
 
 

Nonlinear dynamics and fluctuations 
in biological systems 

 
 
 

Kumulative 
Habilitationsschrift 

 
im Fach 

Theoretische Physik 
 

vorgelegt 
der Fakultät Mathematik und Naturwissenschaften 

der Technischen Universität Dresden 
von 

 
Dr. rer. nat. Benjamin Friedrich 

geboren am 22.07.1979 in Rostock 
eingereicht am 30.05.2016 

 
 
 

Technische Universität Dresden 
 

 
 
 
 
 
 

Die Habilitationsschrift wurde in der Zeit von Oktober 2011 bis Mai 2016 
am Max-Planck-Institut für die Physik komplexer Systeme in Dresden angefertigt. 

  



2 
 

 



3 
 

Table of Contents 
 
1 Introduction ................................................................................................................................... 11 

1.1 Overview of the thesis ........................................................................................................... 11 

1.2 What is biological physics? ................................................................................................... 13 

1.3 Nonlinear dynamics and control ........................................................................................... 15 

1.3.1 Mechanisms of cell motility .......................................................................................... 17 

1.3.2 Self-organized pattern formation in cells and tissues.................................................... 29 

1.4 Fluctuations and biological robustness ................................................................................. 35 

1.4.1 Sources of fluctuations in biological systems ............................................................... 35 

1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators ........................ 37 

1.4.3 Cellular navigation strategies reveal adaptation to noise .............................................. 40 

2 Selected publications: Cell motility and motility control ............................................................. 57 

2.1 “Flagellar synchronization independent of hydrodynamic interactions” .............................. 57 

2.2 “Cell body rocking is a dominant mechanism for flagellar synchronization” ...................... 58 

2.3 “Active phase and amplitude fluctuations of the flagellar beat” ........................................... 59 

2.4 “Sperm navigation in 3D chemoattractant landscapes” ........................................................ 60 

3 Selected publications: Self-organized pattern formation in cells and tissues ............................... 61 

3.1 “Sarcomeric pattern formation by actin cluster coalescence” ............................................... 61 

3.2 “Scaling and regeneration of self-organized patterns” .......................................................... 62 

4 Contribution of the author in collaborative publications .............................................................. 63 

5 Eidesstattliche Versicherung ......................................................................................................... 65 

6 Appendix: Reprints of publications .............................................................................................. 67 

 

  



4 
 

  



5 
 

Abstract 
The present habilitation thesis in theoretical biological physics addresses two central dynamical 
processes in cells and organisms: (i) active motility and motility control and (ii) self-organized pattern 
formation. The unifying theme is the nonlinear dynamics of biological function and its robustness in 
the presence of strong fluctuations, structural variations, and external perturbations.  
We theoretically investigate motility control at the cellular scale, using cilia and flagella as ideal model 
system. Cilia and flagella are highly conserved slender cell appendages that exhibit spontaneous 
bending waves. This flagellar beat represents a prime example of a chemo-mechanical oscillator, which 
is driven by the collective dynamics of molecular motors inside the flagellar axoneme. We study the 
nonlinear dynamics of flagellar swimming, steering, and synchronization, which encompasses shape 
control of the flagellar beat by chemical signals and mechanical forces. Mechanical forces can 
synchronize collections of flagella to beat at a common frequency, despite active motor noise that tends 
to randomize flagellar synchrony. In Chapter 2, we present a new physical mechanism for flagellar 
synchronization by mechanical self-stabilization that applies to free-swimming flagellated cells. This 
new mechanism is independent of direct hydrodynamic interactions between flagella. Comparison with 
experimental data provided by experimental collaboration partners in the laboratory of J. Howard (Yale, 
New Haven) confirmed our new mechanism in the model organism of the unicellular green alga 
Chlamydomonas. Further, we characterize the beating flagellum as a noisy oscillator. Using a minimal 
model of collective motor dynamics, we argue that measured non-equilibrium fluctuations of the 
flagellar beat result from stochastic motor dynamics at the molecular scale. Noise and mechanical 
coupling are antagonists for flagellar synchronization. 
In addition to the control of the flagellar beat by mechanical forces, we study the control of the flagellar 
beat by chemical signals in the context of sperm chemotaxis. We characterize a fundamental paradigm 
for navigation in external concentration gradients that relies on active swimming along helical paths. In 
this helical chemotaxis, the direction of a spatial concentration gradient becomes encoded in the phase 
of an oscillatory chemical signal. Helical chemotaxis represents a distinct gradient-sensing strategy, 
which is different from bacterial chemotaxis. Helical chemotaxis is employed, for example, by sperm 
cells from marine invertebrates with external fertilization. We present a theory of sensorimotor control, 
which combines hydrodynamic simulations of chiral flagellar swimming with a dynamic regulation of 
flagellar beat shape in response to chemical signals perceived by the cell. Our theory is compared to 
three-dimensional tracking experiments of sperm chemotaxis performed by the laboratory of U. B. 
Kaupp (CAESAR, Bonn).  
In addition to motility control, we investigate in Chapter 3 self-organized pattern formation in two 
selected biological systems at the cell and organism scale, respectively. On the cellular scale, we present 
a minimal physical mechanism for the spontaneous self-assembly of periodic cytoskeletal patterns, as 
observed in myofibrils in striated muscle cells. This minimal mechanism relies on the interplay of a 
passive coarsening process of crosslinked actin clusters and active cytoskeletal forces. This mechanism 
of cytoskeletal pattern formation exemplifies how local interactions can generate large-scale spatial 
order in active systems. 
On the organism scale, we present an extension of Turing’s framework for self-organized pattern 
formation that is capable of a proportionate scaling of steady-state patterns with system size. This new 
mechanism does not require any pre-pattering clues and can restore proportional patterns in 
regeneration scenarios. We analytically derive the hierarchy of steady-state patterns and analyze their 
stability and basins of attraction. We demonstrate that this scaling mechanism is structurally robust. 
Applications to the growth and regeneration dynamics in flatworms are discussed (experiments by J. 
Rink, MPI CBG, Dresden).  
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Zusammenfassung [Abstract in German] 
Das Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die 
nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber 
Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei 
grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) 
selbstorganisierte Musterbildung in Zellen und Organismen. 
In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien 
und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, 
in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die 
Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen 
Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren 
experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen 
neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der 
Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen 
erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-
Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen 
mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche 
auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen 
zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell 
kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte 
untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-
Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen 
Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von 
Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden 
chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend 
vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-
motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser 
Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. 
In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen 
Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die 
spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den 
Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein 
durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem 
Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine 
Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine 
neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der 
Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene 
Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser 
Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir 
bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und 
Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist 
bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen 
Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) 
diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in 
Amputations-Experimenten.  
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1  Introduction 
 

 

1.1 Overview of the thesis 

In this habilitation thesis, we present systems-level theoretical descriptions of motility control and self-
organized pattern formation in cells and tissues. The overarching theme is the nonlinear dynamics of 
biological function and its robustness in the presence of strong fluctuations, structural variations, and 
external perturbations. As examples of biological function, we focus on two central dynamical 
processes in cells and organisms: (i) active motility and motility control of motile cells and (ii) self-
organized pattern formation in cells and tissues. Cell motility and motility control is studied in the model 
system of cilia and flagella, a highly conserved motile cell appendage of eukaryotic cells1–3, which is 
regulated by chemical and mechanical cues. This flagellar control facilitates flagellar synchronization4-6 
and navigation of flagellated swimmers7–9. The second theme, pattern formation, is studied both at the 
sub-cellular scale in the context of self-organization of cytoskeletal filaments into regular myofibrillar 
patterns10, and at the organism scale. There, we present a new mechanism for the dynamic scaling of 
self-organized Turing patterns11.  

Cell motility and motility control. We study the nonlinear dynamics of the eukaryotic flagellum, a 
slender cell appendage capable of spontaneous bending waves, which propels cellular microswimmers 
and pumps fluids in the human body. The rhythmic beat of eukaryotic flagella represents a prime 
example of a chemo-mechanical biological oscillator. In publication 2.1, we study the emergent 
dynamics that arises from the interactions between several flagella. We identified a novel mechanism 
of synchronization in pairs of beating flagella, which applies to free-swimming, bi-flagellated cells. 
This synchronization mechanism relies on a closed feedback loop between flagellar dynamics and self-
motion of the cell. This novel synchronization mechanism of mechanical self-stabilization is different 
from a previous mechanism that had been widely discussed in the field. This alternative mechanism 
proposed direct hydrodynamic interactions between flagella as the primary cause of flagellar 
synchronization. We show that both mechanisms can synchronize pairs of flagella, yet the new 
mechanism is predicted to dominate in free-swimming cells.  
In publication 2.2, we extend the conceptual theoretical description of flagellar synchronization 
developed in the previous publication towards a full quantitative description of flagellar swimming and 
synchronization in the model system of a swimming unicellular alga, Chlamydomonas. For that aim, 
we combine a minimal description of flagellar beat dynamics that coarse-grains active processes inside 
the flagellum in terms of an active driving force with a full hydrodynamic treatment of cellular 
swimming. We present a one-to-one comparison between theoretical results and experimental 
measurements that have been conducted by our collaboration partners in the Howard laboratory (now 
Yale University, New Haven). Using our quantitative description, we were able to quantitatively predict 
the swimming dynamics as well as a force-velocity relation of flagellar oscillations. Of note, the 
description is free from adjustable parameters: it had been fully parameterized by one set of 
experimental data (of synchronized beating), allowing us to make quantitative predictions that we could 
test against a second, complementary set of data (of desynchronized beating). The comparison of theory 
and experiment validates the theory and highlights the predictive power of theory, which in this case 
preceded the experiments.  
In publication 2.3, we characterize the beating flagellum as a noisy oscillator. We present direct 
measurements of flagellar phase and amplitude fluctuations. These fluctuations are of active nature and 
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surpass the contribution from thermal noise by orders of magnitude. Active fluctuations are a hallmark 
of active dynamics far from thermal equilibrium. In addition to this analysis of experimental data, which 
was guided by theoretical concepts of a noisy Hopf oscillator, we provide a theory of noisy motor 
oscillations. Thereby, we are able to explain the observed active fluctuations as the result of small-
number fluctuations in the activity of molecular motors. Specifically, we study a minimal model of 
collective dynamics of molecular motors, which gives rise to spontaneous oscillations by a dynamic 
instability, similar to the rhythmic flagellar beat. We demonstrate how small-number-fluctuations 
arising from the stochastic dynamics of individual molecular motors result in active fluctuations of 
collective motor oscillations, similar to those of the flagellar beat. Hence, using the flagellar beat as a 
model system, we demonstrate that stochastic dynamics at the molecular scale can yield to measurable 
implications for mesoscopic dynamics at the cellular scale. We show that flagellar amplitude 
fluctuations introduce stochasticity in the swimming paths of flagellated swimmers such as sperm cells. 
Phase fluctuations disturb flagellar synchronization, which implies a competition between active 
fluctuations and any mechanical coupling that tends to stabilize flagellar synchrony. 
In publication 2.4, we address the control of flagellar motility by chemical signals. We characterize a 
chemotaxis strategy along helical paths, which is employed by sperm cells to find the egg, e.g. in marine 
invertebrates with external fertilization. There, sperm cells are able to sense signaling molecules 
released by the egg and to steer their swimming paths upwards a concentration gradient of these 
molecules. We previously postulated a generic mechanism for helical chemotaxis that relies on a closed 
feedback loop of sensorimotor control, linking temporal chemical signals and flagellar steering 
responses. This helical chemotaxis represents a distinct gradient-sensing strategy that is different from 
the well-studied chemotaxis of bacteria along biased random walks. Recently, a close theory-
experiment collaboration with the experimental laboratory of Prof. Kaupp (CAESAR, Bonn, Germany), 
allowed the validation of our theory on a quantitative level. In publication 2.4, we present the results of 
this theory-experiment collaboration, including a comprehensive theoretical description of flagellar 
swimming and steering. In particular, our theory accounts for the hydrodynamics of flagellar swimming 
for a flagellar beat whose shape is dynamically regulated by a cellular signaling cascade. This theory, 
which encompasses only a small set of dynamic rules, can quantitatively account for apparently 
complex steering behaviors of sperm cells as observed in experiments. This includes dynamic decision 
making of sperm cells between two distinct steering modes in a situation-specific manner.  

Self-organized pattern formation in cells and tissues. In addition to motility control, we study pattern 
formation at the cell and organism level as a second example of nonlinear dynamics in biological 
systems. 
In publication 3.1, we address the self-assembly process of a complex motor-filament system, the 
myofibril, which is the key force generator in striated and cardiac muscle cells. We present a minimal 
mechanism by which actin filaments and bipolar myosin filaments inside a one-dimensional bundle 
self-organize into periodic spatial patterns, similar to those found in myofibrils. This minimal 
mechanism demonstrates that local interactions between micrometer-sized ‘active building blocks’ are 
capable of generating spatial order on large scales. We discuss how the polydispersity of filament 
lengths and the stochasticity of kinetic interactions impacts on the regularity of the emergent periodic 
patterns.  
In publication 3.2, we study pattern formation at the organism scale. We account for a remarkable 
biological phenomenon, the spontaneous emergence of self-organized patterns that scale with organism 
size. We present a minimal model for perfect pattern scaling of a head-tail gradient in the absence of 
pre-patterning cues. This minimal model comprises three interacting chemical species subject to a 
reaction-diffusion dynamics. We analytically derive a hierarchy of self-organized and self-scaling 
patterns. We analyze the stability of steady-state patterns, their basin of attraction, and relaxation 
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dynamics. For this, we apply the theory of dynamical systems to a pattern formation problem. Our 
theory provides a conceptual framework for pattern scaling and regeneration as observed e.g. in 
flatworms. Flatworms exhibit astonishing capabilities of reversible growth and regeneration, which are 
studied by our experimental collaboration partners in the Rink laboratory (MPI CBG, Dresden, 
Germany). Our minimal theory highlights a generic mechanism that predicts signatures of self-
organized pattern scaling that can be tested in experiments conducted by our collaboration partners. 

These selected publications exemplify our approach of complexity reduction in complex biological 
systems and the quantitative comparison of theory and experiment. In all publications, we use 
theoretical physics to understand the nonlinear dynamics of biological function and its robustness in the 
presence of non-equilibrium fluctuations. 
 

1.2 What is biological physics? 
While biology is traditionally concerned with the study of life, including the structure, development, 
and behavior of living organisms and their molecular underpinnings, physics studies fundamental 
interactions of energy and matter, and their motion in space and time. The subject of biological physics, 
living matter, constitutes a common intersection between these two natural sciences. Living matter 
displays novel physical phenomena with unconventional features, which are not commonly recognized 
in equilibrium systems. These include active motility12, non-equilibrium fluctuations13,14, adaptive 
dynamics15–17, and self-organized pattern formation18,19. Biological physics studies the physical 
principles that underlie these phenomena. On a methodological side, biological physics comprises tools 
from different fields of physics: dynamical systems theory, statistical physics, and computational 
physics, see Figure 1.  
Biological systems represent complex dynamical systems, where local interactions give rise to emergent 
dynamics on the system’s level20. As a prominent example, inside cells, interacting cytoskeletal 
filaments self-assemble into regular structures, such as stress fibers or myofibrils characterized by 
nematic and smectic order21,22. Ensembles of molecular motor proteins exhibit collective dynamics, 
which drives active cell motility. On the scale of tissues, chemical and mechanical communication 
between cells orchestrates tissue development and homeostasis. In these examples, system-scale 
dynamics arises from local interactions. The description of this emergent dynamics is the realm of 
statistical physics, yet three practical differences between the statistical physics of living and non-living 
condensed matter should be noted.  
- First, living systems are by definition out of equilibrium20. Even the maintenance of a steady-state is 
characterized by a continuous flux of energy and mass. Dynamics far from equilibrium implies that 
active fluctuations can surpass thermal fluctuations13,14.  
- Second, the number of interacting constituents in living matter are often in the range of 
N = 102 ¡ 106 , not N ¼ 6£ 1023 as in a mole of ideal gas. Examples of such constituents include 
individual cytoskeletal filaments inside an animal cell that form its cytoskeleton. The comparatively 
small number of interacting constituents implies that small-number fluctuations proportional to N 1=2 
give rise to substantial deviations from mean field dynamics.  
- Third, there is not a single division line between what defines the small scale and the large scale in a 
biological system, see Figure 1. Rather, there is a hierarchy of coarse-graining levels: from molecules 
to subcellular processes to cellular dynamics to tissues to organisms and even ecological systems, see 
Figure 1. It is the challenge of biological physics to develop appropriate effective theoretical 
descriptions for a specific coarse-graining level, which can bridge from one level to the next higher 
level23. 
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Figure 1. The toolbox of theoretical biological physics. Theoretical biological physics draws 
from different fields of physics. First, dynamical systems theory is indispensable to analyze 
effective theories of biological dynamics. Such effective theories coarse-grain dynamic 
processes at smaller scales and usually comprise effective degrees of freedom, e.g. system-
level activity states. Second, statistical physics provides the framework to derive such 
effective theories of mesoscopic dynamics from interactions at the micro-scale. Third, 
computational physics enables the analysis of theoretical descriptions of biological processes 
at different levels of detail and complexity, which are not amenable to analytical treatment 
anymore. Computational methods are further needed to analyze experimental data and to 
quantitatively compare theory and experiment. This toolbox of theoretical biological physics 
is applied to identify physical mechanisms of biological function at different coarse-graining 
levels and length scales, ranging from subcellular dynamics up to the interactions between 
organisms. In this thesis, we focus on the intermediate scale of cells and organisms. 

 
In this thesis, we employ an approach of minimality that seeks to identify those degrees of freedom of 
a biological system, which are absolutely needed to understand the physical principle behind a specific 
phenomenon, thus following the principle of Occam’s razor. It is understood that any theoretical 
description represents an idealization of nature’s complexity. We nonetheless strive for a quantitative 
comparison of theory and experiment. In fact, it is often only through the use of a theoretical description 
with a minimal number of adjustable parameters that the successful determination of parameters 
becomes feasible. The same applies to the falsifiability of a proposed physical mechanism of biological 
function. A bottom-up molecular description of biological processes is often not feasible due to the 
complexity of the system under study, as well as a result of our limited knowledge of its components 
and interactions. Even if this quantitative information were available, it is often desirable to complement 
bottom-up approaches by coarse-grained effective descriptions that highlight generic principles, one at 
a time, as studied in this thesis. We consider the crucial determinants of a theoretical description of 
biological system to be this choice of coarse-graining level and the choice of effective degrees of 
freedom, together with falsifiable assumptions on their dynamic relationships. In contrast, the actual 
mathematical framework used to formulate the theoretical description can often be chosen by practical 
considerations. Common choices include ordinary and partial differential equations, stochastic 
differential equations, finite difference equations, agent-based simulations, Markov models, Boolean 
networks, and cellular automata. Thus, the same physical idea may be cast into different specific 
mathematical formulations, which can often be considered equivalent on a conceptual level. The 
theoretical descriptions in this thesis employ stochastic nonlinear differential equations, both ordinary 
and partial, as well as agent-based simulations.  
We apply this methodological toolbox to two central dynamical processes of biological systems: (i) cell 
motility and motility control, and (ii) self-organized pattern formation inside cells and organisms. 
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Thereby, we seek to understand physical mechanisms that ensure robust biological function in the 
presence of non-equilibrium fluctuations, structural variations, and external perturbations. 
 

1.3 Nonlinear dynamics and control 
Active biological systems such as cells, tissues, and organisms continuously convert chemical energy 
into work and heat to facilitate e.g. directed motility and information processing24. Additionally, these 
systems are able to form ordered spatial patterns at the cell, tissue, and organism level by means of self-
organization20. In both cases, nonlinear feedback loops control biological dynamics. This nonlinear 
control ensures robust function in the presence of fluctuations and perturbations. In addition to external 
perturbations, internal fluctuations arising from non-equilibrium molecular processes and small-number 
fluctuations in biochemical reactions can be substantial and impact the dynamics on mesoscopic scales.  
 
Nonlinear dynamics. We can characterize biological systems in terms of mesoscopic variables. These 
variables may refer to classical biological variables such as the expression of specific genes or protein 
concentrations, as well as physical variables such as forces and fluxes, or spatial order parameters. A 
combination of positive and negative feedbacks between these mesoscopic variables gives rise to a rich 
nonlinear dynamics, whose features include excitability, bistability, and spontaneous oscillations25–28. 
These features enable responses to external stimuli and cellular decision making27,29,30.  
Excitability has been well characterized in the context of neuronal dynamics25. In publication 3.1, we 
will encounter an example of excitability in a pattern formation system. Bistability allows cells to 
dynamically switch between two cellular programs, e.g. modes of metabolic activity, in an adaptation 
to environmental conditions31. We will encounter an example of dynamic switching between two 
different steering modes in the context of chemotaxis of sperm cells in publication 2.4.  
Oscillations are paramount in biology: they are observed e.g. in cellular signaling systems. In these 
systems, closed feedback loops with a temporal delay represent a generic design paradigm for 
spontaneous oscillations32. A well-studied example of a biological oscillator is the circadian clock, 
which sets day-night rhythms of biological activity33. In the circadian clock, signaling proteins regulate 
their own concentrations in a closed feedback loop with delays, resulting in oscillations with an intrinsic 
oscillation period of about 24 h. These spontaneous oscillations become entrained to the daily rhythm 
of light exposure, providing an example of synchronization. Generally, signaling systems that harbor 
an internal oscillator can serve as a bandpass filter that actively amplifies oscillations of a sensory input 
signal at a certain frequency. An example is provided by hair cells of the inner ear that detect sound 
waves34,35. Some swimming cells process oscillatory light or chemical stimuli while navigating along 
chiral paths7,8,36,37, which we address in publication 2.4.  
Spontaneous oscillations occur also in chemo-mechanical oscillators. An important example are motile 
cilia and flagella, which represent slender cell appendages of eukaryotic (non-bacterial) cells1–3. Cilia 
and flagella exhibit self-organized regular bending waves with typical frequencies in the range of 
10¡ 100Hz. This flagellar beat pumps fluids and propels cellular swimmers in a liquid. Flagellar 
bending waves result from the collective dynamics of molecular motors inside the flagellum. A closed 
feedback loop, where elastic deformations of the flagellum control spatial profiles of motor activity 
inside the flagellum, gives rise to a dynamic instability and self-organized oscillations38,39. These 
chemo-mechanical oscillations do not depend on inertia, as motion is highly overdamped at the relevant 
length and time-scales. Instead, a combination of positive feedback and negative feedback with delay 
is sufficient to drive oscillations32. Positive feedbacks are a result of active processes and have been 
termed negative friction in the context of collective motor dynamics.   
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In addition to temporal dynamics, closed feedback loops also account for spatial patterns. Bidirectional, 
local interactions between two spatial fields A(x) and B(x) can give rise to the self-organized formation 
of spatial patterns40,41, as discussed in section 1.3.2. These spatial fields can correspond to local 
concentrations of signaling molecules, or also local mechanical stress40,42,43. In publication 3.2, we will 
present a generic mechanism for self-organized pattern formation, whose patterns adapt to system size 
by nonlinear feedback control11. 
The nonlinear dynamics of biological system facilitates adaptation to external perturbations, and robust 
function in the presence of strong fluctuations. These are discussed in the following. 
 

Adaptation. Cells and tissues can adapt to external conditions that change in time. A prototypical 
example is provided by sensory adaptation, where the sensitivity towards an extracellular stimulus is 
dynamically adjusted in response to slow changes of the stimulus base-level15,17. Sensory adaptation 
allows the detection of relative changes of a stimulus on a time-scale faster than a time-scale  of 
adaptation. For sake of illustration, we consider a minimal model of sensory adaptation that has been 
abstracted by Barkai and Leibler from the more complex signaling dynamics of the chemotactic 
response of the bacterium Escherichia coli as17 
 
  
 ¿ _p = 1¡ ps. (1) 
 
Here, a single nonlinearity, the product of the external stimulus s(t) and a dynamic sensitivity p(t), 
ensures that the system’s output a = ps is independent of the stimulus level for constant stimulus, 
s(t) = s0, yet faithfully tracks relative changes of the stimulus on time-scales faster than ¿ . We will 
employ an extension of this minimal model of sensory adaptation in a theoretical description of sperm 
chemotaxis in publication 2.4.  
In addition to the dynamic adaptation of sensitivity levels, even functional spatial structures can adapt 
to external perturbations. For example, in cells that mechanically interact with an elastic substrate, the 
spatial organization of the cytoskeleton and its rheological properties change as a function of substrate 
stiffness44,45 (see also theoretical work by the author on this topic46–48). On the tissue and organ level, 
examples of structural adaptation include the growth of muscle in response to exercise, or the thickening 
of bones in response to mechanical load49,50. Complex tissues such as the liver adapt to changes in 
metabolic load. These examples highlight the dynamic adaptation of form to function in biological 
systems. This dynamic adaptation requires a reverse feedback of functional characteristics on the 
structures that generated this function in the first place. Adaptation represents a specific case of 
information processing in biological systems. We  now  turn  to  another  instance  of  cellular  
information processing,  motility  control,  which  offers  the  unique  opportunity  to  directly  observe  
the output of cellular signaling in the form of cellular motility responses. 
 

Motility control. The control of cell motility requires closed feedback loops that link motility and 
sensory input. During chemotactic navigation of cells reviewed in section 1.4.3, external chemical 
stimuli are transduced by the cell to control the dynamics of the cytoskeleton of the cell, and thus cellular 
motility. Conversely, the active motion of a cell in a spatial field of a stimulus determines the temporal 
stimuli perceived by the cell. This general principle, by which a motile agent structures the sensory 
input it receives by its own motion has gained recent attention in the field of control theory as the 
principle of information self-structuring51. Steering responses of a cell represent a direct read-out of the 
output of the signaling cascades that control motility. Thus, cellular motility control represents a 
convenient model system to study the nonlinear dynamics of cellular information processing. 
 



17 
 

Robustness. An important aspect of dynamic feedback control in biological systems is the robustness 
of biological function to external perturbations and internal fluctuations52,53. At the mesoscopic scale of 
the cell, thermal noise, non-equilibrium fluctuations, and molecular shot noise can be substantial and 
interfere with biological function. For example, small-number fluctuations of signaling molecules 
introduce a substantial element of stochasticity into biological information processing. In section 1.4.3, 
we review three different chemotaxis strategies employed by single cells, each of which allows to detect 
extracellular concentration gradients of signaling molecules in a different way. We argue that these 
different mechanisms represent an adaptation to different levels of noise, both in motility and sensing8. 
Occasionally, fluctuations can play also a beneficial role: some cells harness noise to facilitate a 
spectrum of heterogeneous responses despite their otherwise identical setup, the most prominent 
example being the adaptive immune system54. Theoretical descriptions of biological function as pursued 
here allow to assess the reliability of control mechanisms with respect to external perturbations and 
intrinsic fluctuations. In addition to robustness with respect to intrinsic and extrinsic fluctuations, 
biological control designs often exhibit structural robustness.  
Structural robustness defines the property of a system to function reliably, even if parameters of the 
system, or even its design, are varied. Such variability can be the result of genotypic heterogeneity, or 
of external perturbations and internal fluctuations that occurred during the development of the system. 
Control mechanisms that require fine-tuning of parameters would lack structural robustness. Theoretical 
descriptions of biological function allow to delineate the parameter region of reliable function. We will 
discuss examples of parameter robustness in chapters 2 and 3 in the context of motility control and 
pattern formation, respectively. Structural robustness relates also to the very design of the control 
mechanism itself. One common design paradigm for structural robustness is redundancy, where 
important functional elements operate in duplicate. Redundancy applies for example at the level of 
proteins, where several proteins often perform similar functions, and can partly substitute for one 
another, if one protein were absent. Similar, complex signaling networks often have redundant network 
topologies that can compensate for the failure of individual signaling links. Another design paradigm 
ensuring structural robustness are control mechanisms that depend only on qualitative features of 
functional relations between state variables (e.g. monotonic dependence of one variable on another) as 
compared to strict quantitative relations (e.g. linear dependence). In publication 3.2, we will explicitly 
discuss a generic pattern forming system that scales self-organized patterns proportional to system size, 
whenever a number of qualitative conditions are met11. 
 

In the following, we review selected aspects of nonlinear dynamics and feedback control with a focus 
on cell motility and self-organized pattern formation.  

1.3.1 Mechanisms of cell motility 
Cells employ a great variety of energy-dependent mechanisms for locomotion, including swimming, 
crawling, and twitching as discussed below55. A common feature of these different mechanisms is the 
non-equilibrium dynamics of the cytoskeleton of the cell12. Active shape changes allow motile bacteria 
and flagellated eukaryotic cells such as sperm to propel themselves in a liquid56–58. In these examples, 
molecular motors interact with cytoskeletal filaments to drive motility. Other cells such as macrophage 
immune cells crawl on a substrate by harnessing active polymerization forces of cytoskeletal filaments, 
which push their cell front forward59,60. This crawling motility requires partial adhesion to a substrate 
in order to constrain backward motion due to reaction forces. 
Directed motion requires a structural polarity of the cell. Cell polarity can be static, as in the case of 
sperm cells with a defined head-tail morphology. Static cell polarity implies that cells have to actively 
rotate during steering responses. Other cells, such as macrophages with crawling motility, display a 
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dynamic polarity, associated with a continuous remodeling of their cytoskeleton61,62. Multiple sensory 
cues including chemical and mechanical stimuli control the direction of cell motility. 
 
The molecular machinery of cell motility. We first review key components of the cytoskeleton, whose 
non-equilibrium dynamics drives the different locomotion strategies of single cells: these components 
comprise structural biopolymeric filaments and force-generating molecular motors, see Figure 2. 
Three classes of cytoskeletal filaments in eukaryotic cells. Inside cells, monomers of cytoskeletal 
proteins polymerize into filaments that constitute the cytoskeleton of the cell3,63. The cytoskeleton 
defines the mechanical properties and morphology of cells, especially in cells that lack a cell wall, such 
as animal cells. In eukaryotic cells, three classes of cytoskeletal filaments are found: actin filaments, 
microtubules, and intermediate filaments. 
- Actin filaments: Actin is the most abundant intracellular protein in the eukaryotic (non-bacterial) cell, 
constituting 1-5% of its total protein content. Actin monomers (G-actin) polymerize into semiflexible 
actin filaments (F-actin), which have a persistence length of about 10¹m 63. Actin filaments are 
structurally polar, with a designated plus-end (also named: barbed end) and minus-end (also: pointed 
end). In a typical eukaryotic cell, actin filaments form a crosslinked meshwork with gel-like properties 
that fills intracellular space. Additionally, actin filaments form a dense cortical network beneath the cell 
membrane of animal cells, the actin cortex. Turn-over of the actin cytoskeleton is fast, with a time-scale 
of 1¡ 10 s measured for the actin cortex64. 
Polymerization dynamics of actin filaments is coupled to the hydrolysis of Adenosine triphosphate 
(ATP)3,63. This renders actin polymerization a non-equilibrium phenomenon that breaks detailed 
balance. Generally, polymerization kinetics is faster at the structural plus-end of an actin filament 
compared to its minus-end. Polymerizing actin filaments can exert active polymerization forces65, 
which underlie the mechanism of crawling motility of cells59.  
The structure of the actin cytoskeleton is tightly regulated by the cell3. Specifically, the length of actin 
filaments is fine-tuned by capping proteins that cap filament ends to regulate actin polymerization 
dynamics. Severing proteins can bind at any position along an actin filament, inducing filament 
breakage at the binding position.  Actin binding proteins can crosslink and bundle actin filaments. In 
addition to these ‘passive’ actin binding proteins, actin filaments interact with molecular motors of the 
myosin family that generate active forces3. The structural polarity of actin filaments with a designated 
plus- and minus-end sets a direction of motor motion. Conventional myosin motors walk towards the 
actin plus-end. Further, actin filaments, myosin motor proteins, and actin binding proteins can assemble 
into spatially ordered structures inside cells. For example, non-motile animal cells adhered to a substrate 
can form stress fibers of bundled actin filaments, thus representing a case of nematic order. In striated 
and cardiac muscle cells, actin filaments and myosin filaments are arranged in myofibrils of almost 
crystalline regularity, thus representing an example of smectic order of the cytoskeleton22. 
- Microtubules: The second major class of cytoskeletal filaments are microtubules, which are 
polymerized out of stable dimers of the protein tubulin. Microtubules are comparatively stiff hollow 
tubes of diameter 24nm with a persistence length of about 1 mm 63. Microtubules serve as tracks for 
kinesin and dynein motor proteins and play a major role in directed intracellular transport.  
Microtubules can assemble into cell-scale ordered structures. One prominent example is the mitotic 
spindle, a bipolar cytoskeletal scaffold that serves for partitioning the two copies of the chromosomes 
to the two prospective daughter cells before cell division3. A second microtubule-based structure is the 
flagellar axoneme, which forms the cytoskeletal core of cilia and flagella. The axoneme comprises a 
cylindrical arrangement of 9 doublet microtubules, which are connected by dynein molecular motors 
(and additional proteins ensuring structural integrity)66. The collective dynamics of these motors drives 
regular bending waves of motile flagella2, see Figure 4. 
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- Intermediate filaments: As a third class, intermediate filaments represent a heterogeneous family of 
filaments that serve as structural elements, e.g. in neurons and muscle cells. Special intermediate 
filaments form the hairs and nails of animals3.  
In bacteria, cytoskeletal filaments homologous to those of eukaryotic cells are found, which play 
important roles for cell motility and cell division67.  
 

 
 

Figure 2: Elements of the cytoskeleton. A. Eukaryotic (non-bacterial) cells contain actin 
filaments and microtubules as key elements of their cytoskeleton, which defines mechanical 
properties of the cell. These biopolymers are highly dynamic and continuously undergo non-
equilibrium polymerization dynamics. Actin filaments and microtubules are structurally 
polar, with distinct polymerization dynamics at their structural plus- and minus-end, 
respectively. B. Actin filaments and microtubules serve as tracks with defined directionality 
for molecular motor proteins, such as myosin motors. Myosin motors undergo chemo-
mechanical cycles, which couple the energy-favorable hydrolysis of ATP molecules and a 
conformational change, which can generate piconewton forces and perform mechanical work. 

 
Non-equilibrium polymerization dynamics. Polymerization of cytoskeletal filaments is a non-
equilibrium process that is coupled to the hydrolysis of ATP in the case of actin filaments and GTP in 
the case of microtubules3,63. We briefly review non-equilibrium polymerization dynamics for the case 
of actin filaments63. Each actin monomer tightly binds either an ATP or ADP molecule. We thus refer 
to T-state and D-state monomers, respectively. Free monomers in the cytosol are mainly in T-state, 
while the monomers within an actin filament rapidly switch to D-state by hydrolysis of their bound 
ATP. An actin filament will elongate by polymerization at its tip, whenever the concentration of free 
monomers exceeds the critical concentration of the polymerization reaction. The critical concentrations 
for T-state and D-state monomers are different due to different values of ¢G for the respective 
polymerization reactions. For intermediate concentrations of free actin monomers, there can be net 
polymerization of T-state monomers at the structural plus-end of an actin filament, and net 
depolymerization of D-state monomers at the structural minus-end. As a result, a dynamic steady state 
can form that is characterized by net elongation at the plus-end and net shrinkage at the minus-end. 
During this actin treadmilling, actin monomers ‘flow’ through the filament. This mechanism requires 
that the rate at which new T-state monomers are added at the plus-end is faster than the rate of 
hydrolysis, such that the plus-end-tip of the filament will remain in T-form. The treadmilling of 
individual actin filaments captures essential aspects of crawling cell motility, which is driven by the 
non-equilibrium polymerization dynamics of a structurally polarized actin cytoskeleton68. In publication 
3.1, we further discuss a possible role of actin treadmilling for the formation of periodic cytoskeletal 
patterns10.  
Actin filaments and microtubules serve as tracks for molecular motors, which we review in the next 
paragraph.  
 
Molecular motors convert chemical energy into work and heat. Directed transport processes inside 
cells, cell locomotion, and contraction of muscle all rely on the activity of motor proteins at the 



20 
 

molecular scale. The common working principle of a molecular motor is a tight coupling between an 
energy-favorable chemical reaction and a conformational change of the motor protein itself. This 
conformational change can perform mechanical work (with a typical order of magnitude of 
1¡ 10 pN¹m per chemo-mechanical cycle). 
Different classes of molecular motors exist in bacterial and eukaryotic cells. In the cell membrane of 
bacteria such as Escherichia coli, a rotary motor is driven by a proton-gradient56. This rotary motor 
rotates helical filaments for cell propulsion69. In eukaryotic cells, molecular motors move along actin 
filaments and microtubules to transport cargo and generate active mechanical forces63. Important motor 
families include myosin motors, which move along actin filaments, and kinesins and dyneins, which 
move along microtubules. In their function as motor tracks, actin filaments and microtubules provide a 
periodic lattice of motor binding sites with a lattice constant of a few nanometers, which is set by the 
size of their respective monomers. The structural polarity of actin filaments and microtubules with a 
designated plus-end and minus-end defines a direction of motor motion. Most members of the kinesin 
motor family walk towards the structural plus-end of microtubules, whereas most dyneins walk towards 
the minus-end. Conventional myosin motors move towards the plus-end of microtubules. Molecular 
motors undergo periodic chemo-mechanical cycles, during which the motors bind and unbind from their 
track to take a single step, while one ATP molecule is hydrolyzed. We review this chemo-mechanical 
cycle for the example of skeletal myosin63: In the most common reaction path, a free myosin motor 
domain binds an ATP molecule, which is subsequently hydrolyzed into Adenosine diphosphate (ADP) 
and a phosphate group. The release of the reaction products constitutes the rate limit step of the ATPase 
activity of free myosin. Binding of myosin to an actin filament accelerates this release at least 200-fold. 
The release of ADP and phosphate is accompanied by a conformational change of the myosin motor 
domain, which causes a motion of the myosin backbone relative to the actin filament with a working 
distance of about 5 nm. The myosin is then ready to bind a new ATP-molecule. This triggers the 
unbinding of myosin from the actin filament to restart the cycle.   
Single molecular motors such as myosin and kinesin exert typical forces in the piconewton range. For 
example, conventional kinesin motors can exert forces up to 6 pN, while taking 8nm steps along their 
microtubule track. This corresponds to a mechanical work of 10 kBT  per step. This represents a 
considerable fraction of the difference in Gibbs free energy of ¢G = 20¡ 25 kBT  associated with the 
hydrolysis of a single ATP molecule during each step63. Kinesin is a processive motor that takes a 
sequence of steps before it detaches from its track. Such processive molecular motors exhibit effective 
force-velocity relationships70: an applied external force reduces their velocity, until their motion comes 
to a halt at a critical stall force. For conventional kinesin, the stall force is about 6 pN. 
We note that for a single molecular motor, the principle of microscopic reversibility holds:  for each 
reaction step of the chemo-mechanical cycle, both the forward and the backward reaction are possible. 
Thus, there is a finite probability that a molecular motor takes a step backwards. At physiological 
conditions, the high chemical potential of ATP breaks detailed balance of the cycle and favors forward 
motion. Backward stepping of molecular motors has been observed experimentally, especially under 
high load forces. As a side note, ATP-synthesis in mitochondria relies exactly on this microscopic 
reversibility: the F0-F1-ATPase protein complex couples a proton-driven and an ATP-driven rotary 
motor. In the presence of a strong proton gradient generated by glycolosis across the mitochondrial 
membrane, the proton-driven F0 motor spins the ATP-driven F1-motor backwards71,72. As a result, the 
F1-motor serves as a dynamo that synthesizes its own fuel in the form of high-energy ATP molecules.  
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Figure 3: Mechanisms of cell motility. A. Bacteria such as Escherichia coli propel themselves 
in a liquid by rotating a passive helical filament, the prokaryotic flagellum. The rotation of 
this prokaryotic flagellum is driven by a rotary motor in the cell membrane, which draws its 
energy from a proton gradient across the cell membrane. Some bacterial strains are multi-
flagellated with several prokaryotic flagella that can synchronize their rotations and form 
stable bundles. B. Eukaryotic (non-bacterial) cells such as sperm cells can swim in a liquid 
by virtue of regular bending waves of one or several eukaryotic flagella. Eukaryotic flagella 
are active filaments. Their bending waves emerge from the collective dynamics of a large 
number (104 ¡ 105) of molecular dynein motors distributed along the length of the eukaryotic 
flagellum. C. Eukaryotic cells, such as macrophages of the immune system, harness 
polymerization forces of numerous actin filaments to crawl on a substrate. Propagation of a 
leading front termed lamellipodium is driven by polymerization forces of a structurally 
polarized actin cytoskeleton. Additional motility mechanisms are mentioned in the text.  

 
Bacteria swim by rotating passive helical filaments. One of the best-studied examples of cell motility 
is the swimming of the bacterium Escherichia coli. This bacterium employs a rotary molecular motor 
in its cell wall to rotate a passive helical filament, termed the prokaryotic flagellum56. The prokaryotic 
flagellum is physically connected by a flexible hook to the rotor of the motor complex, which in turn 
can rotate freely inside a stator that is anchored to the cell wall. A proton gradient across the cell 
membrane drives a counter-rotation of rotor and stator73. This rotary motor has been a model system of 
biological physics, and its macro-molecular structure and mechanical function have been studied in 
great detail. The rotation of the rotary motor spins the helical filament and thereby propels the bacterium 
in a liquid69, see Figure 3. 
Bacterial motility control. Bacterial swimming represents a model system of motility control that has 
been studied extensively at the level of individual motors, of individual filaments, and at the level of 
the cell. Classic experiments revealed an operational load characteristic of the rotary motor with a 
rotation frequency that decreases with the applied load74. Such force-velocity relationships represent a 
general characteristic of molecular motors.  
The prokaryotic flagellum itself is a passive filament. It is polymerized out of a single type of monomer, 
the protein flagellin. The prokaryotic flagellum forms a tubular polymer with 11 protofilaments. The 
helical shape of this filament is the result of a cooperative conformational change of flagellin monomers 
within a defined sub-set of its protofilaments. This heterogeneous conformational switch minimizes an 
intrinsic eigenstrain of the protein lattice in the flagellum75–78. Mechanical load can induce a cooperative 
conformational switching of all flagellins in one protofilament and thus a dynamic transition of the 
entire filament to a different polymorphic helical state. Most of the 11 theoretically possible 
polymorphic states have been observed in experiments. 
In bacteria with multiple flagellar filaments, hydrodynamic interactions between rotating helical 
filaments results in the synchronization of filament rotation of the different filaments and the formation 
a stable bundle79,80. This flagellar bundling enhances propulsion efficiency. During bacterial swimming 
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and navigation, flagellar bundling is tightly controlled by an intracellular signaling pathway69. 
Specifically, chemical signals can reverse the rotation direction of one or several rotary motors, which 
destabilizes the flagellar bundle and induces a transition of one or several flagella to a different 
polymorphic state of different handedness. The net result of this transient dynamics is a random 
reorientation event of the cell. A dynamic regulation of the frequency of these stochastic reorientation 
events facilitates chemotactic navigation in chemical gradients along a ‘run-and-tumble’ biased random 
walk81. This bacterial chemotaxis strategy is discussed in more detail in section 1.4.3.  
While the bacterial flagellum is a passive filament, eukaryotic (non-bacterial) cells employ active 
filaments, termed cilia and flagella, which we discuss next. 
 
The eukaryotic flagellum is an actively bending filament. Many eukaryotic (non-bacterial) cells are 
equipped with slender cell appendages termed cilia or flagella1. Cilia and flagella perform multiple 
sensory, signaling, and motility functions82,83. We will use the term eukaryotic flagellum for both cilia 
and flagella (where the main difference between cilia and flagella are their length and minor structural 
details). The eukaryotic flagellum is not to be confused with the prokaryotic flagellum of bacterial cells. 
While the prokaryotic flagellum is a passive protein polymer, the eukaryotic flagellum is an active 
filament.  
The eukaryotic flagellum is a membrane-enclosed cell appendage of typical length 10¡100 ¹m and 
diameter of about 500 nm that contains a highly regular cytoskeletal core, the axoneme3, see Figure 4. 
The axoneme is composed out of 9 doublet microtubules in equidistant cylindrical arrangement, see 
figure 3. Additionally, a central pair of microtubules in the center of this cylinder may be present or not, 
corresponding to the sub-types of 9+2 and 9+0-axonemes. More than 250 accessory proteins ensure 
structural integrity and function of the axoneme66. The axoneme of motile eukaryotic flagella contains 
dynein motors66,84, which render the eukaryotic flagellum a mechanically active filament85.  
 

 
 

Figure 4: The eukaryotic flagellum contains a highly conserved cytoskeletal core, the 
axoneme. The axoneme comprises a cylindrical arrangement of 9 doublet microtubules, 
which are connected by dynein molecular motors. The collective dynamics of these dynein 
motors drives regular bending waves of cilia and flagella. Left: Schematic of flagellated sperm 
cell, middle: cross-section of the flagellar axoneme, right: schematic of axonemal 
architecture. Electron micrography from ref.86 with permission. 
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It is remarkable that the highly regular structure of the axoneme is found in all 5 kingdoms of eukaryotic 
life, including amoeba, plants, and animals87. This evolutionary highly conserved structure appeared 
early after the chiasm between prokaryotes (bacteria and archaea) and eukaryotes. It has been speculated 
that the axoneme evolved from the cytoskeletal cell division machinery in eukaryotic cells, the mitotic 
spindle, by means of re-dedication to a new function87. 
 
Collective motor dynamics drives flagellar bending waves. Some cilia and flagella are motile. Inside 
their axonemes, neighboring doublet microtubules are connected by dynein molecular motors66,84. The 
axoneme has a chiral architecture: dyneins are tightly bound to one doublet and exert forces on the 
neighboring doublet in clockwise sense (when viewed from the basal end of the axoneme).  
We review the mechanism of active flagellar bending by motor-induced filament sliding2,3. The activity 
of dynein motors slides neighboring doublet microtubules relative to each other88,89. Free sliding is 
partially constrained, both at the basal end of the axoneme as well as by nexin protein links distributed 
along the flagellar length. These constraints convert the shearing forces generated by the dynein motors 
into bending moments that bend the axoneme. Bending in one direction requires that motors on one 
side of the axoneme are preferentially active at a given time. Spontaneous oscillations in motor activity 
drives regular bending waves of the flagellum. The bending rigidity of the flagellum is highly 
anisotropic for many flagella90, favoring bending in a plane. This results in planar flagellar beat patterns 
in many cells, including important flagellated model swimmers such as marine invertebrate sperm or 
the green alga Chlamydomonas. A small chirality of flagellar bending waves results in helical 
swimming paths of defined handedness of these flagellated swimmers91–93, which has implications for 
cellular navigation7–9,94. 
The control of dynein activity and the emergence of oscillatory motor activity represents an instance of 
self-organized collective dynamics in an ensemble of molecular motors95. One of the most-striking 
experiments demonstrating this self-organization is the re-activation of demembranated axonemes 
isolated from flagellated cells96–98. Upon provision of ATP, these isolated axonemes resumed regular 
bending waves, independent of any cellular control circuits.  
Self-organized flagellar bending waves are the result of a closed feedback loop between the spatial 
activity profile of dynein motors inside the axoneme and geometric deformations of the axoneme, which 
gives rise to a dynamic instability99,100. Specifically, local motor activity deforms the axoneme, which 
again changes motor activity in a defined spatial range. As a result, travelling waves of motor activity 
emerge, which propagate along the flagellar length39,100–102. The shape of the resultant flagellar bending 
waves is sensitive to boundary conditions100. We have been general in refereeing to the geometric 
deformation of the axoneme on purpose. The precise nature of the control of motor activity by 
deformations of the axoneme is still open. Three major theories are discussed. In one of the earliest 
theories, Brokaw proposed that the local curvature of the axoneme constitutes the key regulator of motor 
activity99. Other authors objected that the local deformation resulting from typical curvatures are 
negligibly small on the length-scale of individual molecular motors39. Lindemann et al. proposed that 
bending of the axoneme causes splay, i.e. an increase of the inter-doublet spacing, which potentially 
could regulate motor activity102. Finally, Jülicher et al. considered a theoretical description in which the 
local sliding displacement of neighboring microtubules controls motor activity39. While the last model 
could quantitatively account for the waveform of the sperm flagellar beat, recent experiments with 
shorter flagella of the green alga Chlamydomonas challenges the sliding control model103,104. It is 
possible that control mechanisms of the flagellar beat are less conserved as previously anticipated. A 
major bottle-neck in uniquely identifying the mechanism of motor control of the beating axoneme is 
the simplicity of flagellar bending waves, which can be characterized by a small number of waveform 
parameters. Thus, different mechanisms relying on different microscopic assumptions can reproduce 
the observed waveforms equally well, provided the parameters of these models are chosen 
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appropriately. Our research presented in this thesis provides additional characterizations of the flagellar 
beat in terms of (i) an active mechano-response of the flagellar beat in response to changes in 
hydrodynamic load5 and (ii) active fluctuations of the flagellar beat due to motor noise14. We anticipate 
that such additional characterizations can contribute to the discrimination between the different 
proposed theories on the origin of the flagellar beat. 
 
Moving in fluids. Flagellar bending waves propel cellular swimmers such as sperm cells1,58, swimming 
alga105, and pathogens (e.g. Trypanosomes106, which cause sleeping sickness, and certain life cycle 
stages of Malaria parasites107). At the length and time-scales of cellular microswimmers, viscous forces 
dominate over inertial effects108–110. The relative magnitude of inertial forces compared to viscous forces 
for a swimmer with periodic shape dynamics is characterized by the dimensionless Reynolds number 
of oscillatory motion 
 

 Re =
½!0Ad

´
. (2) 

 
Here, ½ and ´ denote the density and dynamic viscosity of the fluid, respectively, while !0 and A denote 
frequency and amplitude of the periodic swimming stroke. Finally, d denotes a characteristic length-
scale of the swimmer. A low Reynolds number implies that viscous forces dominate over inertial forces 
at the relevant time and length-scales. For example, for a beating flagellum of diameter d = 0:4 ¹m, 
beat amplitude A = 5 ¹m, beat frequency !0 = 30 Hz, we estimate Re » 10¡4. Note that it is the 
diameter of the flagellum, not its length, that sets the magnitude of maximal fluid stresses111. 
In the limit of zero Reynolds number, the Navier-Stokes equation governing fluid flow simplifies to the 
linear Stokes equation,  
 
 0 = rp¡ ´r2v, (3) 
 
where p  and v  denotes pressure and flow field of the fluid. The Stokes equation is linear. Thus, its 
solutions obey a superposition principle. General solutions of the Stokes equation can be found as 
superposition of its fundamental solution, the Stokeslet vi = GijFj, which describes the flow resulting 
from a point force Fj±(r) acting on the fluid. Here, Gij(r) = (8¼´)¡1(1=r + rirj=r3) denotes the 
Oseen tensor. This superposition principle has been exploited to derive analytical results for the motion 
of minimal model swimmers, see e.g. references112–116. This superposition principles further underlies 
 efficient algorithms to solve the Stokes equation in complex geometries numerically117.  
The second general feature of the Stokes equation is its invariance under time-reversal. This time-
reversal symmetry has important functional consequences for swimming and hydrodynamic 
synchronization at low Reynolds number. Time-reversibility implies that the swimming path of a low 
Reynolds number swimmer depends only on the sequence of shapes it attains as a function of time, but 
is independent of the rate of shape change. In particular, a reciprocal swimming stroke with a backward 
stroke that traces a forward stroke exactly backwards in time will produce a periodic motion, but zero 
net displacement. This phenomenon is known under the colloquial name of the Scallop theorem108. The 
name was coined following an illustrative example of an idealized scallop presented in a popular lecture 
by Purcell: a two-leg-swimmer with a single joint that opens and closes periodically. A corollary of the 
scallop theorem is that any swimming stroke with amplitude A, where A is small compared to a size L 
of the swimmer, will result in a net swimming speed v  that scales quadratically with A, i.e. 
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 v » A2!0=L. (4) 
 
Here, !0 is the frequency of the swimming stroke. One may denote this relation the quadratic law of 
low Reynolds number propulsion115. Formally, the net swimming speed v is independent of fluid 
viscosity ´. However, this argument assumes that the swimming stroke will not be altered by an increase 
in hydrodynamic load associated with an increase in ´. In real systems, the active processes that drive 
the swimming stroke will generally display a force-velocity relationship, i.e. slow down under increased 
load. Such force-velocity relationships have been measured for beating flagella both in response to an 
increase in fluid viscosity96,118,119 as well as in response to a dynamically varying load5.  
The mathematical beauty of self-propulsion at low Reynolds numbers has attracted a continuous stream 
of theoretical studies, following an early exposition by Taylor in 19514. We briefly mention a geometric 
interpretation by Shapere and Wilczek, who identified self-propulsion at low Reynolds numbers as a 
connection of an SE(3)-fiber bundle on a space S  of admissible shapes of a swimmer120. Here, the 
special Euclidean group SE(3) denotes the Lie group of rigid body transformation in 3-dimensional 
space. Any trajectory s(t) in shape space S  lifts to a trajectory [s(t);G(t)] in this fiber bundle 
S £ SE(3). This trajectory characterizes the translational and rotational motion of a shape-changing 
low Reynolds number swimmer that is free from external forces and torques in terms of a time-
dependent rigid body transformation G(t) 2 SE(3) of a material frame of the swimmer. For periodic 
shape changes of small amplitude A, the net motion G(T )¡1G(0) after one swimming stroke of period 
T  is proportional to A2, see equation (4). The proof relies on the argument that any swimming stroke 
of infinitesimal amplitude can be written as the superposition of several reciprocal shape modes. As a 
consequence of the scallop theorem, none of these reciprocal shape modes alone can result in any net 
motion of the swimmer. However, nonlinear cross-terms between different reciprocal modes result in 
net displacement, which thus scales with A2. As an example, we note that flagellar bending waves can 
be approximately described as traveling bending waves. A traveling bending wave can be written as the 
superposition of two standing waves phase-shifted by ¼=2 by elementary trigonometry. Each standing 
wave alone would provide zero net propulsion, while their superposition allows for flagellar self-
propulsion121.  
We conclude that the time-reversal symmetry of the Stokes equation prompts non-reciprocal swimming 
strokes that explicitly break time-reversal symmetry to allow for net propulsion. Similarly, we will find 
that hydrodynamic synchronization at low Reynolds numbers is only possible if specific symmetries 
are broken110,115,122, see also section 1.4.2.  
 
Flagellated microswimmers represent a model system for motility control.  Cilia and flagella are a 
best-seller of nature. Virtually all animal cells display one or more of these slender cell appendages, 
which serve for motility and sensing1,123: non-motile primary cilia facilitate our senses of smell, vision, 
and, in some species, hearing, and gauge blood flow to regulate blood pressure. Motile cilia and flagella 
propel sperm cells, green algae, and disease-causing protists, such as Trypanosomes (responsible for 
sleeping sickness) or plasmodia (which cause malaria) in a fluid124. Sensory input controls flagellar 
beating in these microswimmers and enables them to actively steer their path in response to 
environmental cues7–9. On epithelial surfaces, carpets of short flagella termed cilia synchronize their 
beat to pump fluids, such as mucus in mammalian airways125 and cerebrospinal fluid in the brain126. 
Chiral flagellar beating plays a crucial role in the establishment of the left-right body axis during 
embryonic development127,128.  
 
Flagellar swimming, steering, and synchronization. The flagellar beat − itself a manifestation of 
microscopic dynamics of dynein motors inside the flagellar axoneme − facilitates swimming and 
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steering in flagellated microswimmers. The asymmetric shape of the flagellar beat determines the chiral 
swimming paths of these cellular swimmers. A dynamic regulation of beat shape underlies steering in 
response to chemical signals, light, and possibly temperature. Finally, speed and shape of the flagellar 
beat are susceptible to external mechanical forces. This flagellar load response is a prerequisite for the 
remarkable phenomenon of beat synchronization by mechanical coupling in collections of beating 
flagella. 
Flagellar bending waves are chiral. In sperm cells and green alga, flagellar beat patterns resemble 
planar bending waves that propagate along the flagellum, from its proximal to its distal tip1. These 
flagellar bending waves commonly display a pronounced in-plane asymmetry, characterized by a static 
mean curvature of the flagellar shape. This mean flagellar curvature K0 is a result of active processes 
inside the flagellum. Experiments with reactivated flagellar axonemes revealed that K0 depends on 
ATP concentration98. This finding is consistent with the notion that flagellar asymmetry is generated by 
static motor activity inside the flagellum. Changes in the viscosity of the surrounding fluid reduced the 
mean flagellar curvature K0 119. During chemotactic steering responses of sperm cells, an intraflagellar 
signaling cascade dynamically regulates flagellar asymmetry K0 129,130. The microscopic origin of 
flagellar beat asymmetry remains insufficiently understood. 
In addition to the static and dynamic component of flagellar curvature, the flagellum is also twisted. 
This results in non-planar beat patterns that break chiral symmetry93,131,132. Flagellar twist is small in the 
green alga Chlamydomonas, as well as the beat of the flagellar beat in sperm of many model species. 
In mouse and humans, a pronounced flagellar twist gives rise to conical flagellar waves133. Flagellar 
twist is also pronounced for cilia on epithelial surfaces, whose beat pumps fluids. These cilia move 
backward during their recovery stroke in close proximity to the surface in a highly twisted 
configuration.  
The chiral flagellar beat controls swimming and steering. Chiral flagellar beat patterns result in chiral 
swimming paths of flagellated swimmers such as circles, twisted ribbons, and helices93,119,134. These 
chiral swimming paths form the basis of dedicated sampling strategies of cellular navigation7–9, which 
are reviewed in section 1.4.3. Far from boundary surfaces, sperm from marine invertebrates swim along 
helical paths91–93. From hydrodynamic simulations, we could estimate the flagellar twist required to 
account for the observed helicity of swimming paths93. This flagellar twist is surprisingly small and 
corresponds to an out-of-plane component of the planar flagellar bending waves of less than a 
micrometer. In the vicinity of boundary surfaces, sperm cells localize close to the interface135, where 
they swim in circles with defined sense of rotation relative to the surface normal119. It has been proposed 
that the chirality of the flagellar beat contributes to this surface accumulation of sperm in addition to 
pure hydrodynamic effects136–138.  
Swimming of sperm cells along circular and helical paths represents a stereotypic form of exploratory 
motion, which forms the basis of a dedicated navigation strategy. Sperm from marine species perform 
helical chemotaxis8,93,139–142 to steer their swimming path up chemical gradients of signaling molecules 
to find the egg143,144. In the unicellular green alga Chlamydomonas, a small out-of-plane component of 
the beat of the its two flagella causes a self-rotation of the cell around its swimming axis at a frequency 
of about 2 Hz (which is much slower than the beat frequency of 50Hz)105. This slow rotation allows 
this green alga to detect directed light stimuli as cell rotation periodically exposes a light-sensitive eye 
spot to incident light. A simple steering feedback allows these cells to steer their swimming path relative 
to the direction of incident light9,94,145.  
Finally, during embryonic development, the chiral beat of flagella generates leftward flow of fluid, 
which determines the left-right-body axis in the developing embryo146. The broken chiral symmetry of 
the flagellar beat results neither from a spontaneous symmetry breaking, nor does it depend on physical 
laws that explicitly break chiral symmetry. Instead, the chiral flagellar beat is a result of the chiral 
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architecture of the flagellar axoneme131, which in turn is rooted in the chirality of the proteins it is built 
of. Chiral flagellar beat patterns represent an example of homo-chirality that propagates from the 
molecular scale all the way up to the scale of cells, tissues and organisms. 
 
Mechanical control of flagellar motility. The beating flagellum exerts active forces on the surrounding 
liquid. Conversely, external mechanical forces affect the swimming path of flagellar microswimmers. 
Additionally, external forces change the speed and shape of the flagellar beat itself. This mechanical 
control of the flagellar beat is important for flagellar mechano-taxis and flagellar synchronization in 
collections of flagella, as reviewed below.  
Interactions with flows and structures. Fluid-structure interactions control flagellated motility in a 
number of functional contexts. It had been noticed already by Rothschild that sperm cells localize near 
a glass-water interface, where sperm cells swim in a plane135. This phenomenon can be explained as a 
pure hydrodynamic effect. The chirality of the flagellar beat of sperm cells induces a thrust component 
normal to the interface that brings cells closer to the interface until a critical distance is reached, where 
short range repulsion sets in136,138. At least two additional hydrodynamic effects stabilize swimming at 
the interface. First, the leading order singularity of the time-averaged flow field generated by a 
swimming sperm is that of a pusher, with an inward flow component along the normal of the beat plane. 
This induces a hydrodynamic attraction the wall109. Second, swimming at a small  distance d  to the 
wall, which is less than the flagellar length L, effectively suppresses rotational diffusion of the cell, 
thereby prolonging residence times close to the interface137.  
A second instance of flagellar motility control by mechanical forces is the active upstream migration of 
sperm cells, termed rheotaxis147,148. In the presence of walls, local shear flows rotate swimming sperm 
like a weather van such that the vector of their net swimming direction points upstream149. It has been 
proposed that this rheotaxis serves as a sperm guidance mechanism in the mammalian oviduct, where 
post-coitus oviductal flows are sufficiently strong to align sperm148.  
As a final example of microswimmer-structure interactions, flagellated trypanosomes were found to 
swim more efficiently in the presence of obstacles, whose size matches the radius of curvature of 
flagellar bending waves150. This has been interpreted as an adaption to the crowded environment of the 
blood stream, where red blood cells represent semi-rigid obstacles. 
Active mechano-responses. Self-organized flagellar bending waves exhibit active mechano-responses 
with a flagellar wave form that depends on applied external forces. Early experiments by Brokaw have 
shown that an increase in the viscosity of the swimming medium reduces both the frequency and the 
amplitude of the flagellar beat96,118. Similar experiments using local micropipette-generated flows or 
swimming sperm in a visco-elastic fluid gave qualitatively similar results151,152. 
The flagellar beat is an emergent phenomenon of collective dynamics in an ensemble of dynein 
molecular motors working against both intra-flagellar forces and hydrodynamic friction forces, which 
result from moving the surrounding fluid. It is thus to be expected that changes in these external forces 
change the shape of the flagellar beat. The waveform compliance of the flagellar beat provides a rough 
estimate of the relative importance of intraflagellar friction forces and hydrodynamic friction forces. In 
publication 2.2, we theoretically derive a force-velocity relationship of the flagellar beat5. The 
corresponding effective theory coarse-grains active motor dynamics in the flagellar axoneme in terms 
of a phase-dependent active driving force. Our theoretical predictions are compared to a dynamic 
measurement of this force-velocity relationship in the green alga Chlamydomonas. We provide an 
analysis of experimental data that shows how the phase speed of the flagellar beat changes in response 
to rotations of the cell, which imparts known hydrodynamic friction forces on the flagellum, allowing 
us to infer how the beating flagellum responds to external fluid forces. 



28 
 

Recent experiments suggest that the ATP consumption of flagellar beating is rather insensitive to 
mechanical load153. This experimental finding resonates with a theoretical description that employs a 
fixed phase-dependent flagellar driving force to represents the active dynamics inside the axoneme that 
makes the flagellum beat. Accordingly, any increase in load is compensated by a reduction in speed, 
not an increase in fuel consumption. 
For single processive motors such as kinesin force-velocity curves have been measured in single-
molecule experiments70. Analogous measurements for non-processive axonemal dynein are not known, 
let alone their collective dynamics. Analysis of the flagellar beat under different load conditions 
provides a means to measure this force-velocity relationship.  
Flagellar synchronization. The force-velocity relationship of the flagellar beat is an essential 
prerequisite for the striking phenomenon of beat synchronization by mechanical coupling. It had been 
observed already by Gray almost 100 years ago that pairs of sperm cells swimming in close proximity 
can synchronize their flagellar beat1,154. Similarly, sperm held in vibrating micropipettes or exposed to 
oscillatory flows entrain to the frequency of external driving155,156. Flagellar synchronization plays an 
important role for the collective dynamics in ciliar carpets, for example on the surface of unicellular 
Paramecium or the epithelial surfaces of mammalian airways125. Emergent metachronal waves enable 
fast swimming and efficient fluid pumping127,157,158. It has been proposed already by Taylor in 1951 that 
a mechanical coupling between several flagella can synchronize their beat4. Obviously, such a 
mechanical coupling requires a dependence of the speed of the flagellar beat on mechanical forces. In 
publication 2.2, we could identify a mechanism of flagellar synchronization in free-swimming 
Chlamydomonas cells. The unicellular green alga Chlamydomonas swims like a breast-stroke swimmer 
with two flagella that can beat in synchrony5,159–161. Synchronized beating is important for 
Chlamydomonas to swim fast and straight5,162. Flagellar synchronization relies on a force-velocity 
relation of the flagellar beat, which we predict theoretically and characterize experimentally by 
analyzing experimental data5. 
Mutual interactions between flagellated swimmers can even give rise to dynamic pattern formation in 
collections of microswimmers. In dense suspensions of sperm cells, swimming in circles close to a 
boundary surface, sperm organized into vortices of about 5 cells each163. Inside each vortex, sperm 
flagella phase-locked their individual flagellar waves into a fixed phase-relationship. Vortices organized 
into regular hexagonal patterns, presumably due to an effective repulsion between neighboring vortices. 
 
Chemical control of flagellar motility. During flagellar swimming, the shape of the flagellar beat is 
under tight control of intracellular signaling. This chemical beat control facilitates in particular flagellar 
steering responses during chemotaxis129,130,164, phototaxis94,165, and mechanotaxis166. For example, 
sperm cells from marine invertebrates dynamically regulate the asymmetry of their flagellar beat to 
steer their path up a concentration gradient of chemoattractant129,130. The bi-flagellated green alga 
Chlamydomonas can switch from normal forward swimming to backward swimming upon exposure to 
strong, potentially harmful light stimuli7,94,165. During these photoshock responses, the asymmetry of 
the flagellar beat is greatly diminished in both flagella. In weak light conditions, a differential regulation 
of beat amplitude causes a yawing motion of the cell to facilitate phototaxis towards the direction of 
incoming light165. Mammalian sperm cells switch from travelling flagellar bending waves to a state of 
vigorous flagellar motility termed ‘hyperactivation’ during a ripening process inside the oviduct143,167.  
The intraflagellar calcium is a key regulator of the flagellar beat. Classic experiments by Brokaw in 
reactivated, demembranated axonemes have shown that an increase of calcium concentration increased 
the asymmetry of the flagellar beat in a gradual manner168. Studying the relationship of intraflagellar 
calcium and beat asymmetry in intact flagella is challenging, as methods for simultaneous manipulation 
and monitoring of calcium concentration are required. Recently, sea urchin sperm cells served as a 
versatile experimental model to address this question. Specifically, changes in intraflagellar calcium 
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were evoked by activation of the chemotactic signaling cascade. Intraflagellar calcium concentration 
can be monitored using calcium-dependent fluorescent dyes. In these experiments, the instantaneous 
curvature of sperm swimming paths has been used as a proxy for a time-dependent flagellar asymmetry. 
These dynamic measurements revealed a dynamic relationship between fluorescence signal and path 
curvature that was well approximated by a smooth time-derivative169. This finding suggests that the 
transfer function from intraflagellar calcium to beat asymmetry is a band pass filter. Such a control 
design would serve as an additional layer of sensory adaptation in the chemotactic control of the 
flagellar beat during chemotaxis8. Measurement of fluctuations of the flagellar beat in the green alga 
Chlamydomonas revealed unusually long correlation times of seconds, which is much longer than the 
chemo-mechanical cycle times of molecular motors151. It has been proposed that these slow flagellar 
fluctuations are caused by fluctuations of intraflagellar calcium concentration. 
It is not known by which molecular mechanism intraflagellar calcium regulates the shape of the flagellar 
beat. Axonemal dynein has several calcium binding domains and it is likely that calcium regulates motor 
activity170. Alternatively, it has been proposed that calcium control is indirect, mediated by calcium 
binding proteins such as calmodulin or calaxin171,172. Interestingly, in vitro motility assays with 
reactivated dynein suggests an indispensable role of calaxin for motor control172. In addition to calcium, 
the shape of the flagellar beat is also regulated by cAMP concentration and possibly pH173. 
 
Other motility mechanisms of single cells. We will only briefly mention alternative motility 
mechanisms employed by single cells. Despite their diversity, all these mechanisms rely on the non-
equilibrium dynamics of the cellular cytoskeleton in one way or the other.  
Bacterial twitching motility. Some bacteria use depolymerization forces for locomotion. For example, 
bacteria, such as Neisseria gonorrhoeae, extends passive protein filaments termed type IV pili, which 
adhere to neighboring cells or a substrate174. Active depolymerization at the cell-facing end of these pili 
generates forces of up to 100 pN, rendering type IV pili the strongest molecular machines characterized 
so far175,176. Active pili retraction pulls the cells forward at speeds v . 1 ¹m s¡1 174,177. This twitching 
motility of bacterial cells plays an important role in biofilm formation. 
Crawling motility of eukaryotic cells. Crawling motility of eukaryotic cells on a substrate depends to a 
large extent on polymerization forces. This locomotion strategy is employed e.g. by immune cells such 
as marcophages, and has been extensively studied in the model organism Dictyostelium, a slime 
mold60,178. These cells comprise a cytoskeleton of cross-linked actin filaments. Polymerization of actin 
monomers into actin filaments is a non-equilibrium process. Notably, net polymerization can occur 
even when the plus-end of the filament is pushing against an obstacle such as the cell membrane. In this 
case, each elongation of the filament by one monomer performs mechanical work65. The concerted 
action of an ensemble of polymerizing actin filaments results in a net forward propagation of the cell 
front, the lamellipodium. This crawling motility requires a self-polarization of the actin cytoskeleton 
that establishes a structural polarization of the cytoskeleton, to set the direction of motion. Signaling 
cues can bias the polarization direction, e.g. during chemotaxis of cells in external chemical 
concentration gradients61. 
After this short review of active cell motility and its dynamic control, we now turn to self-organized 
pattern formation as a second instance of spatio-temporal biological dynamics. 

1.3.2 Self-organized pattern formation in cells and tissues 
In systems far from equilibrium, such as living matter, local interactions between constituents can give 
rise to large-scale ordered patterns that represent dynamic steady states. Examples range from self-
organized pattern formation inside cells, e.g. in the cytoskeleton, to the robust development of complex 
tissues and organisms with specific spatial order adapted to their function179. In Chapter 3, we will 
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present two publications that address self-organized pattern formation at the cytoskeleton and at the 
organism level, respectively. 

Self-assembly of macro-molecular structures. Inside cells, functional marco-molecular complexes 
self-assemble from individual molecules such as interacting proteins. Self-assembly can be passive as 
for the bacterial rotary motor, where more than 20 different proteins assemble stator and rotor of the 
motor complex73,180. Self-assembly of larger structures often involves active processes. For example, 
for the assembly of the prokaryotic flagellum, an active excretion system exports flagellin monomers, 
inserting them at the proximal end of the hollow flagellum, from where the monomers diffuse to the 
assembly site at the distal end181. The axoneme of the eukaryotic flagellum contains a bidirectional 
transport system known as intra-flagellar transport182,183. Therein, kinesin motors transport cargo, 
including the proteins that built the axoneme, towards the distal tip of the axoneme, whereas mobile 
dynein motors transport cargo back towards the proximal end, resulting in a stable steady state.  
The interaction of cytoskeletal filaments and molecular motors gives rise to a variety of pattern 
formation phenomena, both in vitro and in vivo. This includes bundles of nematically aligned actin 
filaments, asters, stable swirling patterns184–186, and even ‘artificial cilia’187. A case of almost crystalline 
order of the cytoskeleton is found in myofibrils in striated muscle cells and cardiomyocytes3. Myofibrils 
are acto-myosin bundles characterized by a periodic arrangement of actin filaments of defined structural 
polarity and bipolar myosin filaments, which are organized in sarcomeric unit cells, see figure 5-C. In 
publication 3.1, we present a minimal mechanism for the self-assembly of periodic cytoskeletal patterns 
as observed in myofibrils10. This minimal mechanism relies on active force generation, such as active 
polymerization forces of treadmilling actin filaments.  
 
Pattern formation in ensembles of active particles. Self-organized dynamic patterns naturally evolve 
in suspensions of actively moving particles. Cytoskeletal filaments interacting with a large number of 
surface-bound molecular motors give rise to dynamic bundle formation and stable swirling 
patterns185,186. In dense suspensions of motile bacteria, chaotic low-Reynolds-number flows have been 
observed on a mesoscopic scale, a phenomenon termed ‘bacterial turbulence’188,189. Dense suspensions 
of swimming sperm cells at a glass-water interface can self-organize into vortex arrays with hexagonal 
order (spatial order), where additionally the sperm cells in each vortex phase-lock their flagellar 
oscillations (temporal order)163. The study of dynamic pattern formation in ensembles of active colloids 
and groups of organisms such as fish schools or bird swarms represents a sub-field of its own190–193. 
 
Pattern formation in reaction-diffusion systems far from equilibrium. A classical mechanism for 
the spontaneous formation of spatially inhomogeneous patterns are chemical reactions of diffusible 
molecules in spatially extended domains. This pattern formation requires a closed feedback loop 
between at least two reaction partners with different diffusion coefficients. Alan Turing proposed 
spontaneous pattern formation by reaction-diffusion-dynamics as a generic mechanism for the 
establishment of spatial patterns during the morphogenesis of organisms40. Recent experiments indeed 
revealed Turing mechanisms in a number of developmental processes18, including pattern formation in 
the bacterial cytoskeleton194, and the formation of digits during development195, or the formation of 
stripe patterns in zebrafish196,197.  
The generic pattern formation mechanism of Turing patterns can be paraphrased as a principle of local 
activation and long-ranged inhibition41. A positive feedback amplifies the local concentration of an 
activator, where the activator concentration exceeds a certain threshold set by the concentration of an 
inhibitor. Fast diffusion of this inhibitor results in a long-ranged inhibitory effect that sets the size of 
activation regions. This mechanism can account for both stationary and dynamic patterns. A well-
studied in vitro realization of this principle is the Beluzov-Zhabotinsky reaction, where cross-reacting 
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and diffusing chemical species give rise to travelling wave patterns and rotating spirals in the presence 
of topological defects198. Obviously, the Beluzov-Zhabotinsky reaction represents a non-equilibrium 
system. Generalization of this mechanism, where spatial fields of active stresses, strains, or fluxes play 
the role of either activator or inhibitor had been already contemplated by Turing40, with specific 
realizations proposed recently42,43. 
 
Inside cells: self-assembly of cytoskeletal patterns. Non-equilibrium dynamics in the cytoskeleton 
gives rise to the self-assembly of functional structures such as stress fibers or myofibrils on cellular 
scales. Below, we review selected examples of cytoskeletal pattern formation by local interactions 
inside cells. We will put special focus on myofibrillogenesis, i.e. the assembly of the almost crystalline 
acto-myosin bundles with sarcomeric periodicity in striated muscle cells. 
Regular patterns of the actin cytoskeleton. Actin filaments can spontaneously form spatial patterns, both 
in vitro and inside living cells. Reconstituted actin filaments form stable bundles and asters as a result 
of passive depletion and active motor forces as well as entropic effects199–202. The interaction of actin 
filaments, crosslinkers, and myosin molecular motors results in dynamic patterns, including pulsatile 
myosin foci203 and stable swirling patterns185, revealing the rich dynamics of cytoskeletal pattern 
formation far from equilibrium.  
Inside cells, actin filaments, actin-binding-proteins and myosin motors self-assemble into functional 
structures. A crosslinked meshwork of actin filaments with gel-like properties fills the intracellular 
space in animal cells and defines its rheological properties204. Myosin motors interact with actin 
filaments in a polarity-specific manner and exert microscopic force dipoles. As a result, myosin activity 
confers active contractility to the actin meshwork. We note that acto-myosin contractility is an emergent 
property of ensembles of interacting actin filaments and bipolar myosin motor filaments. A single 
myosin may either contract or expand a pair of parallel aligned actin filaments, depending on two 
possible configurations of structural polarity205,206. Specific physical mechanisms that effectively break 
the symmetry between expansion and contraction have been proposed, which result in a net compressive 
effect. These mechanisms include prolonged residence of myosin at the plus-end of actin filaments, 
filament rotation, and buckling of actin filaments under compressive load205–207. A thin and dense acto-
myosin-meshwork beneath the cell membrane of animal cells constitutes the actin cortex. This actin 
cortex sets an effective surface tension and represents a major determinant of cell shape.  
In cells that mechanically interact with an elastic substrate, actin filaments and myosin motor filaments 
form dense bundles, termed stress fibers21. These stress fibers generate contractile forces on a length-
scale of cellular dimensions. Contractile actin-bundles also form the cell division ring that constricts 
animal cells during cytokinesis, the final stage of cell division. Contractile actin bundles can even span 
across multiple cells and exert contractile forces on the tissue scale208. In the stress fibers of certain cell 
types, such as fibroblast connective tissue cells, actin-crosslinkers and myosin motors are not distributed 
homogeneously along the fiber, but display periodic patterns with alternating localization with a 
characteristic periodicity of 1¡ 2 ¹m 209. The periodic patterns in these striated stress fibers are 
reminiscent of the sarcomeric arrangement of actin-crosslinkers and myosin in myofibrils, to be 
discussed in more detail below. We speculate that similar physical mechanisms of self-organized pattern 
formation account for the self-assembly of periodic patterns both in striated stress fibers and 
myofibrils10. Maturation processes that regularize initial periodic patterns may be lacking in striated 
stress fibers.  
In summary, self-organized pattern formation of the actin cytoskeleton results in a diverse set of 
functional structures that are characterized by different types of spatial order. These include (figure 5) 
 isotropic symmetry, e.g. in crosslinked actin meshworks and the actin cortex202 
 nematic order, e.g. in stress fibers21 
 smectic order, e.g. in striated stress fibers and myofibrils with sarcomeric periodicity22.  
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Actin binding proteins. Actin filaments interact with a large number of actin-binding-proteins. Capping 
proteins regulate polymerization dynamics at the structural plus- and minus-end in a differential 
manner, and thus control filament length and treadmilling dynamics. Severing proteins such as gelsolin 
bind along the length of actin filaments and sever filaments at the binding position. Since their net rate 
of binding depends on filament length, severing represents a simple, yet effective mechanism of 
filament length control210. Crosslinking proteins promote the formation of crosslinked meshworks of 
actin filaments and the formation of actin bundles with nematically aligned filaments. Inside myofibrils, 
structural proteins such as tropomyosin decorate actin filaments for stability. Additional proteins 
provide structural support and elastic linkage inside sarcomeres. This includes the ‘giant proteins’ titin 
and nebulin, which scan span 0:5¹m in their extended configuration211. 
Regular patterns of microtubules. Microtubules interact with the actin cytoskeleton and have been 
proposed to represent tension-bearing structural elements212. During cell division, microtubules self-
assemble the mitotic spindle213, which constitutes part of the cell division machinery that distributes the 
chromosomes to the prospective daughter cells. This self-assembly process is driven by active motor 
forces and continuous turn-over of polymerizing and depolymerizing microtubules. Spindle assembly 
is orchestrated by two microtubule nucleation centers, which are located at opposite poles of the spindle. 
Each of these microtubule nucleation centers usually contains a centriole, a regular structure of triplet 
microtubules that the bears the same nine-fold symmetry as the microtubule-based axoneme of the 
eukaryotic flagellum. In fact, centrioles also serve as templates for axoneme assembly. Many cells, 
including the green alga Chlamydomonas, possess exactly two centrioles, which are used to assemble 
either a mitotic spindle during cell division, or to assemble and anchor up to two flagella. This shared 
use of centrioles implies that cell division and flagellar motility cannot occur at the same time in these 
cells214. The shared use of centrioles also point at a common evolutionary origin of the mitotic spindle 
and the flagellar axoneme87. 
 
 

 
 

Figure 5: Pattern formation in the actin cytoskeleton. A. Actin filaments form dense 
crosslinked meshworks with isotropic symmetry, e.g. in lamellipodia or the actin cortex of 
animal cells. B. Actin filaments can organize into bundles of aligned filaments, representing 
a case of nematic order, e.g. in connective tissue cells. C. Inside striated muscle cells and 
cardiomyocytes, actin and myosin filaments are arranged in myofibrils of almost crystalline 
regularity. Myofibrils are characterized by periodic patterns of sarcomere units and represent 
a case of smectic order in the cytoskeleton. Micrographs from ref.215,216 with permission. 
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Example of cytoskeletal pattern formation: Self-assembly of myofibrils. Myofibrils are the active 
force generator inside striated muscle cells and the cardiomyocytes of the heart3. Upon activation by 
calcium signals, myofibrils actively contract by the concerted activity of millions of myosin molecular 
motors inside. Myofibril contractions underlie all voluntary movements of higher animals and the 
rhythmic beat of the heart. The de novo assembly of myofibrils serves as a model system to study the 
general question how large scale patterns can emerge from local interactions in non-equilibrium 
systems. 
Myofibrils are highly regular macro-molecular structures that are characterized by a periodic repetition 
of unit cells termed sarcomeres, see Figure 5-C. Sarcomeres are composed of actin filaments, myosin 
motor filaments, and additional structural proteins. Their regular spatial organization inside myofibrils 
represents a case of cytoskeletal order with almost crystalline regularity. Myofibrils measure 
100¡1000¹m in length; their functional and structural unit, the sarcomere, displays typical lengths of 
1¡2 ¹m. The major constituents of the sarcomere are actin and myosin filaments, the latter being 
polymerized out of individual muscle-specific myosin molecular motors. The structural plus ends of the 
actin filaments are anchored in a crosslinking region termed Z-band, with the actin-binding protein α-
actinin as an important constituent. During myofibril contraction, myosin filaments slide relative to the 
actin myosin filaments towards the actin plus-end, resulting in shortening of each sarcomere. This 
generation of active forces relies on the defined structural polarity of filaments inside each sarcomere. 
In addition to the three proteins named, actin, myosin, and α-actinin, several hundred different proteins 
ensure the structural integrity and regulation of sarcomeric force generation. Interestingly, some of the 
largest known proteins are found inside myofibrils, such as the giant protein titin that spans half a 
sarcomeres length and serves as an elastic element211. Maximal force generation by myofibrils requires 
a dense and regular packing of myosin molecular motors and their actin tracks. In fact, the arrangement 
of proteins inside myofibrils are crystalline and result in distinct X-ray diffraction patterns217.  
It is an open question, how myofibrils are assembled. It has been proposed that existing myofibrils can 
grow by an epitaxy-like mechanism or serve as templates for the assembly of additional myofibrils. 
Additionally, precursor structures named premyofibrils, which already have a periodic structure, may 
be assembled first. These premyofibrils can then serve as template for mature myofibrils218,219. There is 
partial experimental evidence for the premyofibril hypothesis in at least some cell types. Yet, the 
fundamental question remains open: How do micrometer-sized building blocks such as actin filaments, 
myosin filaments, and titin assemble periodic structures, whether these are striated stress fibers, 
premyofibrils, or nascent myofibrils? It can be considered certain that giant scaffolding proteins such 
as titin and obscurin serve as a molecular templates for the assembly and structural organization of 
single sarcomeres211,220. However, it is unclear if these scaffolding proteins are involved already in the 
early establishment of periodic patterns in initially unstriated acto-myosin bundles. The proposition that 
that a periodic arrangement of titin molecules directs myofibrillogenesis would require a yet unknown 
mechanism by which titin molecules become arranged in periodic patterns first. We emphasize that the 
diffusion coefficients of large molecules such as titin or actin and myosin filaments are extremely low, 
which renders their passive sorting into periodic patterns kinetically impossible. We thus argue that 
active, force-generating processes should be required for myofibrillogenesis. This hypothesis is 
consistent with recent experimental findings that emphasize the importance of active tension for 
myofibrillar pattern formation, and the requirement for attachment to support structures, such as 
tendons, which can resist active forces221. 
Myosin motor forces are an obvious source of active force generation inside nascent myofibrils. Yet, 
these forces cannot explain self-assembly. In myofibrils, myosin filaments are localized near the 
structural minus-end of actin filaments, despite their tendency to slide towards the plus-end. We 
speculate that strong myosin forces can disrupt nascent myofibrils. Interestingly, it has indeed been 
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found that myosin force generation is up-regulated only after the initial stages of myofibril assembly. 
In some cells, myofibril precursors are assembled with non-muscle myosin filaments that generate less 
force, which are replaced by muscle-myosin only at later stages. These findings are consistent with a 
potentially destructive role of myosin forces during myofibril assembly. Different physical mechanisms 
have been proposed for the source of forces that sort actin and myosin filaments in place in nascent 
myofibrils. Zemel et al. proposed a sorting mechanism that depends on a second, hypothetical motor, 
which is minus-end directed222. This model could indeed account for the spontaneous emergence of 
periodic structures with polarity-sorted filaments. However, the involvement of such a hypothetical 
minus-end directed motor needs yet to be demonstrated. Yoshinaga et al. proposed a Turing-like 
mechanisms with a mutual coupling of fields of local active stress and actin polarity42. This generic 
mechanism predicts the emergence of periodic polarity patterns, yet its coarse-grained nature does not 
inform about underlying molecular mechanisms. In publication 3.1, we present a minimal model for the 
self-assembly of periodic cytoskeletal patterns as observed in myofibrils from local interactions 
between three constituents: actin filaments, bipolar myosin filaments, and a plus-end actin crosslinker10. 
 
Inside tissues and organisms: self-organized morphogen gradients. Inside tissues and organisms, 
concentration gradients of signaling molecules regulate growth and developmental patterning223. 
Important examples include the proteins Bmp224, Dpp225, and Wnt224, which establish concentration 
gradients along principal body axes during embryonic development. Signaling molecules that spatially 
orchestrate cell differentiation during morphogenesis are termed morphogens, a term first coined as a 
theoretical concept by Turing40. A more biological view defines morphogens as signaling molecules 
that are secreted in localized source regions and form long-ranged concentration gradients that 
determine discrete cell fates in a concentration-dependent manner223,226 (although this definition may 
disqualify some signaling molecules such as Wnt as classical morphogens227).  
In a minimal description, a morphogen is secreted at a point source located at x = 0, and diffuses with 
effective diffusion coefficient D in a spatial domain of size L, while being subject to degradation with 
degradation rate k  
 
 _c = p±(x) ¡ kc + Dr2c.  (5) 
 
Note the effective diffusion term can account also for undirected active transport, e.g. by cellular 
transport processes of endocytosis and exocytosis228, in addition to passive diffusion. Equation (5) 
implies an exponential concentration profile c(x) » exp(¡x=¸), where the pattern length-scale ¸ is set 
by a competition of diffusion and degradation 

  
 ¸ =

p
D=k . (6) 

 
Remarkably, scaling of concentration profiles with system size L, characterized by ¸ » L, has been 
observed in a number of biological systems, including the developing fly wing229–231. In the fly wing, it 
was shown that pattern scaling results from a dynamic regulation the morphogen degradation rate 
according to system sizes, k » L¡2 229. Several theoretical mechanisms for self-regulated pattern 
scaling have been proposed232–234, which still need to be experimentally confirmed.  
These theoretical mechanisms of pattern scaling are challenged in systems with regeneration 
capabilities. For example, small amputation fragments of the flatworm Schmidtea mediterranea can 
regenerate into a miniature version of the original worm with a proportional body plan proportionally 
scaled according to the size of the amputation fragments235. This re-patterning occurs within weeks. 
Additionally, flatworms can scale their body plan by a factor of 20 in length during growth and active 
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degrowth, depending on feeding conditions235. Long-range gradients of gene expression patterns of 
signaling molecules such as Wnt are known to pattern the anterior-posterior-axis in flatworms236. 
Regeneration capabilities as observed in flatworms require de-novo formation of a morphogen source 
after amputation. Mechanisms of self-organized pattern formation such as Turing mechanisms can 
account for the formation and positioning of a new morphogen source40,41. However, classical Turing 
mechanisms are characterized by fixed intrinsic pattern length-scales, which are again set by a 
competition of diffusion and degradation of patterning molecules, compare equation (6). In publication 
3.2, we present a general mechanism for self-organized pattern formation that generates spatial patterns 
that scale with system size11. This minimal mechanism displays structural robustness and can cope with 
parameter variations and fluctuations. We review different sources of fluctuations in biological systems. 
 

1.4 Fluctuations and biological robustness 
Life relies on stochastic processes237. Thermal noise enables diffusive transport and biochemical 
reactions at the molecular scale. Small-number fluctuations cause stochastic dynamics at the scale of 
cells and organisms. Even biological evolution relies on fluctuations: stochastic events during gene 
duplication generate genotypic variations. Here, we will focus on cell motility, which is driven by 
stochastic non-equilibrium dynamics of its cytoskeleton. This implies measurable active fluctuations at 
the mesoscopic scale of the cell that violate the fluctuation-dissipation theorem. A common 
phenomenological description of active fluctuations in terms of an effective temperature Te® above the 
thermodynamic temperature T  can provide a first, rough approximation only. Effective descriptions of 
noise in biological systems, which coarse-grain chaotic out-of-equilibrium dynamics at the microscopic 
scale, are researched actively13,14.  

1.4.1 Sources of fluctuations in biological systems 
Any chemical reaction between molecules requires that Brownian motion first brings the reaction 
partners into close contact. Thermal fluctuations are also required to overcome energetic barriers of the 
chemical reaction. In consequence, each reaction step is a stochastic event, which can often be described 
as a Poisson jump process238. Small-number fluctuations of chemical reactions do not necessarily 
average out at the scale of the cell. One simple reason for this is that copy numbers inside cells can be 
as low as a few tens or hundreds239. Thus, mean field description may miss important aspects of cellular 
dynamics. As an important aspect, nonlinear feedback loops can amplify small-number fluctuations, 
thereby propagating fluctuations from the molecular scale to the mesoscopic scale of the cell. For 
example, the stochastic binding of a single transcription factor to a specific DNA binding site can initiate 
the transcription of a particular gene and result in its translation into many copies of the corresponding 
protein. Such stochastic gene expression can lead to different gene expression profiles in cells of 
identical genetic setup240. Signaling systems that implement bistable switches with long hysteresis can 
amplify this effect. In fact, some bacterial colonies harness stochastic gene expression to induce 
phenotypic heterogeneity within the population, which can provide a competitive advantage in a time-
varying environment241. In addition to intracellular noise, cells are subject to external perturbations. 
These external perturbations include fluctuations in nutrient levels and physical parameters such as 
light, pH, and temperature, each of which affects the dynamical state of the cell. 
 

Thermal fluctuations. Free energy differences of biochemical reactions are commonly on the order of 
a few kBT , where the thermal energy kBT ¼ 4£ 10¡21J  at room temperature.  For example, the Gibbs 
free energy difference for the hydrolysis of a single ATP molecule equals 20¡ 25 kBT  63. Unfavorable 
reactions inside cells that result in high-energy reaction products, a local reduction of entropy, or which 
perform mechanical work, are coupled to the hydrolysis of triphosphate nucleosides such as ATP, which 
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breaks detailed balance of reaction cycles3,24,63. Such reactions include the chemo-mechanical cycles of 
molecular motors242. As a specific example, single kinesin molecular motors take directed 8nm steps 
on a microtubule per chemo-mechanical cycle, which corresponds to mechanical work of 10 kBT  at 
full 5 pN load force. Molecular motors that show on average directed motion will occasionally take a 
backward step due to thermal fluctuations.  
 

Molecular shot noise and small-number fluctuations. Inside cells or subcellular compartments, copy 
numbers of proteins are often in the range of hundreds. For example, the volume of an E. coli bacterium 
comprises just a few femto-liters, which implies that a concentration of one micro-molar corresponds 
to just a few thousand molecules. This is a typical order of magnitude for the most abundant bacterial 
proteins. Eukaryotic cells can be much larger than bacteria, yet important signaling processes are often 
spatially confined to sub-cellular regions of femto-liter volume, such as the nucleus or a flagellum. Low 
copy numbers imply substantial small-number fluctuations of chemical reactions and thus introduce 
noise in cellular signaling. Inside tissues, communication between cells is subject to the same sources 
of noise inherent to chemical reactions243. 
 

Sensory perception at the physical limit. Fluctuations are paramount in sensory perception of weak 
stimuli. Many sensory organelles can operate at the physical limit244. For example, rod photoreceptors 
in the retina of the eye can detect single photons245–247. Hair bundles in the inner ear respond to faint 
vibrations that carry an energy of only a few kBT  per oscillation cycle244. Specialized olfactory sensory 
neurons can detect single odorant molecules248, likewise sperm respond to single chemoattractant 
molecules249. Such signaling events are inherently stochastic in nature.  
In addition to this quantized nature of single molecule detection, thermal fluctuations impact on 
sensation at the physical limit: the absorption of a single photon or the binding of a single ligand 
molecule to a receptor induces a conformational change in the receptor proteins, which then activates 
down-stream signaling cascades. Thermal noise can induce the same conformational change as a 
detection event, and thus limits the precision of cellular signal detection250,251.  
 

Active motor fluctuations. Individual molecular motors progress through their mechano-chemical 
cycles in an inherently stochastic manner. Single-molecule experiments allow to detect discrete steps 
of single molecular motors and the stochastic timing of their stepping252. The collective dynamics in 
ensembles of molecular motors gives rise to active contractility, directed transport, but also to non-
equilibrium fluctuations. A hallmark of non-equilibrium fluctuations is the violation of the fluctuation-
dissipation theorem. At thermal equilibrium, the fluctuation-dissipation theorem relates the fluctuation 
spectrum hjA(!)j2i of a degree of freedom A to its response function ÂA(!), which characterizes the 
response to an external perturbation253 
 
  

 hjA(!)j2i =
2kBT

!
Im ÂA(!). (7) 

 
Violations of the fluctuation-dissipation theorem have been experimentally observed in fluctuation 
spectrum of the cell membrane of red blood cells254, fluctuations of the cytoskeleton255–257, or the hair 
bundles of auditory sensory neurons in the inner ear258. These non-equilibrium fluctuations have been 
attributed to the stochastic collective dynamics of molecular motors.  
The beat of the eukaryotic flagellum exhibits active fluctuations as well. Previous studies reported 
Fourier peaks of finite width in power spectra of flagellar dynamics, which provides a signature of phase 
fluctuations. Goldstein et al. conducted an indirect measurement of these phase fluctuations by 
examining the frequency of phase-slips in pairs of synchronized flagella160,259,260. In publication 2.3, we 
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present a method to measure phase and amplitude fluctuations of the flagellar beat directly. Specifically, 
our method maps high-precision measurements of flagellar bending waves on a generic description of 
a limit cycle oscillator with phase and amplitude noise, the normal form of a Hopf bifurcation with 
complex noise term, 
 
 _Z = i(!c ¡ !1jZj

2)Z + ¹(¤¡ jZj2)Z + (»A + i»')Z. (8) 
 
Here, Z = Aei' is a complex oscillator variable and »A and »' denote amplitude and phase noise terms, 
respectively. In publication 2.3, we further consider a minimal model of stochastic collective motor 
dynamics and show that emergent noisy motor oscillations can be likewise mapped on equation (8) of 
a noisy Hopf oscillator. 
Stochastic motor dynamics has been studied in a number of systems, ranging from stochastic 
oscillations of hair bundles of auditory sensory neurons in the inner ear34, bi-directional transport of 
actin filaments that interact with a surface coated with myosin motors in motility assays261,262, to 
oscillations in in vitro system of myosin motors and actin filaments263 and ‘artificial cilia’ consisting of 
microtubule bundles interacting with kinesin motors187. These measurements of non-equilibrium 
fluctuations in mesoscopic systems provide a way to observe signatures of the stochastic dynamics of 
molecular motors. 

1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 
Since the observation of phase-locked pendulum clocks by van Huygens, it is known that active 
oscillators can synchronize by virtue of a weak coupling, despite effects of noise or a mismatch of 
intrinsic oscillation frequencies264. In the middle of the 20th century, work on generators of radio signals, 
and phase-locked electronic oscillators in particular, motivated the development of a general theory of 
synchronization265,266. Synchronization is also observed in biological systems: examples include 
synchronization of the walking gaits of pedestrians268, coupling of the ‘segmentation clock’ genetic 
oscillators that orchestrate somatogenesis during embryonic development267, and last but not least 
synchronization in collections of beating flagella as studied in this thesis. Synchronization of oscillators 
implies the emergence of a common oscillation frequency and a fixed phase relation. We first review 
the Adler equation, a generic description for the synchronization of a pair of coupled noisy oscillators 
in the next paragraph and then turn to the synchronization in pairs of beating flagella in the remainder 
of this section.  

The stochastic Adler equation of coupled oscillators. The stochastic Adler equation provides a 
generic description for the synchronization of a pair of noisy, active oscillators. The dynamics of the 
phase difference ± = '1 ¡ '2 between the two phase oscillators with respective phases '1 and '2 can 
be idealized by265  
 
 _± = ¢! ¡ ¸ sin ± + » . (9) 
 
Here, ¢! = !1 ¡ !2 denotes the mismatch between the intrinsic frequencies of the two oscillators, ¸ 
is an effective coupling strength and »(t) denotes a Gaussian white noise term with 
h»(t)»(t0)i = 2D±(t¡ t0). The Adler equation, equation (9), captures key dynamical features of 
synchronization, which we discuss below. Many specific systems of coupled oscillators can be 
approximately mapped on the Adler equation. This includes a description of flagellar swimming and 
flagellar synchronization in free-swimming Chlamydomonas cells presented in publication 2.2. The 
dynamics given by equation (9) can be interpreted as that of an overdamped particle in a tilted periodic 
potential U(±) = ¡¢!± ¡ ¸ cos ± 269. For zero frequency mismatch, ¢! = 0, steady states of equation 
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(9) correspond to in-phase synchronization with ± = 0, and anti-phase synchronization with ± = ¼. For 
positive synchronization strength ¸ > 0, in-phase synchronization is stable, while anti-phase 
synchronization represents a meta-stable steady state, see figure 6-A,B. Noise induces stochastic phase 
slips at a frequency G = D=j2¼I0(¸=D)j2 266, where I0 denotes the modified Bessel function of the 
first kind. In case of a frequency mismatch ¢! 6= 0, the two oscillators will synchronize with a phase-
lag ±¤ = sin¡1(¢!=¸) at steady-state, provided j¢!j < j¸j. If the frequency mismatch becomes too 
large, the system undergoes a saddle-node bifurcation and no steady state exists anymore for   
j¢!j > j¸j. In this case, the dynamics is characterized by phase drift, see figure 6-D. Many analytic 
results for the stochastic Adler equation are known, see e.g. the book by Stratonovich266. 

 

 

Figure 6: Dynamic regimes of the stochastic Adler equation. The dynamics of the phase 
difference  is equivalent to the overdamped motion of a particle in a tilted periodic potential. 
A. For positive coupling strength ¸ > 0, the in-phase synchronized state is stable, while the 
state of anti-phase synchronization  is meta-stable. B. For negative synchronization strength 
¸ < 0, stability is reversed. C. In the presence of noise, d exhibits stochastic transitions 
between adjacent stable states, so-called phase slips. D. If the mismatch ¢! between the 
intrinsic frequencies of the two coupled oscillators becomes too large, no synchronization 
occurs, and the phase difference will increase monotonically, corresponding to a regime of 
phase drift. Modified from273. 

Flagellar synchronization and the Adler equation. All dynamic regimes predicted by the Adler equation 
have been observed for pairs of beating flagella, including in-phase159,160,270 and anti-phase 
synchronization271, stable phase-lags160,161, phase slips159,160,259 and phase drift5,272. Synchronization of 
beating flagella have been proposed to result from a mechanical coupling between flagella, e.g. by direct 
hydrodynamic interactions4. The symmetry of the Stokes equation, equation (3), which governs 
hydrodynamics at the cellular scale, prompts systems that explicitly break either time-reversal 
symmetry or spatial symmetries to facilitate such hydrodynamic synchronization. 

Hydrodynamic synchronization requires broken symmetries. Already in 1951, Taylor proposed that 
the remarkable phenomenon of flagellar synchronization arises from a mechanical coupling between 
flagella, such as direct hydrodynamic interactions4. Only recently was flagellar synchronization by 
direct hydrodynamic interactions unequivocally demonstrated in experiments. Using pairs of flagellated 
cells held in separate micro-pipettes at a distance, it was found that flagellar synchronized with a 
distance-dependent synchronization strength6. Synchronization by direct hydrodynamic interactions 
was additionally studied in systems of artificial actuators such as colloids driven by oscillating magnetic 
fields, or ‘light-mill’ micro-rotors driven by laser-light274–278. 
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Similar to the problem of self-propulsion at low Reynolds numbers, hydrodynamic synchronization 
requires broken symmetries to overcome the symmetries of the Stokes equation and to provide a net 
coupling between oscillators. For illustration, we consider the idealized example of two spheres 
revolving around circular trajectories. Each sphere is driven by a constant tangential force and would 
thus assume a constant angular speed d'=dt = !0 if the other sphere were absent. The motion of one 
sphere generates a long-ranged flow field whose strength decays with inverse distance. This flow field 
exerts a hydrodynamic interaction force on the second sphere, which changes the phase speed d'=dt of 
this sphere. Although, these hydrodynamic interactions indeed couple the phase dynamics of the two 
spheres, the resultant net coupling strength ¸ is zero. This can be seen from symmetry arguments122: a 
spatial mirror operation and time-reversal will both result in the same dynamics, since the Stokes 
equation is invariant under these operations. While the spatial mirror operation does not change the 
stability of any synchronized state, stability is reversed under time-reversal. We conclude that any 
synchronized state can be neither stable nor unstable, hence ¸ = 0.  
 

 
 

Figure 7: Lack of hydrodynamic synchronization in a minimal model with symmetries. A. In 
an idealized model, a beating flagellum is represented by a sphere that moves in a viscous 
fluid along a circle, being driven by a constant tangential force 112. This model is inspired by 
the observation that each point on a beating flagellum moves on a circular orbit. B. Direct 
hydrodynamic interactions between the two rotating spheres couple their motion. However, 
the net synchronization effect is zero, as a consequence of symmetries: A reflection Mx of 
the system at the x-axis is dynamically equivalent to a time-reversal T . As the time-reversal 
reverses the stability of synchronized states, while a reflection does not, we conclude that any 
synchronized states is neutrally stable112,115,122. 

 
Different physical mechanisms have been proposed for synchronization by direct hydrodynamic 
interactions, all of which break spatio-temporal symmetry in one way or the other, which we review 
now. 
 

Amplitude compliance. In a generalization of the two sphere model considered by Lenz et al., the radii 
of the circular tracks are not constant, but are considered as elastic degrees of freedom with an effective 
stiffness k  279. This amplitude compliance breaks the time-reversal symmetry of the equation of motion.  
It is found that both spheres can synchronize their motion with an effective synchronization strength 
that scales inversely with the amplitude stiffness, ¸» 1=k. 
 

Phase-dependent driving forces. Golestanian et al. proposed a different symmetry-breaking mechanism 
that relies on phase-dependent driving forces280,281. Thereby, the two sphere system is not invariant 
anymore under a spatial mirror operation, thus facilitating net synchronization.  
 

Other means to break symmetry. Additionally, Theers et al., considered the effect of small, non-zero 
Reynolds number282. The effect of unsteady acceleration at finite Reynolds numbers breaks time-
reversal symmetry and results in net synchronization with a synchronization strength ¸ » Re1=2. In the 
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original formulation of the two sphere model by Vilfan et al., a no-slip boundary close to the two spheres 
was introduced, which breaks spatial mirror symmetry112.  
 

The beat of real cilia and flagella is characterized by both phase-dependent driving forces and a finite 
compliance of the flagellar wave forms118,151. Thus, time-reversal symmetry is broken, which allows for 
flagellar synchronization by direct hydrodynamic interactions. It should be noted that the symmetry 
breaking can be weak, thus resulting in a weak synchronization strength5,156. In publication 2.1, we 
present an alternative synchronization mechanism that operates independently of direct hydrodynamic 
interactions283. Instead, this mechanism relies on a closed feedback loop between flagellar dynamics 
and swimming motion. In publication 2.2, we demonstrate that this synchronization mechanism is 
important in free-swimming Chlamydomonas cells5. Synchronized beating of its two flagella is a 
prerequisite for this cell to swim fast and straight.  
Purposeful motion further requires a control of swimming direction in response to environmental cues. 
In the next section, we review navigation mechanisms for directed motion in external concentration 
gradients. 

1.4.3 Cellular navigation strategies reveal adaptation to noise 
We review three distinct strategies employed by single cells for navigation in external concentration 
gradients8. Any cellular gradient-sensing strategies must cope with noise, such as motility fluctuations, 
or molecular shot noise of chemosensation at dilute concentrations. We argue that the three different 
chemotaxis strategies employed by single cells represent an adaptation to the respective strength of 
motility and sensing noise encountered by these cells. 
 

Physical limits to chemo-sensation. Cells constantly monitor extracellular concentrations of signaling 
molecules. This sensory input controls e.g. chemotaxis in chemical gradients or cell fate decisions 
during development. Berg and Purcell made seminal contributions to our understanding of the physical 
limits of chemosensation284. Their work was later re-derived in the framework of statistical physics by 
Bialek et al.250. Specifically, many cells measure the extracellular concentration c of a signaling 
molecule by counting binding events of individual molecules to cognate surface receptors. In the 
idealized limit of maximal uptake, characterized by high receptor density and irreversible binding, the 
mean number hNi of binding events in a time window of duration ¿  is given by250,284 
 
  
 hNi = 2¼L ¢Dc ¢ ¿ , (10) 
 
where D  denotes the diffusion coefficient of the molecule. The geometric factor 2¼L corresponds to a 
cellular geometry of a perfect sphere of diameter L; generally it will scale with the longest dimension 
of the cell285. Individual binding events will be uncorrelated to good approximation, and thus the actual 
number N  of binding events will be a Poissonian random variable with mean hNi and variance hNi. 
Cellular concentration measurements are thus prone to molecular shot noise: at physiological pico-
molar concentrations, only a few molecules per second will diffuse to the cell. Hence, cells face trade-
off choices between the accuracy of concentration measurements and the temporal resolution for 
sensing time-varying concentrations, which has implications for cellular chemotaxis strategies. 
For chemotaxis, the maximal integration time ¿  for local concentration measurements is set by the time 
it takes the cell to move one body length, ¿ » L=v, where v and L denote speed and size of the cell. As 
a numeric example, we find N ¼ 500 from equation (10) using typical values for a bacterial cell 
( L ¼ 3 ¹m , L ¼ 50 ¹m s¡1, D ¼ 700 ¹m2 s¡1, c = 1 nM). Thus, concentration measurements are 
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inherently unreliable at the cellular scale.  This constrains the range of potential chemotaxis strategies 
for a given cell.  
Motility noise. Motility noise comprises contributions from both thermal fluctuations and active motility 
fluctuations. For the smallest cells, such as bacteria, the contribution from thermal fluctuations can be 
substantial. In particular, effective rotational diffusion will randomize the swimming direction of a cell. 
We can estimate the effect of thermal fluctuations on a passive particle of same shape as the cell, which 
provides a lower bound for the effective rotational diffusion coefficient. For such a passive particle, the 
rotational diffusion coefficient is given by an Einstein-Stokes relation, Drot = kBT=°rot, where °rot

denotes the hydrodynamic friction coefficient for rotational motion. The rotational friction coefficient 
typically scales as °rot » L3, where L denotes a typical size of the cell. Hence, 
 
 Drot » L¡3. (11) 
 
As a numerical example, we find Drot = 0:1 s¡1, for a spherical particle of radius a = 1, for which 
°rot = 8¼´a3. This estimate implies that the correlation time ¿ = 1=Drot of persistent directional 
swimming is just a few seconds for a micron-sized bacterium. For typical swimming speeds of a 
bacterium, v ¼ 10 ¹m s¡1, the resultant swimming path will be a persistent random walk (even in the 
absence of active tumbling) with persistence length of lp = v=(2Drot) ¼ 50 ¹m 286,287. It was argued 
that active motility would not pay off for the smallest bacteria, which measure less than a micron in 
size288: for these cells, directional persistence of motion would be so low that net locomotion becomes 
impossible and active motility would increase only the effective translational diffusion coefficient of 
the cell, De® = Dtrans + v2=(6Drot). Interestingly, most cells that measure less than a micron are 
indeed immotile288. 
Motile cells, such as swimming bacteria, often show chemotaxis, i.e. the directed motility upwards a 
concentration gradient, such as a gradient of nutrient concentration. Rotational diffusion restricts the 
gradient sensing strategies available to these cells. During a time span on the order of τ, the information 
gathered by swimming bacteria such as E. coli is not sufficient for directed steering responses in the 
direction of the gradient. Instead, these bacteria employ a stochastic navigation strategy, where only the 
frequency of random re-orientation events is adjusted. This steering strategy results in a biased random 
walk with net drift up the gradient as detailed in the next section.  
 
Three cellular strategies of gradient sensing. Motility control of motile cells is an ideal test case to 
study the adaptation of cellular signaling to dynamic and noisy environments. Pioneering work by 
Howard Berg unraveled the stochastic control logic of chemotaxis in bacteria upwards concentration 
gradients of nutrients81. Motile bacteria such as E. coli perform a biased random walk to move up a 
chemical gradient. We enjoy a rather comprehensive understanding of chemotactic signaling in bacteria 
today289,290. Eukaryotic (i.e. non-bacterial) cells, however, employ fundamentally distinct navigation 
strategies of helical chemotaxis140,291 and spatial comparison61,292, which are reviewed below. For 
eukaryotic chemotaxis, many questions regarding the underlying sensorimotor feedback logic, and its 
adaptation to dynamic chemoattractant fields are still open. Below, we elaborate the hypothesis that 
different chemotaxis strategies of bacteria and eukaryotic cells actually represent adaptations to 
different regimes of noise in sensing and motility8. We emphasize that molecular shot noise makes 
renders measuring a concentration gradient accurately a non-trivial task at the cellular scale.  
Measuring a concentration gradient requires the comparison of local concentration measurements 
c1 = c(r1; t1) and c2 = c(r2; t2) at different positions in space and possibly different times. The most 
direct method of gradient-sensing would be to measure local concentrations at different positions r1 
and r2 of the cell at the same time t1 = t2, which amounts to a mechanism of spatial comparison. 
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However, recalling that cells detect a number N  of binding events as a proxy for local concentration c  
with hNi » c, see equation (10), we are led to compare the difference in the expectation values of two 
measurements ¢N = hN1 ¡N2i, to the uncertainty ¾ in its measurement, which provides a signal-to-
noise ratio284 
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From this equation, we find that spatial comparison is a viable strategy only for relatively large and 
slowly moving cells. For fast-swimming bacteria and sperm cells, one finds that the signal-to-noise 
ratio of spatial comparison would be too low to allow for reliable steering. Instead, these cells employ 
different strategies of temporal comparison8,293, for which these cells rely on their active motion inside 
the external concentration field, which allows them to compare concentrations at different positions 
along their swimming path r(t).  
Noise in sensing and motility imposes tight constraints on cellular chemotaxis strategies. We review 
three different strategies for dynamic gradient sensing employed by single cells. 
 

Chemotaxis by spatial comparison. The fidelity of spatial gradient sensing across the diameter L of a 
cell depends strongly on the time ¿ = L=v available to integrate noisy local concentration 
measurements, which in turn depends on the speed v of the cell locomotion284. Only slow moving cells, 
such as the slime mold Dictyostelium (v ¼ 1¡10 ¹m=min), are able to employ spatial comparison for 
directed motion up a chemical gradient61 with the efficacy of chemotaxis depending on the signal-to-
noise ratio of spatial gradient sensing294,295. 
 

Biased random walks. Swimming bacteria such as Escherichia coli employ a stochastic chemotaxis 
strategy: they move along biased random walks to steer up chemical gradients, e.g. gradients of nutrient 
concentrations. During so-called ‘run’ periods, these cells swim along straight paths for a few seconds. 
These straight ‘runs’ are interrupted by stochastic reorientation events, termed ‘tumbling’, during which 
the bacterium picks a new swimming direction at random69. E. coli employs a particular form of 
temporal comparison for gradient-sensing by which the cell computes a smoothed time-derivative of 
the temporal concentration signal c(r(t)) along its swimming path r(t). If a decrease of this 
concentration signal is detected, which is indicative of inadvertently swimming down-gradient, the cell 
will tumble earlier and more vigorously. This ‘run-&-tumble’ strategy results in a biased random walk, 
with net drift towards regions of higher chemoattractant concentration. 
Interestingly, noise in chemosensation would render the alternative chemotaxis strategy of spatial 
comparison too inaccurate for these bacteria69,284, see also equation (12). In short, E. coli is too small 
and too fast for accurate gradient-sensing by spatial comparison. At the same time, motility fluctuations 
are similarly substantial for these cells: Sized only a few microns, E. coli cells are subject to thermal 
fluctuations that randomize their swimming direction even during supposedly straight ‘runs’. The 
rotational diffusion time D¡1

rot of a few seconds limits the available time span for signal integration. 
Correspondingly, it is observed that ‘runs’ usually do not last longer than this time span. The 
information gathered by temporal comparison during a single ‘run’ is not sufficient to control the 
steering direction284, which leads to the genuinely stochastic strategy of bacterial chemotaxis. Thus, 
sensing and motility fluctuations constrain the possible choice of chemotaxis strategy for bacteria. 
Helical chemotaxis. A third navigation strategy exploits chiral self-motion. This strategy is employed 
e.g. by sperm from marine species with external fertilization, which respond to signaling molecules 
released by the egg144,296. These sperm swim along helical paths91–93, which is a result of the chiral beat  
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Figure 8: The three strategies of single cell chemotaxis. For chemotaxis, motile cells employ 
very different strategies. Left: Cells with crawling motility, such as the slime mold 
Dictyostelium, compares concentration differences across the diameter of the cell, thus 
representing a case of spatial comparison. Subsequently, the cell becomes structurally polar 
in the direction of the gradient and moves up-gradient. Middle: The bacterium E. coli employs 
a chemotaxis strategy of temporal comparison along a biased random walk. Short run 
segments are interrupted by stochastic reorientations events termed ‘tumble’. A dynamic 
regulation of the ‘tumbling’ frequency according to temporal changes of the concentration 
signal along their swimming path results in a net drift up the gradient. Right: Sperm cells from 
marine species with external fertilization navigate along helical paths, which represents a 
stereotypic form of exploratory motion. Although helical chemotaxis represents a case of 
gradient-sensing by temporal comparison as in the case of bacterial chemotaxis, sperm 
steering responses are deterministic and point in the direction of the gradient, in contrast to 
the stochastic tumbling events of bacteria. The different chemotaxis strategies of these three 
cells suggest an adaptation to different noise levels of sensing and motility. Blue: 
concentration gradient of a signaling molecule, red: cell trajectory. Modified from ref.8 with 
permission. 
 

of their flagellum93. Helical swimming enables these cells to detect the direction of a chemoattractant 
gradient perpendicular to the helix axis: when the cell swims along a helix (whose axis is initially not 
aligned with the gradient), the cell will periodically move up and down the gradient, see figure 9. Thus, 
the cell perceives a chemoattractant stimulus that oscillates with the frequency of helical swimming. 
This frequency is about 2Hz for marine sperm119. Thereby, information about the spatial gradient 
becomes encoded in a temporal oscillation of the chemoattractant signal. This chemoattractant signal is 
transduced by a chemotactic signaling cascade297, which generically will elicit an oscillatory flagellar 
steering response140. As a result, the curvature and torsion of the sperm swimming path oscillate with 
the helix frequency. While a constant value of curvature and torsion characterizes a perfect helix, 
oscillations of curvature or torsion result in bending helices140. As a consequence, the helix axis, which 
represents the direction of net motion, aligns with the gradient direction. Correct steering requires that 
the latency time of chemotactic signaling, which induces a phase-shift between stimulus oscillations 
and curvature oscillations, adopts an optimal value140.  
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Sperm cells swim too fast (v=100¹m=s) in order to employ spatial comparison with sufficient accuracy 
along the length of their flagellum (L = 50 ¹m)8. Like bacteria, sperm must rely on temporal 
comparison, i.e. sperm detect how the local concentration changes in time while they actively move in 
a concentration gradient298. However, being ten-fold larger than bacteria, sperm cells are 1000-times 
less affected by thermal rotational diffusion8. Thus, sperm cells from marine invertebrates can stably 
swim along helical paths. Their helical swimming represents a stereotypic form of exploratory 
movement, which enables these cells to gather information about the direction of concentration 
gradient. This information is encoded in the relative phase of temporal oscillations of the concentration 
stimulus. Unlike bacteria that employ a fundamentally stochastic chemotaxis strategy of run-&-tumble, 
sperm use directed steering responses8,140. Generally, helical chemotaxis is expected to be more efficient 
than a biased random walk. This is because helical chemotaxis enables the cell to align its direction of 
net motion parallel to the direction of the gradient. Additionally, measuring concentration gradients 
while moving along helical paths provides an effective mean to integrate out molecular shot noise of 
chemosensation141,142. 
 

 
 

Figure 9: The principle of helical chemotaxis. We describe a navigation strategy of helical 
chemotaxis, which is employed e.g. by sperm from marine species with external fertilization 
that swim along helical paths8,93,140. In the presence of chemoattractant gradient, helical 
swimming paths bend in the direction of the gradient, which aligns the helix axis with the 
gradient direction. This chemotaxis strategy relies on a simple geometric principle: While 
swimming along a helix, the cell periodically moves up and down the gradient. The cell thus 
perceives an oscillatory chemoattractant stimulus that oscillates with the period T  of helical 
swimming. The cell responds to this oscillatory chemical signal with oscillations of its path 
curvature. As a result, the helix bends to align its axis with the gradient. 

 
Adaptation to spatio-temporal stability of concentration gradients. Cells must navigate in 
fluctuating environments. For example, chemical gradients established by diffusion in aqueous 
environments will be not be perfectly linear, but become distorted by turbulent flows299,300. As a second 
example, concentrations gradients of nutrients such as organic debris in the ocean continuously change 
due to the dynamics of its production and uptake by other organisms301,302.  In a theoretical description 
of bacterial chemotaxis, optimal strategies of chemotactic signaling such as time-scales of signal 
integration or sensory adaptation were found to depend on sensing noise303, and thus on the 
characteristics of concentration gradients. Celani and Vergassola formalized a risk-averse maximin-
strategy for bacterial chemotaxis, which is adapted to random, short-lived concentration gradients304. If 
concentrations change on a typical time-scale, memory can improve the performance of cellular 
gradient-sensing. Concepts from control engineering (such as Kalman filters) represent strategies for 
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the robust estimation of concentration gradients305. Finally, the availability of extensive memory and 
computation resources facilitates advanced strategies of gradient search. One example of such an 
advanced strategy is infotaxis. 
For the theoretically proposed mechanism of infotaxis, a hypothetical ‘search agent’ exploits its full 
sensation history to compute a detailed likelihood map of the location of a single point source306. Put 
differently, the search agent relies on a cognitive model of environmental variability. The search agent 
then choses its next movement step such as to maximize the expected reduction in Shannon entropy of 
this likelihood map. This theoretical mechanism represents a viable solution to the general trade-off 
choice between exploration (i.e. active movement geared at gathering additional information about the 
environment) and exploitation (i.e. directed movement towards the current estimate of the most-likely 
target position). Infotaxis was shown to perform even for dilute concentration gradients that are 
distorted by strongly turbulent flows. For single cells with minimal information processing capabilities, 
however, navigation strategies that require extensive memory and information processing capabilities 
such as infotaxis may not be available. Cells have to make optimal use of available resources for 
sensing, information processing, and memory for spatial navigation307. 
 
 
Concluding remark. In this introduction, we highlighted the nonlinear physics of cell motility and self-
organized pattern formation in biological systems. In particular, we emphasized how non-equilibrium 
fluctuations and external perturbations affect cellular function. In the selected publications of chapter 2 
and 3, these two central themes, nonlinear dynamics and fluctuations, are studied for specific biological 
systems. The systems under study range from flagellar swimming, steering, and synchronization to 
cytoskeletal pattern formation and self-scaling morphogen gradients. We combine analytically tractable 
theoretical descriptions and computational approaches. Thereby, we provide insight into physical 
mechanisms of biological function. Further, we enable a quantitative comparison of theory and 
experiment. Ultimately, we seek to use theoretical physics to contribute to the understanding of 
fundamental principles that render biological dynamics robust in the presence of strong fluctuations and 
perturbations. 
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2 Selected publications: Cell motility and motility control 

 

2.1 “Flagellar synchronization independent of hydrodynamic interactions” 
 

Abstract. Inspired by the coordinated beating of the flagellar pair of the green algae Chlamydomonas, 
we study theoretically a simple, mirror-symmetric swimmer, which propels itself at low Reynolds 
number by a revolving motion of a pair of spheres. We show that perfect synchronization between these 
two driven spheres can occur due to the motion of the swimmer and local hydrodynamic friction forces. 
Hydrodynamic interactions, though crucial for net propulsion, contribute little to synchronization for 
this free-moving swimmer. 
 
B. M. Friedrich, F. Jülicher: Flagellar synchronization independent of hydrodynamic interactions. Phys. 
Rev. Lett. 109(13), 138102, 2012 
 
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.109.138102 
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2.2  “Cell body rocking is a dominant mechanism for flagellar 
synchronization in a swimming green alga” 

 
Abstract. The unicellular green algae Chlamydomonas swims with two flagella, which can synchronize 
their beat. Synchronized beating is required to swim both fast and straight. A long-standing hypothesis 
proposes that synchronization of flagella results from hydrodynamic coupling, but the details are not 
understood. Here, we present realistic hydrodynamic computations and high-speed tracking 
experiments of swimming cells that show how a perturbation from the synchronized state causes 
rotational motion of the cell body. This rotation feeds back on the flagellar dynamics via hydrodynamic 
friction forces and rapidly restores the synchronized state in our theory. We calculate that this ‘cell body 
rocking' provides the dominant contribution to synchronization in swimming cells, whereas direct 
hydrodynamic interactions between the flagella contribute negligibly. We experimentally confirmed 
the coupling between flagellar beating and cell body rocking predicted by our theory. We propose that 
the interplay of flagellar beating and hydrodynamic forces governs swimming and synchronization in 
Chlamydomonas. 
 
V. F. Geyer, F. Jülicher, J. Howard, B. M. Friedrich: Cell body rocking is a dominant mechanism for 
flagellar synchronization in a swimming alga. Proc. Natl. Acad. Sci. U.S.A. 110(45), 18058(6), 2013 
 
http://www.pnas.org/content/110/45/18058.abstract.html?etoc 
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2.3 “Active phase and amplitude fluctuations of the flagellar beat” 
 

Abstract. The eukaryotic flagellum beats periodically, driven by the oscillatory dynamics of molecular 
motors, to propel cells and pump fluids. Small, but perceivable fluctuations in the beat of individual 
flagella have physiological implications for synchronization in collections of flagella as well as for 
hydrodynamic interactions between flagellated swimmers. Here, we characterize phase and amplitude 
fluctuations of flagellar bending waves using shape mode analysis and limit-cycle reconstruction. We 
report a quality factor of flagellar oscillations,  (mean s.e.). Our analysis shows that 
flagellar fluctuations are dominantly of active origin. Using a minimal model of collective motor 
oscillations, we demonstrate how the stochastic dynamics of individual motors can give rise to active 
small-number fluctuations in motor-cytoskeleton systems.  
 
R. Ma, G. S. Klindt, I.-H. Riedel-Kruse, F. Jülicher, B. M. Friedrich: Active phase and amplitude 
fluctuations of flagellar beating. Phys. Rev. Lett. 113(4), 048101, 2014 
 
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.048101 
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2.4 “Sperm navigation in 3D chemoattractant landscapes” 
 

Abstract. Sperm require a sense of direction to locate the egg for fertilization. They follow gradients 
of chemical and physical cues provided by the egg or the oviduct. However, the principles underlying 
three-dimensional (3D) navigation in chemical landscapes are unknown. Here using holographic 
microscopy and optochemical techniques, we track sea urchin sperm navigating in 3D chemoattractant 
gradients. Sperm sense gradients on two timescales, which produces two different steering responses. 
A periodic component, resulting from the helical swimming, gradually aligns the helix towards the 
gradient. When incremental path corrections fail and sperm get off course, a sharp turning manoeuvre 
puts sperm back on track. Turning results from an ‘off’ Ca2+ response signifying a chemoattractant 
stimulation decrease and, thereby, a drop in cyclic GMP concentration and membrane voltage. These 
findings highlight the computational sophistication by which sperm sample gradients for deterministic 
klinotaxis. We provide a conceptual and technical framework for studying microswimmers in 3D 
chemical landscapes. 
 
J. F. Jikeli*, L. Alvarez*, B. M. Friedrich*, L.G. Wilson*, R. Pascal, R. Colin, M. Pichlo, A. Rennhack, 
C. Brenker, U. B. Kaupp: Sperm navigation in 3D chemoattractant landscapes. Nature Communications 
6, 7985, 2015 
 

* = these authors contributed equally 
 
http://www.nature.com/ncomms/2015/150817/ncomms8985/full/ncomms8985.html 
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3 Selected publications: Self-organized pattern formation in cells 
and tissues 

 

3.1 “Sarcomeric pattern formation by actin cluster coalescence” 
 

Abstract. Contractile function of striated muscle cells depends crucially on the almost crystalline order 
of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril 
assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is 
kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. 
Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin 
filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust 
mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin 
filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric 
pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length 
control already at early stages of pattern formation. The proposed mechanism could be generic and 
apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to 
striated stress-fibers in non-muscle cells.  

B. M. Friedrich, E. Fischer-Friedrich, N. S. Gov, S. A. Safran: Sarcomeric pattern formation by actin 
cluster coalescence. PLoS Comp. Biol. 8(6), e1002544, 2012 

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002544 
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3.2 “Scaling and regeneration of self-organized patterns” 
 

Abstract. Biological patterns generated during development and regeneration often scale with organism 
size. Some organisms e.g. flatworms can regenerate a re-scaled body plan from tissue fragments of 
varying sizes. Inspired by these examples, we introduce a generalization of Turing patterns that is self-
organized and self-scaling. A feedback loop involving diffusing expander molecules regulates the 
reaction rates of a Turing system, thereby adjusting pattern length scales proportional to system size. 
Our model captures essential features of body plan regeneration in flatworms as observed in 
experiments.  
 
S. Werner, T. Stückemann, M. Beirán Amigo, J. C. Rink, F. Jülicher, B. M. Friedrich: Scaling and 
regeneration of self-organized patterns. Phys. Rev. Lett. 114(13), 138101, 2015 
 
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.138101 
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4 Contribution of the author in collaborative publications 
 

The author is principal author of all publications presented in this thesis. He conceived the original idea 
for the projects in all-but-one cases. The only exception is publication 2.4: “Sperm navigation …”, 
which represent a combination of experiment and theory on sperm chemotaxis, where the experimental 
part was initiated first. The theoretical part of this publication has been solely contributed by the author. 
Below, we list the specific contributions of the author for all publications presented in this thesis. 
 
 
2.1: “Flagellar synchronization independent of hydrodynamic interactions”  
 contribution of author: original conception of project, development of theoretical description, 

all analytic calculations, all stochastic simulations, manuscript preparation including all figures 
 
2.2: “Cell body rocking is a dominant mechanism for flagellar synchronization in a swimming alga” 
 contribution of author: original conception of project, management of theory-experiment 

collaboration, development of theoretical description, all analytic calculations, all 
hydrodynamic computations, development of image analysis software, data analysis, 
manuscript preparation including all figures 

 
2.3: “Active phase and amplitude fluctuations of the flagellar beat” 

 contribution of author: original conception of project, development of data analysis method 
for limit cycle reconstruction, data analysis, development of theoretical description, 
development of analytical theory together with Rui Ma, manuscript preparation including all 
figures 
 

2.4: “Sperm navigation in 3D chemical landscapes”  
 contribution of author: development of theoretical description, hydrodynamic computations 

of chiral flagellar swimming, algorithm development for data analysis (track smoothing, helix 
fitting, chemoattractant diffusion, time series analysis), comparison of theory and experiment, 
writing of theoretical part of manuscript, contribution to introduction and discussion, prepared 
figure panels (Fig. 1c, Fig. 2, Fig. 3c, Fig. 4c, Fig. 4f, Fig. 6, Fig. S3b Fig. S3f, Fig. S4) 
 

3.1: “Sarcomeric pattern formation by actin cluster coalescence”  
 contribution of author: original conception of project, development of theoretical description, 

all stochastic simulations, all analytic calculations, manuscript preparation including all figures 
 

3.2: “Scaling and regeneration of self-organized patterns” 
 contribution of author: original conception of project, development of initial theoretical 

description, close supervision of PhD student Steffen Werner who formulated the final 
description, coordination of the project, manuscript preparation and conception of all figures 
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5 Eidesstattliche Versicherung 
 

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und 
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus fremden Quellen 
direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht.  

Die der Habilitationsschrift zugrunde liegenden Publikationen wurden in Zusammenarbeit mit den 
genannten Autoren angefertigt. Dabei ging jeweils die initiale Idee auf mich zurück. Die Projekte 
wurden durch mich koordiniert und die Publikationen von mir geschrieben. Die einzige Ausnahme 
bildet Publikation 2.4 zur Spermien-Chemotaxis, welche Experiment und Theorie kombiniert. Hier 
beschränkt sich mein Beitrag auf den Theorieteil, d.h. die Entwicklung der theoretischen Beschreibung, 
alle numerischen Simulationen, sowie die quantitative Auswertung der experimentellen Daten. Eine 
detaillierte Auflistung meines Beitrags zu den Publikationen findet sich auf Seite 63 dieser 
Habilitationsschrift. 

Diese Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer 
anderen Prüfungsbehörde vorgelegt. Ich habe bisher kein Habilitationsgesuch an anderen Hochschulen 
eingereicht. Ein Führungszeugnis gemäß § 30 Abs. 5 Bundeszentralregistergesetz wurde bei der 
zuständigen Meldebehörde beantragt und wird an die Fakultät übersendet. 

 

Dresden, den 23.05.2016 

 

 

Benjamin M. Friedrich 

  



66 
 

  



67 
 

6 Appendix: Reprints of publications  
 

 

Publication 2.1: “Flagellar synchronization independent of hydrodynamic interactions“ 
Published in: 
Phys. Rev. Lett. 109(13), p. 138102, 2012; 
5 pages, 4 figures. 
 
 
Publication 2.2: “Cell body rocking is a dominant mechanism for flagellar synchronization in a 
swimming green alga”  
Published in: 
Proc. Natl. Acad. Sci. U.S.A. 110(45), 18058(6). 2013; 
6 pages, 5 figures, 12 pages of supporting material. 
 
 
Publication 2.3: “Active phase and amplitude fluctuations of the flagellar beat” 
Published in: 
Phys. Rev. Lett. 113(4), 048101, 2014; 
5 pages, 3 figures, 5 pages of supporting material. 
 
 
Publication 2.4: “Sperm navigation in 3D chemoattractant landscapes” 
Published in: 
Nature Communications 6, 7985, 2015; 
10 pages, 6 figures, 14 pages of supporting material. 
 
 
Publication 3.1: “Sarcomeric pattern formation by actin cluster coalescence” 
Published in:  
PLoS Comp. Biol. 8(6), e1002544, 2012;  
10 pages, 6 figures, 11 pages of supporting material. 
 
 
Publication 3.2: “Scaling and regeneration of self-organized patterns”  
Published in: 
Phys. Rev. Lett. 114(13), 138101, 2015; 
5 pages, 3 figures. 
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