy isotope

form 13C6-lysine. In consequence, the labeled lysine gets incorporated into proteins

and in particular into histones, which package the DNA in the nucleus. Histones are

believed to be only synthesized when a cell is made and to remain stable throughout

the lifetime of the cell. Thus, the fraction of labeled histones can serve as a read-out

for cell turnover.

The technique from the neurogenesis paper has to be modified due to the unknown initial

age distribution. — In flatworms, we encounter two main differences: On the positive

side, we can directly measure (and to some extent even deliberately vary) the label

content in the body Cin(t). On the negative side, we do not know an initial age

distribution analogous to Eq. E.3. In the following, we suggest experimental protocols

that resolve this problem.

Similar to Eq. E.1-E.2, we can describe the time evolution by

∂t n(t, a) + ∂a n(t, a) = −kloss(t, a)n(t, a) (E.5)

n(t, 0) = n0(t) . (E.6)

This set of equations can be solved analytically

n(t, a) = n0(t− a) exp

(
−
∫ a

0
kloss(t− a+ a′, a′) da′

)
. (E.7)
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The number of cells of age a at time t is the same number that was born at time t− a,

but reduced by all the death events in between, described by the exponential term with

the integral over the cell death time course. If we knew or were able to model all the

cell birth and death processes for all times in the past, this solution would give us the

full age distribution at time t. Alternatively, one could only consider birth and death

rates starting from a particular time point, if one knew the initial distribution at this

time, see Eq. E.3.

Unfortunately, in flatworms we do neither know the age distribution at one initial time

point nor the full feeding and growth history, which would enable us to model n0 and

kloss. Luckily, there are two options to solve this problem, each relies on a particular

assumption.

First option: Assuming a stem cell control model. — If there is no feedback from

kloss(t, a) or n(t, a) on cell birth n0(t) (i.e. mainly negligible apoptosis-induced cell

division), we can determine the age distribution n(t, a) at least partially for all ages

a < t− t0, assuming the experiment (i.e. the well-controlled feeding conditions) starts

at t0. The longer we perform the experiment, the more of the distribution we can

compute. As cells do not live forever and the number of old cells decays exponentially

(see Eq. E.7), we will approximately obtain the full age distribution with time.

Second option: Assuming the system relaxes to a steady state for a reference feeding

condition. — If we provide a constant feeding condition, for which the worms neither

grow nor degrow, we might assume that the age distribution eventually relaxes to a

steady state n∗(a), which is a solution to the equation

∂a n
∗(a) = −kloss(a)n∗(a) . (E.8)

This equation can be solved for a particular choice of kloss(a) and n∗0:

n∗(a) = n∗0 e
−
∫ a
0 kloss(a

′) da′ . (E.9)

In order to obtain such a steady state, we would need to constantly provide the worms

with a small and well-controlled amount of food. Even though, theoretically it would

be the most clean approach, experimentally it is rather difficult to frequently pipette a

well-defined amount of food to each worm.

Modified second option: Assuming a quasi-steady state for a reference feeding condition.

— If worms are fed every second week, on average, they will also neither grow nor

degrow but show size oscillations with a frequency of two weeks. Importantly, the
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steady state argument can be modified for such a periodically oscillating quasi-steady

state n∗(t, a). This quasi-steady state can be used as an initial condition for other

feeding schemes in analogy to Eq. E.3.

E.4.3. Label dynamics after a single feeding event

Here, we illustrate the measurement scheme by discussing the effect of a single feeding

pulse with labeled lysine in a simplified example. The total influx of the amino acid

lysine is given by

JAF =
NAF

τF
e−t/τF , (E.10)

where NAF is the total amount of the amino acid lysine in the gut after feeding and

τF is the digestion time of the food. A certain fraction ΦAF of the lysine in the food is

assumed to be labeled by heavy isotopes.

After feeding with labeled food, the fraction ΦA of the labeled amino acid lysine in-

creases in the animal. Lysine belongs to the building blocks of histones and other

proteins, which also will become labeled by the incorporation the amino acid. As a

simple example, let us assume there are only two proteins in the body that take up

lysine: a fast turnover protein and histone. The result is qualitatively the same, inde-

pendent of the number of proteins that incorporate lysine and might be turned over

at very different rates. We define the label fraction ΦH of lysine in histones as the

ratio between all labeled lysine in histones and the total amount of lysine in histones.

Analogously, we also define the label fraction of the lysine in the fast turnover protein

ΦP .

If we furthermore assume that cell death happens stochastically and does not depend

on the age of the cell, the dynamics of ΦA are captured by

∂tΦA =
JAF
NA

(ΦAF−ΦA)+
(1− ρP )NAP

NA
(ΦP−ΦA)JP+

(1− ρH)NAH

NA
(ΦH−ΦA) klossN .

(E.11)

Here, NA denotes the total amount of lysine in the worm and (1 − ρP ) is the fraction

of lysine that can be recycled from fast turnover proteins and NAP is the amount of

lysine per protein. Analogously, (1− ρH) is the fraction of lysine that can be recycled

from histones and NAH is the amount of lysine in all the histones in a cell. The label

fraction of the amino acid only changes via recycling or feeding. Each further protein

that incorporates lysine would be represented by an analogous term.
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Figure E.5.: (a) Example dynamics for a single labeling pulse. The label fraction of a

fast turnover protein (gray) acts as an approximate read-out of the available amount of

labeled amino acid lysine (dashed green), which can be incorporated into other proteins

such as histones (red). As an example, we have chosen the fast turnover half as fast as

the label digestion and ten times as fast as the cell turnover. If digestion and the fast

turnover happen at comparable time scales, the gray and the green curves collapse.

(b) Labeling scheme: the label dynamics in the fast turnover protein corresponds to

labeled lysine in the worm, while the label incorporation in histones reflects the cell

turnover.

Similarly, the dynamics of the label fractions of the fast turnover protein and the histone

are

∂tΦP =
NAP

NP
(ΦA − ΦP ) JP (E.12)

∂tΦH =
NAH

NH
(ΦA − ΦH)n0 . (E.13)

The label fractions of lysine ΦA, the fast turnover protein ΦP and histone ΦH are

shown in Fig. E.5(a) for a single feeding pulse with labeled food. ΦA (gray) cannot be

measured directly, yet the fast turnover protein (dashed green) immediately follows and

can be used as a read-out of labeled lysine. Finally, the histones (red) also incorporate

the label on a much longer time scale given by the life times of the cells. Fig. E.5(b)

sketches the main principle of the experiment.

By combining the measured fraction of labeled fast turnover proteins with a model on

cell turnover, we can compute

ΦH =

∫ ∞
0

ΦP (t− a)n(t, a)

N(t)
da (E.14)

and compare it to the measured value of ΦH(t). Here, ΦP (t) takes over the role of

Cin(t) in Eq. E.4. Yet, in contrast to the neurogenesis paper, the concentration of label
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in the worm (which can be incorporated into histones) can be directly measured by

monitoring the label in high turnover proteins.

E.4.4. Challenges and advantages of the application to flatworms

Lacking knowledge about an initial age distribution, we have to rely on experimental

protocols and specific assumptions that eliminate a potential history-dependence. We

can tackle this problem by assuming a periodically varying quasi-steady state when

feeding every second week and maybe independently measure the respective cell birth

rate. We will be able to estimate the time scale of the relaxation to this quasi-steady

state based on the spreading of neoblast clones in irradiated worms. Once it has been

characterized, the quasi-steady state can act as the initial configuration for other feeding

schemes.

As an advantage in flatworms, we might be able to deliberately vary the time course of

the internalized label by alternating between labeled and non-labeled food. This might

help to distinguish different models for birth rate n0 and death rate kloss to a higher

resolution. Note that the more Cin(t) or ΦP (t) varies with time, the more details of

the models can be resolved. If the internal label was kept constant, almost any model

would fit the data equally well. As a second advantage, we can directly determine the

label in the body using high turnover proteins.
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(2014). Active Phase and Amplitude Fluctuations of Flagellar Beating. Physical Review

Letters, 113, 048101. 58

[119] Marcon, L. & Sharpe, J. (2012). Turing patterns in development: what about the

horse part? Current opinion in genetics & development , 22, 578–84. 16

[120] Meinhardt, H. (1982). Models of biological pattern formation. Academic Press, London.

15, 16, 18, 20, 37

[121] Meinhardt, H. (2004). Different strategies for midline formation in bilaterians. Nature

reviews. Neuroscience, 5, 502–10. 98

[122] Meinhardt, H. (2009). Models for the generation and interpretation of gradients. Cold

Spring Harbor perspectives in biology , 1, a001362. 56

[123] Michael Bate & Alfonso Martinez Arias, eds. (1993). The Development of

Drosophila Melanogaster , vol. 1. Cold Spring Harbor Laboratory Press, New York. 24

157



REFERENCES

[124] Milo, R., Jorgensen, P., Moran, U., Weber, G. & Springer, M. (2010).

BioNumbers–the database of key numbers in molecular and cell biology. Nucleic acids

research, 38, D750–3. 69, 83, 89

[125] Mocek, R. (1971). Wilhelm Roux und Hans Driesch - Zur Geschichte der Entwick-

lungsphysiologie der Tiere. Gustav Fischer, Jena. 3

[126] Montgomery, J.R. & Coward, S.J. (1974). On the minimal size of a planarian capable

of regeneration. Transactions of the American Microscopical Society , 93, 386–391. 9

[127] Morgan, T.H. (1898). Experimental studies of the regeneration of Planaria maculata.

Archiv für Entwicklungsmechanik der Organismen, 7, 364–397. 53

[128] Morgan, T.H. (1901). Regeneration. New York, The Macmillan Company; London,

Macmillan & Co., ltd. 3, 4, 8, 9, 12

[129] Morgan, T.H. (1905). ”Polarity” considered as a phenomenon of gradation of materials.

Journal of Experimental Zoology , 2, 495–506. 4, 8

[130] Morgan, T.H. (1927). Experimental embryology . Columbia University Press, New York.

22

[131] Morita, M. & Best, J.B. (1984). Effects of photoperiods and melatonin on planarian

asexual reproduction. Journal of Experimental Zoology , 231, 273–282. 11
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