
A Design Flow for Partially Reconfigurable
Heterogeneous Multi-Processor Platforms

Li Jiashu, Anup Das and Akash Kumar
Department of Electrical & Computer Engineering

National University of Singapore, Singapore
{lijiashu, akdas, akash}@nus.edu.sg

Abstract—Modern multiprocessor systems-on-chip (MPSoCs)
are expected to handle multi-application usecases. As the number
and complexity of these applications scale, resource allocation to
meet the application throughput requirement is becoming quite
a challenge. In this paper, a complete design flow is proposed
for partially reconfigurable heterogeneous MPSoC platforms.
The proposed flow determines the minimum resources required
to map and guarantee the throughput of applications in all
use-cases. Further, a suitable mapping for each application is
chosen so that energy consumption is minimized. Experiments
conducted with a set of synthetic benchmarks and real-life
applications clearly demonstrate the advantage of our approach
over homogeneous or fully reconfigurable designs. The proposed
design flow achieves more than 50% energy savings when the
number of configurations is not optimized. With configuration-
optimization, our flow results in 75% reduction in the number
of configurations with 5% reduction in energy.

Index Terms—Partially reconfigurable systems; heterogeneous
systems; design-flow; multiple use-cases.

I. INTRODUCTION

Modern embedded systems are usually required to execute
multiple applications simultaneously [17]. As the complexity
of these applications scales, a single general propose processor
(GPP) is no longer capable of supporting all tasks. To accom-
modate ever increasing demand of applications and for the
ease of scalability, multiprocessor systems-on-chip (MPSoCs)
are becoming the obvious design choice in current and future
technologies [4]. To meet the strict timing requirement of
multimedia applications, system designers are resorting to
heterogeneous architectures [22] because of the area and power
penalties associated with homogeneous cores and GPP [12].

As the complexity of MPSoC scales, there is an increase
in the number of applications enabled simultaneously (use-
case1). Strict area and power budget coupled with requirement
of low delay of use-case switching are becoming impossible to
handle using static architectures. Partial reconfiguration (PR)
has been proposed in recent years to improve the system
performance as well as the resource utilization [6]. PR can
have two interpretations in the context of MPSoC: 1) it can
refer to a platform consisting of FPGA and ASIC design,
where the FPGA logic can be reconfigured at runtime, and
2) it can refer to the process of reconfiguring only a part of
the FPGA logic while the other parts continue operation. In
this paper, benefits of both levels of PR are exploited.

There are many research works targeting design and map-
ping flow for partially reconfigurable platforms. These map-

1Formally, an use-case is defined as a collection of multiple applications
that are active simultaneously on an MPSoC

pings are either not scalable with the number of applications
(e.g. [8][13]) or they do not consider multiple-application use-
cases (e.g. [1][14]). There are some research works focusing
on multiple use-cases mapping flow. Area and energy are not
considered in these works [22].

Contribution: In this paper a complete design flow for
partially reconfigurable heterogeneous MPSoC platforms is
proposed. The key contributions are the following.

• Minimum Resource: A design flow to determine the
minimum resource requirement, which can support and
guarantee throughput of all applications in all use-cases.

• Combining Use-cases: An algorithm to minimize recon-
figuration delay by combining multiple use-cases into one
configuration.

• Energy Consumption Reduction: A methodology to re-
duce the energy consumption by utilizing spare resources
for each configuration.

• Pareto Optimization: Pareto optimizations to reduce data
size and the time required for analysis.

• Use-case Switching: A method to speed up the recon-
figuration process by utilizing the features of partial
reconfiguration of modern FPGA devices.

The rest of the paper is organized as follows. Section II
provides an overview of prior related works in this area.
Section III introduces the application and hardware models
used in our flow. Section IV describes the detailed mapping
flow. Experimental results are provided in Section V. Section
VI concludes the paper with key future directions.

II. RELATED WORK

Shrinking time-to-market deadlines and strict area and
power budget are contributing to the growing popularity of
the hardware-software co-synthesis design space exploration
methodology in modern MPSoCs. To better utilize the de-
signed MPSoC platform and to reduce energy consumption,
system designers need to explore different mapping alterna-
tives of an application on the platform.

Most of the research works on application task mapping on
MPSoC have focused on static techniques. These techniques
determine the best placement of tasks on the cores at design-
time. There are different mapping objectives studied in lit-
erature. An hardware-software approach with heterogeneous
scheduling is proposed in [8]. Mappings are determined at
design-time to minimize the dynamic power consumption. A
mapping technique is proposed in [16] to reduce the task com-
munication delay. There are also some studies to maximize the
application throughput using satisfiability (SAT) techniques

[13]. A limitation of these static application mapping strategies
is that only fixed architecture is supported and therefore a
limited set of applications can be mapped on the platform.

Dynamic mapping approaches consider application dy-
namism in resource allocation. There are some studies to per-
form resource-execution time trade-off analysis to determine
mapping of applications (modeled using synchronous dataflow
graphs) on MPSoC [22]. An energy-aware mapping heuristic
is proposed in [14] that does not resort to resource reservation.
Most of these dynamic techniques assume homogeneity of
cores and can lead to large area and power overhead when
they are applied to heterogeneous architectures.

There are a few mapping techniques for partially reconfig-
urable platforms. A mapping algorithm is proposed for NoC-
based Heterogeneous MPSoC where tasks of an application
are mapped into one reconfigurable fabric to reduce the com-
munication delays [19]. However, throughput is not guaranteed
in this technique. A design flow to exploit similarities in
applications is proposed in [1]. Although the reconfiguration
delay is reduced significantly, core selection is not performed
according to the hardware platform and resource availability.

III. APPLICATION AND ARCHITECTURE MODELS

This section provides a brief overview of the application
and the architecture model used in the proposed design flow.

A. Application Graph Model
Synchronous Data Flow Graphs (SDFGs, see [11]) are often

used for modeling modern DSP applications and for designing
concurrent multimedia applications implemented on a multi-
processor system-on-chip. The nodes of an SDFG are called
actors; they represent functions that are computed by reading
tokens (data items) from their input ports and writing the
results of the computation as tokens on the output ports. The
number of tokens produced or consumed in one execution of
actor is called port rate, and remains constant. The rates are
visualized as port annotations. Actor execution is also called
firing, and requires a fixed amount of time, denoted with a
number in the actors. The edges in the graph, called channels,
represent data that is communicated from one actor to another.

Mathematically, an SDF graph is represented as a directed
graph G = (V,E), where V = {vi|1 ≤ i ≤ n} represent the
actors in G and the directed edges E = {eij |i, j ∈ [1, ..., n]}
represent the channels. Each communication channel eij links
from source actor vi to destination actor vj . When an actor
vi starts its firing, it removes Rate(ji) tokens from all
eji ∈ InC(vi). The execution continues for τ(vi) time units
and when it ends, it produces Rate(ik) tokens on every
eik ∈ OutC(vi)

2. The repetation vector of an actor vi is
the number of times the actor is fired in one iteration of
the SDFG. Each communication channel eij is also specified
with a capacity, which is also known as the buffer size. It
represents the maximum number of tokens that can be stored
in the channel. Each channel eij may also contain a number
of initial tokens.

Throughput is an important property of multimedia applica-
tions; it describes how fast those applications are able to run,

2InC(a) and OutC(a) are respectively the incoming and outgoing edges
of actor a.

55926018

10958 486

2376 1

2376 1

1

1
1

1

2

a1 a2

a3a4

d1

d3

d2d4

a1: Variable Length Decoder
a2: Inverse Quantization
a3: Inverse Discrete Cosine
 Transformation
a4: Motion Compensation

Fig. 1. SDF Graph of an H.263 Decoder

and it is defined as the inverse of the average iteration time of
an application. The technique of analyzing throughput of the
SDFGs is described in [3].

Figure 1 shows the SDFG of H.263 decoder [20] which
is modeled using four actors a1, a2, a3, and a4 and four
communication channels d1, d2, d3, and d4. The rate of an
actor is specified on its channel while its execution time3 is
indicated in the circle. An edge may also contain initial tokens
which are indicated by bullets. Throughput constraint for an
application is specified in the corresponding application model.

B. Hardware Platform Model

Partially reconfigurable heterogeneous MPSoC are used as
the hardware platform for our flow. The advantages of partially
reconfigurable platform over ASIC and fully reconfigurable
FPGA design are the following:

• flexible as compared to ASIC
• faster than fully reconfigurable FPGA
• consumes less energy than fully reconfigurable FPGA
Partially reconfigurable architecture offers flexibility yet

affordable solution for high-performance embedded systems.
Figure 2 shows the hardware model used in this work

consisting of ASIC cores and reconfigurable area (RA). All
ASIC cores are hard logic fixed during design process. These
can be general purpose processors, application-domain specific
processors (ADSPs) or any other ASIC designed cores. The
RA consists of logic which can be re-programmed at run-
time (eg. FPGAs). These are task-specific and usually bind to
specific task in the application set. The allocation of actors to
ASIC and RA is based on actor timing properties as well as
the resource availability. By proper actor allocation, our flow
minimizes the resource requirement.

IV. DESIGN FLOW

Figure 3 shows the two-phase design flow proposed in
this work. The first phase is the resource optimization phase
where the target MPSoC platform is determined to minimize
the resource usage. The flow then advances to the energy-
delay optimization phase where techniques are developed to
minimize energy and reconfiguration delay of the designed
MPSoC. The flow proposed here is motivated by the strict
area budget often imposed in system specification; energy and
reconfiguration delay are set at a priority lower than the area.

3The execution time of the actors is measured on ARM Cortex A9 procesor

Reconfigurable
Area

GPP
Type I

GPP
Type I

GPP
Type I

GPP
Type II

GPP
Type II

GPP
Type II

Other
ASIC
Cores

ADSP
Type I

ADSP
Type II

Other
ASIC
Cores

Analysis of Each
Single Application

Use-case Level
Optimization

Determine the
Final Platform

Reduce the
Number of Configurations

Optimization for
Energy Consumption

Pareto
Optimization

Combing Pareto
Plots

Bin Packing
Algorithm

Back to
Application Level

C
o

n
figu

ratio
n

C
o

n
figu

ratio
n

Application

Energy
Pareto Plot

Application

Energy
Pareto Plot

Application

Energy
Pareto Plot

Use
case

Use
case

Use
case

Use
case

C
o

n
figu

ratio
n

C
o

n
figu

ratio
n

Application

Application

Application

Application
Application

Use-case

ApplicationApplication
Application
Application

Use-case

Fig. 3. Proposed Mapping Flow

Reconfigurable
Area

GPP
Type I

GPP
Type I

GPP
Type I

GPP
Type II

GPP
Type II

GPP
Type II

Other
ASIC
Cores

ADSP
Type I

ADSP
Type II

Other
ASIC
Cores

GPP: General Purpose Preprocessor
ADSP: Application Domain Specific Processors
ASIC: Application Specific Integrated Circuit

Fig. 2. Conceptual Hardware Model (MPSoC)

The first step in the flow is the analysis for every application
to determine resource usage and energy consumption for every
possible mapping on the given architecture. The set of optimal
points are retained. The flow then advances to the use-case
level; the Pareto plots of different applications within a single
use-case are added together, and the resource usage for each
use-case is calculated. The maximum resource requirement
among all use-cases is selected as the architecture resource
requirement. Once the target architecture is finalized, multiple
use-cases are packed into one configuration to reduce the
reconfiguration delay. Finally, spare resources for each config-
uration (if any) are utilized to minimize energy consumption.

A. Pre-processing
Applications to be mapped on our platform can have varying

set of requirements. Some use-cases can be trivial or unrealis-
tic. To tackle these scenarios, a pre-processing step is needed
before the actual design flow.

1) Identify Unrealistic Use-cases: Unrealistic use-cases re-
fer to those which are unlikely to occur in the real life such
as playing mp3 while talking on a mobile phone. In the pre-
processing step, unrealistic use-cases are identified early in the
design cycle to prevent unrealistic outputs.

2) Identify Trivial Use-cases: A use-case is defined as
trivial if it is a proper subset of some other use-case [9].
Formally, for any use-case Ui, if Ui is trivial, then there exists

another use-case Uj , so that all applications which are included
in Ui are supported by Uj as well. Discarding trivial use-cases
minimizes the reconfiguration delay of switching from a trivial
use-case to its super-level use-case and vice-versa.

3) Same Application with Different Throughput Con-
straints: In embedded MPSoCs with multiple applications it
is possible to have one application with different throughput
requirements within a use-case. An example of such use-
case is picture-in-picture (PiP). Here, the video decoding for
two different programs (channels) have different throughput
requirements due to different resolution. In our flow, they are
treated as two different applications because of the different
performance and potentially different hardware requirements.

B. Analysis of Applications
The second stage of our design flow enumerates every

mapping of an application to determine if the throughput
constraint is met. All mappings satisfying the throughput
requirement are stored along with their resource usage and
energy consumption. If no such mapping is found, the corre-
sponding application is discarded.

1) Time Complexity Analysis: The time complexity of the
analysis stage is proportional to the number of mappings
evaluated. This is computed based on the fact that actors of an
application can be mapped on a dedicated core or on a GPP.
Defining P (x) as the number of possibilities for mapping x
actors on x GPPs; the total number of mappings Mn for an
application with n actors is given by

Mn =

n∑
k=0

(
n

k

)
P (k) (1)

According to [7], P (x) = Bx, the bell number, which is
given by

Bn+1 =

n∑
k=0

(
n

k

)
Bk (2)

and

P (x) = Bn ∼
1√
n
[λ (n)]

n+ 1
2 eλ(n)−n−1 (3)

Thus,

Mn = Bn+1 ∼
1√
n+ 1

[λ (n+ 1)]
n+ 3

2 eλ(n+1)−n−2 (4)

Clearly, Mn grows exponentially with the number of actors
n for a specific application. The number of mappings for ap-
plications with 5, 10, 15 actors are 203, 678570, 10480142147
respectively.

2) Speed Up Possibilities: To identify speed-up possibili-
ties, the following definitions are introduced.

Definition 1: (ACTOR LOAD) Load of an actor is defined
as the amount of computation required for that actor in a
period and is given by the following formula.

ActorLoad(i) =
ExecT ime(i)×RepV ec(i)

Period

Definition 2: (PROCESSOR LOAD) Load of a processor
is defined as the sum of actor loads for all the actors mapped
onto the processor.

Two methods are proposed to speed-up the analysis stage.
a) Processor Load Based Pruning: Processor load de-

fines the utilization of a processor necessary to satisfy the
throughput requirement of the actors mapped to the processor.
If a processor load is more than one, the actors mapped to the
processor will never be able to meet their throughput require-
ments and therefore, these mappings need to be discarded. The
first speed-up process involves pruning of such mappings to
retain those for which the processor load is less than one.

b) Load Balancing: As shown in Equation 4, the number
of possible mappings grows exponentially with the number of
actors in the application. A load balancing strategy is therefore
proposed to distribute actors evenly on GPPs. Thus a single
mapping configuration is analyzed for a specific number of
GPPs rather than analyzing all the possibilities. With this,
Equation 4 can be re-written with P (x) replaced by x when
load balancing algorithm is applied.

Mn =

n∑
k=0

(
n

k

)
× x = 2n−1 × n (5)

Although, the number of mappings still grows exponentially
with the number of actors, the growth is slower than Eqn. 4.

3) Pareto Optimization: Pareto optimization is performed
on the mappings obtained after initial screening. Optimal
mappings in terms of throughput, resource usage and energy
consumption are recorded which reduces the data size and the
analysis time. According to [15], the Pareto dominance and
Pareto optimal can be defined as follows:

Definition 3: (PARETO DOMINATE) Given vectors u =
{u1, u2, u3, ..., un} and v = {v1, v2, v3, ..., vn}, u is said to
dominate v if and only if ∀i ∈ {1, ..., n}, ui >= vi and ∃i ∈
{1, ..., n}, ui > vi.

Definition 4: (PARETO OPTIMAL) A solution xu ∈ U is
said to be Pareto optimal if and only if there is no solution
xv ∈ U , where xv dominates xu.

Definition 5: (PARETO SUBOPTIMAL) A solution xu ∈
U is said to be Pareto suboptimal if and only if ∃xv ∈ U ,
where xv dominates xu.

Since Pareto suboptimal points are equal or inferior to
their respective dominant points in all aspects, a solution
containing those suboptimal is definitely inferior to another
solution containing its dominant points instead. Thus, Pareto

0 1 2 3 4 5 6

0

200

400

B (E
=1

20
0)

C (E
=1

00
0)

Pareto Optimal
Pareto Sub-optimal

R
e

so
u

rc
e

 T
yp

e
 II

Resouce Type I

A (E
=8

00
)

Fig. 4. Pareto Optimization

suboptimal points are removed at every stage to reduce the data
size and hence shorten the time required for further processing.

Figure 4 plots the two dimensional Pareto space considering
two different resource types4. The bold block points in the
figure represent the area optimal (Pareto optimal) designs
considering the two types of resources. The points marked
with cross are sub-optimal points in terms of design area.
However, some of these sub-optimal points (point A and B
in the figure) can be Pareto optimal when some other metric
(energy for example) is considered. The Pareto optimization
phase is re-visited after the MPSoC architecture is determined
to explore some of these design points (both optimal and sub-
optimal) for potential energy optimization.

C. Use-case Level Optimization

Once the application-level Pareto optimization phase com-
pletes, use-case level optimization is performed. Applications
with shared resources are hard to analyze. Authors in [10]
present a method to predict the performance when multiple
applications are mapped onto shared resource, but provides
no hard timing guarantee. In our flow, it is assumed that
the applications within a use-case will not share the same
processor. Thus, the resource usage for every single application
in a particular use-case is added up to form the resource
requirement for that particular use-case. This is equivalent
to adding the Pareto points. All possible combinations from
the Pareto plots need to be considered in this process. Pareto
optimization is again performed on the set of points thus
obtained.

D. Determine the Final Platform

Resource requirement of the final platform is selected based
on the minimum hardware set required to support a use-case.
As no two use-cases can run concurrently, the minimum set
of hardware supporting all use-cases is to be selected.

A cost function C is proposed in our flow to solve this
problem. If Cn(x) is defined as the cost to have x unit

4The number of dimensions of the Pareto space is equal to the number of
resource types considered in the MPSoC platform.

of Resource Type n, the total cost of the solution can be
expressed as

C =

n∑
k=1

Ck(xk) (6)

where {x1, x2, ..., xn} indicate the usage for resource type
1, 2, ...n for a particular solution. The cost function is user
defined and is used to determine the final platform.

E. Reduce the Number of Configurations
A methodology is proposed to divide the use-cases into

different sets, so that each set can be packed into one
configuration and its resource usage does not exceed the
size determined in the previous stage. This reduces use-case
switching time5.

The problem of combining use-cases into one configuration
is modeled as a bin-packing problem, where every bin is a
configuration and objects represent the use-cases [5]. Bin pack-
ing problem being NP-hard, three approximation algorithms
are proposed to solve the problem. The performance of these
algorithms are evaluated in Section V.

a) Greedy Algorithm: The greedy approach selects the
largest set of the use-cases which can be fitted into the device
at every stage. The algorithm finishes when all the use-cases
are assigned with a configuration.

b) First Fit: The First Fit (FF) algorithm labels the con-
figurations as c1, c2, ..., cn, and the use-cases as u1, u2, ..., un.
For every use-case ux, the algorithm packs it into configura-
tions by the order of 1 to n. ux will be packed into the least
index i such that ci can contain ux.

c) First Fit Decreasing: The First Fit Decreasing (FFD)
algorithm is a variant of First Fit. It reorders all the use-cases
according to their resource usage. Let rx be the resource usage
for use-case ux. The sorted use-cases will satisfy ri ≤ ri+1,
for 1 ≤ i < n. After sorting, the First Fit algorithm is applied.

F. Optimization for Energy Consumption
As established in Section IV-B, the first phase of the design

flow involves selection of mappings to optimize the resource
usage. Energy is not taken into consideration in the Pareto opti-
mization step. However, once the final platform is determined,
it is necessary to explore possibilities of energy minimization
by re-looking at the mappings with energy as another metric in
conjunction with resource usage. This motivates re-visiting the
Pareto optimization step of the design flow (see Figure 4). All
points in the Pareto space are marked with the corresponding
energy numbers (shown in the figure in parenthesis against
some of the points – A, B and C for example). As can be
seen from the figure, point A is Pareto optimal in terms of
energy and suboptimal in terms of resource usage, point C
is Pareto optimal in terms of both energy and resource usage
while point B is suboptimal considering both the metrics.

Energy optimization for each configuration is performed
by selecting one mapping for each application within the
configuration such that the total energy of the configuration
is reduced, honoring the resource usage pre-determined in the
Pareto-optimization step of Section IV-B.

5If two use-cases are in the same configuration, the time required to switch
between them is much reduced since only the communication layer needs to
be re-programmed.

G. Switching Among the Configurations
To switch between configurations during runtime, reconfigu-

ration bitstreams are required to re-program the reconfigurable
devices. As generating bitstreams at runtime can be very
costly, our flow generates all reconfiguration bitstreams at
design-time and stores them on the device.

Modern FPGA devices support reconfiguring only a part of
the FPGA keeping other logic unchanged. Partial reconfigura-
tion is preferred over full reconfiguration when there are only
few changes in the logic, as partial bitstreams are smaller and
take less time to reconfigure6. In this paper, three methods are
proposed to switch among configurations:

a) Complete Reconfiguration: In this technique, the re-
configurable area is completely re-programmed every time
user switches configuration. There are n bitstreams required
for n different configurations supported on the target MPSoC.
However, one drawback of this approach is the long reconfig-
uration delay causing user to wait longer before a system can
be used again.

b) Customized Transition: The idea of customized tran-
sition is to provide customized partial bitstreams for each
possible transition among the use-cases. This method achieves
the shortest reconfigurable delays as the bitstream will only re-
configure the differences between the configurations. However,
considering the possibility of switching between two arbitrary
configurations, 2 ×

(
n
2

)
bitstreams are needed to be stored in

the system. This impacts storage requirements.
c) Base Configuration: In this technique, a base configu-

ration is created and every other configuration is considered as
a variant from this configuration. Figure 5 shows the concept
of this method. The base configuration is a collection of the
frequently used cores and aims to have minimum differences
from other configurations. Thus for each configuration, only
two bitstreams are required – one to reconfigure from the
base configuration to the current configuration and the other
to revert back to the base configuration. By using this method,
the total number of bitstreams required is reduced to 2× n.

One of the three techniques is selected based on the applica-
tion scenario. Configurations requiring frequent switching pre-
fer customized transition bitstreams; complete reconfiguration
is used for configurations with lots of uncommon cores; the
base configuration method provides a compromise between the
other two methods and can be applied for other configurations.

V. EXPERIMENTAL RESULTS

Experimental results are obtained by applying the proposed
design flow on a set of synthetic benchmarks and a multimedia
application case-study. The improvements on the resource
usage, as well as the effectiveness of techniques used in our
flow are described in this section.

The set of synthetic benchmarks consists of 10 applications
randomly generated by the SDF 3 tool [21]. The actor count of
each application ranges from 5 to 7. 80 use-cases are generated
for the benchmark, and 3 to 5 applications are randomly placed
into each of the use-cases. For real application case study, a
multimedia application set is formed with 6 applications7 –

6Configuration time is directly proportional to the size of the bitstream [6]
7Benchmarks from [21][2]

Configuration
A

Configuration
C

Base
Configuration

Configuration
B

Configuration
D

Convert From

Revert To

Convert From

Revert To

C
onvert From

R
evert To

C
onvert From

R
evert To

Fig. 5. The Base Configuration Scheme

TABLE I
COMPARISON OF RESOURCE REQUIREMENT OF THE RESULTING DEVICE

Our Ref. Flow 1 Ref. Flow 2
Design Flow [18] [1]

Resources GPPs RA Size GPPs RA Size

Synthetic 6 1125 FAIL 2319
Multimedia 3 400 FAIL 1000

Synthetic
8 289 11 1889Relaxed

Constraints

two video CODECs (H.263 encoder, H.263 decoder), three
image processing units (JPEG decoder, SUSAN, and Sobel)
and one audio decoder (MP3 decoder). The application set
includes a total of 10 use-cases with applications containing
4 to 14 actors.

The hardware model consists of one type of GPP and
reconfigurable area. Each actor in the application set can be
mapped into two types of cores: GPP or a dedicated core
in the reconfigurable area. Most of the execution time, area
and power values are from the SDF 3 online models and are
normalized with respect to GPP.

Experiments are conducted on a 3.1GHz Intel workstation
running Linux. SDF 3 tool is used in this experiment to
analyze the throughput of the applications.

A. Execution Time
The execution time of the proposed design flow are 6

minutes and 82 minutes for synthetic and multimedia appli-
cation sets respectively. The application analysis stage is the
most time-consuming part of the design flow and consumes
> 99.9% of the total time. This is due to the analysis of
large number of mapping possibilities. Execution time of the
remaining stages in the flow is only 160 ms and 535 ms for
synthetic and multimedia sets respectively.

B. Resource Requirement of the Resulting Device
Table I compares the resource utilization of our flow with

other state-of-the-art design flows [18] and [1]. The flow

A B C D E F G H I J

H26
3

Dec

H26
3

Enc

JP
EG D

ec

M
P3

Dec

SUSAN
Sob

el

0

20

40

60

80

100

R
ed

uc
tio

n
R

at
e

(%
)

Application

Resource Usage Pareto Optimization (2D)
Energy Consumption Pareto Optimization (3D)

Fig. 6. Effectiveness of Pareto Optimization

proposed in [18] is targeted at minimizing the resource re-
quirements for homogeneous platforms. Since all the tiles are
identical, GPP is used as the processing element. However,
this design flow fails to complete for both sets of applications
considered due to the tight timing constraints of some appli-
cations. The flow is therefore compared with ours using a set
of applications with relaxed timing constraints. Result shows
that our design flow achieves 27% reduction in the number of
GPPs with an extra reconfigurable area overhead of 289 units
in comparison with the flow in [18].

The flow proposed in [1] maps multiple applications into
heterogeneous MPSoCs on fully reconfigurable hardware ar-
chitectures. The difference of this approach with ours is that in
[1] resource requirement is determined for every application
prior to the flow thereby having minimal resource for every
application. Experiments with real and synthetic applications
result in reduction of the size of reconfigurable area by 51%
to 85% as compared to [1]. These savings translate to the
reduction in the number of GPPs.

C. Pareto Optimization

Figure 6 shows the effectiveness of Pareto Optimization.
Pareto Optimization for resource usage is performed in 2
dimensions (2D). Only the number of GPPs and the RA
size are considered in the optimization process. For energy
consumption, the Pareto Optimization is performed in 3 di-
mensions (3D) taking GPP, RA size and energy consumption
into consideration.

D. Use-case Reduction and Combination

Figure 7 shows the effectiveness of use-case combination
technique proposed in our flow for a synthetic set of ap-
plications. As can be seen from the figure, our technique
achieves a reduction of more than 60% in the number of
configurations. This greatly reduces the overall time required
to switch between use-cases.

Except for greedy algorithm, all other algorithms finish
execution within 10 ms. The greedy algorithm takes 38
seconds due to the increase in the number of possible sets.
However, when use-case reduction is applied, the execution

80

3738

20

32

20

32

19

Without Reduction With Reduction
0

10

20

30

40

50

60

70

80
N

um
be

r
of

 C
on

fig
ur

at
io

ns

Original
Greedy
First Fit
First Fit Decreasing

Fig. 7. Use-case Reduction and Combination for Synthetic Benchmarks

TABLE II
NUMBER OF CONFIGURATIONS / ENERGY CONSUMPTION TRADE-OFF

Algorithm No. of Config. Energy Reduction Rate
Maximum Average

Synthetic Benchmarks

W
ith

ou
t

R
ed

uc
tio

n Original 80 94.35% 51.49%
Greedy 38 79.89% 20.45%

FF 32 10.33% 2.94%
FFD 32 22.25% 1.97%

W
ith

R
ed

uc
tio

n Original 37 72.97% 41.17%
Greedy 20 50.01% 11.41%

FF 20 46.46% 10.95%
FFD 19 68.88% 5.53%

Multimedia Case Study

W
ith

ou
t

R
ed

uc
tio

n Original 10 72.97% 41.17%
Greedy 5 18.09% 7.01%

FF 5 18.09% 7.01%
FFD 5 25.65% 8.52%

W
ith

R
ed

uc
tio

n Original 5 69.94% 30.10%
Greedy 4 18.09% 8.76%

FF 4 18.09% 8.76%
FFD 4 18.09% 8.76%

time of the greedy algorithm reduces to 20 ms. Thus, use-case
combination technique proposed in this paper is effective in
reducing the number of configurations and hence the overall
performance of our algorithm.

E. Energy Consumption Optimization

Table II shows the number of configurations and energy
savings obtained using our technique. As can be seen from the
table, a trade-off can be observed. With 76.25% reduction of
configurations, our flow achieves an average energy reduction
of 5.53%. However, with no optimization of the configuration,
51.49% energy savings is obtained. The choice is left to system
designer to select the proper number of configurations meeting
the energy budget of the system.

VI. CONCLUSION AND FUTURE WORK

This paper presents a complete design flow to map multiple
applications and use-cases onto a partially reconfigurable

heterogeneous MPSoC Platform. The hardware platform pro-
posed in this flow has a mixture of ASIC cores and Recon-
figurable Areas, and it provides a flexible but yet affordable
solution for high performance embedded systems.

The primary aim of our proposed flow is to determine the
minimum resource requirement for the resulting device, which
can support and guarantee throughput for applications in all
use-cases. This is achieved by analyzing all mapping possibili-
ties of each application. The flow also explores the possibilities
of minimizing the use-case switching time by packing more
use-cases into one configuration. Energy consumptions are
then optimized using spare resources in each configuration.
The technique of Pareto optimization is widely employed
in this flow to reduce the data size and the time required
for further analysis. Some heuristic algorithms for use-case
combining are proposed, implemented and discussed in this
paper. Results show the effectiveness of those algorithms.

In future, we plan to develop more heuristic algorithms and
reduction methods to speed up the analyzing process of the
flow, so that it is able to handle more complex application
models and use-cases. Floor planning aspect for the reconfig-
urable area can also be explored in future.

REFERENCES

[1] I. Beretta et al. A Mapping Flow for Dynamically Reconfigurable Multi-
Core System-on-Chip Design. TCAD, 2011.

[2] Electronic Systems Group at TU/e. MAMPS Website. http://www.es.
ele.tue.nl/mamps/, 2010. [Online; Accessed 18-March-2012].

[3] A. Ghamarian et al. Throughput analysis of synchronous data flow
graphs. In ACSD, 2006.

[4] M. Hubner. Multiprocessor System-on-Chip: Hardware Design and Tool
Integration. Springer Verlag, 2010.

[5] D. Johnson. Fast algorithms for bin packing. Journal of Computer and
System Sciences, 1974.

[6] C. Kao. Benefits of partial reconfiguration. Xcell journal, 2005.
[7] J. Katriel. On a Generalized Recurrence for Bell Numbers. Journal of

Integer Sequences, 2008.
[8] M. Kim et al. Energy-aware cosynthesis of real-time multimedia ap-

plications on MPSoCs using heterogeneous scheduling policies. TECS,
2008.

[9] A. Kumar et al. Multiprocessor systems synthesis for multiple use-cases
of multiple applications on FPGA. TODAES, 2008.

[10] A. Kumar et al. Iterative Probabilistic Performance Prediction for Multi-
Application Multiprocessor Systems. TCAD, 2010.

[11] E. Lee et al. Synchronous data flow. Proceedings of the IEEE, 1987.
[12] J. Leijten et al. Prophid: a heterogeneous multi-processor architecture

for multimedia. In ICCD, 1997.
[13] W. Liu et al. Efficient SAT-Based Mapping and Scheduling of Homoge-

neous Synchronous Dataflow Graphs for Throughput Optimization. In
RTS, 2008.

[14] M. Mandelli et al. Multi-task dynamic mapping onto NoC-based
MPSoCs. In SBCCI, 2011.

[15] R. Mouhoub et al. Multiprocessor on chip: beating the simulation wall
through multiobjective design space exploration with direct execution.
In IPDPS, 2006.

[16] S. Murali et al. Bandwidth-constrained mapping of cores onto NoC
architectures. In DATE, 2004.

[17] Semiconductor Industry Association. International Technology Roadmap
for Semiconductors (ITRS), 2007 edition, 2007.

[18] A. Shabbir et al. An MPSoC design approach for multiple use-cases of
throughput constrainted applications. In CF, 2011.

[19] A. Singh et al. Mapping Algorithms for NoC-Based Heterogeneous
MPSoC Platforms. In DSD, 2009.

[20] A. Singh et al. A hybrid strategy for mapping multiple throughput-
constrained applications on MPSoCs. In CASES, 2011.

[21] S. Stuijk et al. SDF3: SDF for free. In ACSD, 2006.
[22] S. Stuijk et al. A Predictable Multiprocessor Design Flow for Streaming

Applications with Dynamic Behaviour. In DSD, 2010.

