Technology Mapping Flow for Emerging
Reconfigurable Silicon Nanowire Transistors

Shubham Rai, Michael Raitza, Akash Kumar
Chair For Processor Design, CfAED, Technische Universitidt Dresden, Dresden, Germany
<firstname.lastname > @tu-dresden.de

Abstract—Efficient circuit designs can make use of ambipolar
nature of silicon nanowire (SiNW) over CMOS. Conventional
circuit Design-Flow fails to use this inherent functional flexibility
as CMOS based mapping considers a single logical output
from logic gates. To address this, we propose an area-optimized
technology mapping which uses this innate reconfigurability,
offered by SiNW transistors for efficient circuit designs. To
enable this objective, we use higher order functions (HOF) to
encapsulate this extended functionality. Additionally, the elec-
trical properties of SiNW allow us to take advantage of the
available inverted forms of fan-ins for additional savings of area
for XOR logic family. Experimental results using our technology
mapping show that area of SINW based logic design is less by
an average of 18.38% as compared to CMOS flow for complete
MCNC benchmarks suite. Further, we evaluate our flow for both
reconfigurability-aware and static layout for SINW based logic
gates. The whole flow including the new SiNW based genlib and
the modified ABC tool is made available under open source
license to enable further research for any kind of emerging
ambipolar transistors.

I. INTRODUCTION

Capable open-source tools for various stages of EDA are
imperative for progress in academic and industrial research.
With the emerging newer nanotechnology in research, simple
and efficient tools become the most important pillar for
supporting such endeavors. Silicon Nanowires Reconfigurable
FETs (SiNW RFETs) exhibit fully symmetrical p and n-type
behavior in a single device as opposed to CMOS technology.
The authors in [7] showed that such device characteristics can
be exploited to achieve extended functionality. This extended
functionality or better Reconfigurability has been observed in
FPGA or CGRA kind of circuits. However, reconfigurability
observed in such systems is due to coarser grain architec-
tural configurations. Silicon nanowire based transistors have
brought this reconfigurability at the transistor level. SINW
provides a complementary technology to CMOS by adding
more functions per transistors. Further, being a dopant-free
technology, RFET integration can be directly implemented
onto the back-end of CMOS chip [15].

There are well-developed tools catered for logic and physi-
cal synthesis. Logic synthesis in design flow primarily includes
minimization, optimization and technology mapping flow for
a logic circuit. From 1985, various tools like MIS [5], MIS-
MV [8], SIS [11], BDS [17], CUDD [12] enabled logic
minimization and optimization. And Inverter Graph (AIG)
paved the way for ABC [4] which exploited the boolean
completeness of AIGs and implemented various algorithms
for logic synthesis. Recent works like MIG [2], Amaru et.al.
have for the first time tried to target logic synthesis for newer
nanotechnologies. Similarly, MixSyn [3] and Xor-Majority-
Graphs [6] exploited logic minimization in the circuit by
optimizing XOR and AND/OR logic segments within the same
circuit.

None of the above works made use of runtime reconfig-
urability offered by SiNW RFETS in larger circuits. They

978-3-9819263-0-9/DATE18/)2018 EDAA

primarily used CMOS congruous flow of single logic output
from RFET based logic gates in larger circuits. All recent logic
synthesis tools mentioned above targeted the logic optimiza-
tion and minimization of electronic circuits. There was no such
attempt to define technology mapping flow for circuits based
on silicon nanowire RFET which can later use this exceptional
property to choose from a range of functionality from the same
device at runtime. Our present work in this particular domain
defines efficient technology mapping flow of logic circuits
based on silicon nanowire RFETSs.

Contributions: The contribution in the present work are:

« We encapsulated reconfigurability with higher order func-
tions, HOF for mapping of efficient circuit designs using
silicon nanowires RFETs based logic gates. This moves
away from the normal CMOS flow in which logic gates
have a single immutable function. This enables mapping
one of the multiple yet mutually exclusive functions
expressed by HOFs for reconfigurable aware circuits.

o Based on transfer characteristics of silicon nanowires, we
put forth an algorithm to contribute to area savings, by
using available inverted forms of fan-ins from the circuit
for XOR logic family.

« We propose a novel methodology for technology mapping
flow suited for functionally enhanced logic gates based
on emerging nanotechnology. The target technology in
our case is silicon nanowire but can be extended to any
emerging nanotechnology. The new flow potentially can
be easily integrated with upcoming logic synthesis flow
like [3], [2] to enable reconfigurable aware logic circuits.

In order to elucidate the above contributions, experiments on
MCNC benchmarks [18] shows the area numbers for SINW
based logic gates using the above flow after mapping is
18.38% less than as compared to the normal CMOS flow. The
whole flow is available online under open source license to
enable further research in this domain [13]. The remainder
of this paper is organized as follows. Section II gives the
background of logic synthesis work and how silicon nanowire
as a technology has been used in circuits. Section III describes
higher order functions. Section IV mentions the area opti-
mization algorithm through shared inverted fan-ins. This is
followed by overview of the flow in section V. Experiments
are explained in section VI. Discussions are detailed in section
VII. Concluding remarks are given in section VIII

II. RELATED WORK AND MOTIVATION

In [15], Trommer et. al. showed efficient and programmable
combinational logic gates based on SiNW RFETs. It was
shown that because of this extended functionality, a single
transistor can replace logic by several transistors. Further, in
[10], the authors demonstrated the potential of reconfigurable
transistors in a conditional carry adder circuit by showing

767

area and delay gains. These works showed the benefits of
SiNW RFETs at the circuit level, MIG[2], MixSyn[3] explored
data structures and algorithms to exploit logic minimization
and optimization flow. In [1], Amaru et. al. showed that
majority functions are natural functional representation for
SiNW FETs. In MixSyn, the authors tried to partition and
employed different optimization for XOR intrinsic parts of the
circuits and AND/OR parts of the circuits. This tool explored
the XOR implementations offered inherently by ambipolar
devices as mentioned in [9]. None of these works truly
exploited reconfigurability offered by SiNW and undermine
their benefits by using an analogous CMOS flow. While [15]
and [10] have demonstrated specific cases of individual gates
to simple manual designed circuits, no methodology has been
proposed especially for SINW RFETSs.

In this work, we introduce a mapping flow for circuits by
utilizing the flexibility in terms of functional output of SINW
RFETs logic gates. Further, we propose a potential saving
in the area by reusing inverter logic available in the circuit
for XOR-based logic gates. The present work streamlines the
technology mapping stage of logic synthesis step so as to
enable reconfigurability.

Silicon Nanowire Reconfigurable Transistors

Reconfigurable FETs as a doping-free technology is enabled
with sharp metal contacts forming two Schottky junctions at
the source and drain as shown in Fig. 2. One can notice
the V-shaped I-V characteristics demonstrating both p and n
functionality from a single device. The gate overlapping with
the drain is called the Program Gate (PG) and determines
the overall behavior of Silicon nanowires transistors. The
Control Gate (CG) overlaps with the source and controls the
carrier flow [15]. An important property of these devices, that
unlike CMOS the on-current resistance does not depend on the
channel length but it is dominated by source-sided Schottky
Barrier [16]. These facilitates adding extra gate terminals over
the nanowire channel without loosing performance. Hence,
multi-gate extensions of RFETs like three input gate FETS
(TIGFETs) and multi-input gate FETs (MIGFETS) are possible
[19]. Interesting extensions of such polarity-controlled de-
vices reported in recent works [14] include germanium based
nanowires which show better threshold voltages and higher
normalized on-currents as compared to existing nanowire
technology. These emerging devices with greater potential
on offer, require a feature-rich design flow (both logic and
physical synthesis) which can make use of enhanced properties
of such newer devices.

III. ENCAPSULATING RECONFIGURABILITY THROUGH
HIGHER ORDER FUNCTIONS (HOF)

Reconfigurability is achieved in SINW at runtime by chang-
ing the polarity of the program gate terminals. In terms of
mathematics, reconfigurability can be encapsulated using a
Higher Order function as described in the following equation:

f(l'7 Y, z, w) = g($7 Y, Z)v when w =0

= h(z,y,z),when w=1
Here f is a HOF of four variables. Functions g and f are
two different functions. In the above expression, f can be
represented in terms of functions g and 4 depending upon the

values of w. Function f can be seen encapsulating functions g
and h. Analogous to the above mathematical function, SINW

768

2XOR(P =1)
2XNOR(P = 0) 5
3XOR (P = Input)

oW >

CG—'i PTYPE
c6—]

PGﬂOl <

CG—I N-TYPE PG
RFET
P

(a) SINW RFET (b) XOR based on RFETSs
Fig. 1: SINW RFET based logic Gate and comparison with CMOS

XN

L LI
i

> w|o|

1E3

Silicon nanowire
Nickel silicide nanowire (metal)

TIGFET
Drain Current I, (wA/um)

4
PG 1E-5
Silicon oxide shell /G \ / 1E9
~ -1.2 0 1.2
Gate electrodes Control Gate Voltage V (V)
e STCG N-program e SrcG p-program
= = MidG n-program = = MidG p-program

Fig. 2: Silicon Nanowire three independent gate (TIGFET). The
graph shows symmetry in p and n-type behavior for SiINW RFET [10]

RFET has been shown to behave as p-type and n-type and
that choice can be made by changing the potential of Program
gate. The program gate is the w of the above function. This
can be very well represented by the Fig. 1a. A SINW RFET
with two gate terminals can be easily be represented as a
NMOS and a PMOS whose outputs are going to a 2tol MUX.
The select line of that mux is basically the PG terminal of a
RFET. Functionally, we can say that a RFET is a higher-order
representation of the two kinds of MOSFETs, followed by a
MUX. Adding to that, since electrical property can change by
changing PG, this brings runtime reconfigurability similar to
a MUX.

Such mathematical concept is not new in electronics, and
an Arithmetic Logic Unit (ALU) is a perfect example of
such systems where a user has an option to choose from a
set of arithmetic functions. The whole ALU function, can be
seen as a function f encapsulating functions like addition,
multiplication as g and h respectively. This kind of recon-
figuration is available because of extra circuitry and nice part
of such circuit is that you have multiple control paths which
can give more than one function simultaneously. We term
this reconfigurability as extrinsic reconfigurability. This is
shown in Fig. 3a. We can see that each inbuilt logic function
does produce multiple outputs through multiple control paths
shown as O1, 02, O3 and O4. At the end, the MUX is used
to select the required output. We can see from the figure
that logic functions from each logic gates are implemented
independently and their selection is done by MUX at runtime.

The enhanced functionality exhibited by SINW RFET dif-
fers from that of a configurable circuit like ALU as there is a
mutual exclusion in the availability of multiple functions for
SiNW RFETs. By mutual exclusion, we mean that a RFET
based logic gate can have one and only one logical output at
a single instant of time unlike extrinsic reconfigurability. This
mutual exclusion is the result of the the way input variables are

Design, Automation And Test in Europe (DATE 2018)

2NAND (P=0)
it =2NOR (P=1)
3 MIN(P=input)

Cout

Full Adder

MIN_NAND_NOR

A
B
‘ Output
B F
B—f —A
F1 P—q —P
T p ut
Fo 04 — 2
XOR =
a—f

(a) Extrinsic Reconfigurability ~ (b) Intrinsic Reconfigurability

Fig. 3: Higher Order Functions explained

Fig. 4: Area optimization using Inverter Adjustment

connected to the gate terminals of the HOF. This is shown in
Fig. 3b. Unlike extrinsic reconfigurability, there is neither extra
circuitry involved here, nor are there multiple output paths
followed by a selection procedure. The unique behavior is
possible due to electrical properties of SINW RFETs. We term
such kind of reconfiguration as intrinsic reconfigurabilty. An
example of such logic gate is given in Fig. 1b. It represents a
four transistor structure. It can behave as a XOR when P =1,
a XNOR when P = 0 and a 3-XOR function when P is the
third input.

Extending this transistor behavior, we have logic gates
which can show multiple functionalities from the same struc-
ture as mentioned in [15]. Such instances of logic gates which
show multiple functionalities can be termed as higher order
functional (HOF) Gates. While it is possible to realize HOF's
in CMOS, they are generally made of higher number of
transistors. This concept is novel in SINW RFEts, as opposed
to CMOS because in CMOS, where there is only one gate
terminal, and any configuration of inputs will ultimately give
a single logic output. Such expressive power of intrinsic
reconfigurability can be very well represented using HOF
gates. We use HOF's for mapping of reconfigurability aware
electronic circuit.

IV. AREA OPTIMIZATION THROUGH SHARING OF
INVERTED FAN-INS

An important difference to note among the logic gates
proposed in [15] are the XOR family of logic gates. In both

Design, Automation And Test in Europe (DATE 2018)

renditions of the XOR gate i.e. 2-bit XOR or 3-bit XOR, the
complemented and actual forms of each input are required in
the logic gate. So in order to calculate the actual number of
transistors involved in these logic gates, we must include an
inverter for getting the inverted phase of each input within
the logic gate boundary. Like in XOR2_XNOR we have A
and B required in both the phases. Hence, overall area for the
XOR-based logic gates would increase by a factor of Nos of
input_variables x 2(RFETSs). This is an overhead which
we have to take into account.

However, if we are using the XOR logic at multiple places
in a logic circuit and if some of the fan-ins are available in the
inverted form within the logic circuit, then that can lead to the
redundant use of inverters. Hence, we explore the feasibility
of harnessing such inverted forms of fan-ins available in the
circuit. An obvious problem arises as complemented forms of
fan-ins available from other parts of the logic circuit add to the
fanout delay due to the longer length of metal wires. We solve
this problem by utilizing the unique electrical properties of
silicon nanowire multi-gate RFETs. XOR family of logic gates
uses interior gate terminals of multi-input RFETs. Authors in
[10], states that the gate terminals placed above the Schottky
barrier in RFETs are faster gate terminals. In Fig. 2 I-V
characteristics of interior gate terminals are represented by
dotted lines exhibit steeper slope for transitions. In XOR both
these inputs are fed to these faster gates terminals. Therefore,
the faster interior gate terminals compensate the delay caused
by the long length of metal wires. Hence, in cases of logic
circuits which have these inputs already available in inverted
forms in other parts of the circuit, it is feasible to use such
inverted forms for these logic gates thereby reducing the
overall number of transistors required in the circuit.

Fig. 4 illustrates area optimization in logic network. The
cloud-shaped part represents the combinational parts of a
logic network. There are three XOR nodes whose fan-ins
are shown along with a bubble, signifying inverters required
for complemented input. Consider the XOR node 1 which
has one fan-in coming from the primary input (blue arrow)
and other coming from the left combinational part(red arrow).
However, we can see that inverted forms of both the fan-ins
are available in the circuit and hence a suitable scenario for
area optimization is possible here as shown through dotted
lines. In this case, our algorithm will get away with both the
internal inverters in the XOR gate. Similarly, for XOR node 3,
one of the fan-ins are available in inverted form (green arrow)
and that too contributes to area saving. XOR node 2 has none
of the fan-ins available from the circuit and will have inverter
contribution for both the fan-ins. Logic networks using XOR-
based logic family can tap this kind of optimization to reduce
the overall area. Further, limiting the inverter sharing for a
certain number of fan-ins is required to prevent higher fanout
delays, if a single inverter output is shared by multiple XOR
gates. Such logic sharing during the technology mapping also
eases out later stages of physical design. Circuit designers can
use such optimization scheme and can predict the overall use
of inverters in the final layout of the circuit.

To calculate the number of such available inverted signals,
we refer to the pseudo code shown in Algorithm 1. Initial area
during mapping is calculated in Area. If a particular node
matches with the XOR family, we look for available inverted
forms of fan-ins in the overall circuit. An area adjustment
is required at the same time for every available fan-in. The

769

Algorithm 1 Area Savings using already available inverted
fanins
Input: Mapped Network G

Initial Area of a Mapped network = Area

1: while Iterate over each node in G do

2: if Node.Match == XOR Family then

3: while iterate over each node in G do

4: if Node Fanin available in inverted forms then
5: Mark such fanins

6: end if

7: end while

8: end if

9: Adjust the final Area Final_Area

10: end while

11: if Area < Final_Area then

12: Check for other mappings of G

13: end if

Output: Choose the mapping with the min area

| BLIF File |

]

| Logic Optimization |

1 — SINW Genlib

HOF Based Optimization

Technology
Mapping
Engine

Area saving through
Inverter adj.

Reconfigurable
Aware Netlist

Static Layout|Optimization

Final Mapped
Netlist

— Physical Synthesis

Fig. 5: Entire technology Flow suited for SINW RFETs

mapper finally gives that mapping, which has the lowest area
of the overall circuit. Instances of XOR logic gates which does
not find such available fan-ins, contribute with their default
area.

V. TECHNOLOGY MAPPING FLOW FOR RFETS

Fig. 5 shows the complete flow of our technology mapping
for logic design based on SiNW Reconfigurable FETs. The
output after the logic optimization is fed to our technology
mapper. The higher order functions encapsulate reconfigurable
logic gates based on silicon nanowires RFETs. At first, the
mapping is carried out using higher order functions followed
by area optimization using inverter adjustments. The output
of this technology mapping is a netlist which is basically
a reconfigurable-aware logic circuit. Until this point, each
component in the circuit is a HOF and can exhibit runtime
reconfigurability depending upon input P at program gate for
each logic gate [15].

770

TABLE I: Genlib for RFETs

Name
of the identifiers. Nos. of fn. | Area Ist fn. (HOF) 2nd fn., 3rd fn
gate
invl 1 O=la
nand2. Ol=(({(a*b)) * lc 02 =!(a*b
nor2_ sinw 3 2.625 =((1@*0) * 1) =Ha*),
. + ((!(a+b)) * c) 03 = !(a_b)
min3
xor2_ Ol=((a"b) * Ip) + 02=a b
xnor2_ sinw inv_adj | 3 55 - » =t
(!@ab) * p) 03= I(a’b)
xor3f
mux 4.5 O=(!s*a)+(b*s)
aoi_oai2l sinw 2 Ol=!(a*b+c) 02=!((a+b)*c)
O=((!(a*c + (lc)*b))*e) +
emux 85
(Ia*d + (!d)*b)*(le))
nand3_nor3 | sinw 2 3.25 Ol= !(a*b*c) 02 = !(atb+c)
A . Ol= ((a*b)+(b*c) .
maj_min sinw 2 4.75 02=!((a*b)+(b*c)+(c*a))
+(c*a))
xor3_xnor3 sinw inv_adj 2 9.75 Ol=(a"b’c) 02 = !(a’b"c)
After this, the user has an option to choose a

reconfigurability-aware layout or a static layout. Static layout
indicates that the logic gate’s functionality is defined by
the layout and runtime reconfigurability cannot be used. For
runtime-reconfigurability, the reconfigurable-aware netlist can
be left as it is with all the P’s of each logic gate as inputs, to be
defined by the circuit designer at runtime. For the static layout,
the P of all logic gates have to be fixed to either V4 or Vi so
that a logic gate loses its runtime-reconfigurability and behave
as CMOS analogous logic gate. In this case, the logic circuit
gains in terms of area with fewer transistors. Circuit designers
have to take care of this trade-off between the number of
transistors and reconfigurability with their designs. After this
decision, the netlists can undergo through physical synthesis
process for the final circuit.

VI. EXPERIMENTS

In this section, we present our experimental setup for com-
paring area post reconfigurability-aware technology mapping
for both SINW and CMOS technology. The area in terms of
numbers of transistors is shown for both the flow.

A. Silicon Nanowire RFETs based Genlib

To enable ABC tool to support multiple functionalities for
SiNW RFETs logic gates, genlib has to be modified to support
the above mentioned changes. Since SINW has multiple func-
tionalities, a logic gate entry in genlib has to updated with the
number of outputs it can support and a description of those
outputs. In order not to interfere with the normal flow of ABC,
we have used sinw identifier in genlib. The area numbers are
carefully calculated taking consideration of all the factors.
Since the area here is basically the number of transistors,
hence a RFET with one control gate and one program gate is
considered as 1 transistor. Hence, an inverter has 2 RFETs and
just like the CMOS flow, the area of the inverter is considered
as 1. All other logic gates are normalized with respect to the
area of the inverter. Since other logic gates have TIGFETs
and MIGFETs, we have to consider the area occupied by
these multi-gate FETs. This kind of consideration has been
missing from previous works in this domain. The contributions
of multi-gate FETs are taken according to Table II. To enable
this area optimization due to inverter sharing in ABC tool, we
have added a the inv_adj identifier in the genlib to the gate
definition.

Design, Automation And Test in Europe (DATE 2018)

TABLE II: Area for multi input Gates FETs

FET type PG + CG Area

RFET T+1 1

MIGFET 1+3 1.50

TABLE III: Time and Area Numbers between CMOS and SiNW
RFETSs
Bench- Tin‘fe Tifne Time Area | Area | Area invA Invi
marks C (in | S(in S'S e s ss Adj. Adj.
sec) sec) (in sec) SS S

C432 0.01 0.01 0.01 416 482 351 16 17
C1355 0.02 0.03 0.03 752 714 626 112 15
C1908 0.01 0.02 0.01 725 804 644 67 12
C2670 | 0.02 | 0.02 | 0.02 1309 | 1382 | 1034 | 38 28
C3540 | 0.02 | 0.03 0.02 1889 | 2398 | 1828 | 32 31
C6288 0.13 0.18 0.16 4429 | 3063 | 2755 | 218 203
C7552 0.06 0.1 0.08 3842 | 3870 | 3162 170 155
t481 0.05 0.04 0.05 2445 | 3025 | 2119 | O 0
rot 0.03 0.03 0.03 1110 1357 | 981 13 13
b9 0.02 0.03 0.02 184 230 173 0 0
dalu 0.05 0.06 | 0.05 2382 | 2941 | 2335 | 17 39
des 0.11 0.11 0.11 7619 | 8344 | 6171 200 111
k2 0.06 0.05 0.05 3076 | 3735 | 2544 | O 0
Avg. 0.05 0.05 0.05 67.92 | 48.00

In Table I, for nand_nor_min the number 3 is the number
of functions this logic gate can offer which are defined by
01, O2 and O3. Then 2.625 is the area dependent upon the
number of RFETs, TIGFETs and MIGFETSs normalized to
the area of an inverter. We are not taking the delay in the
calculations of present work. There are 8 different logic gates
in this genlib which are defined by the functions each can
support. In [10], the authors proposed an E-MUX to replace a
two-stage MUX with a single logic gate which further enabled
reduced area and delay numbers. We have included the E-
MUX logic gate in our genlib. The present work provides a
simple mechanism to include and analyze the benefits of such
futuristic combinational logic gates.

To study static layout optimization as shown in Fig. V, we
carried out experiments using a modified genlib. We assume
beforehand that a particular logic gate has a single functional
output i.e. no reconfigurability. By assuming this, we can get
away with the inverter area within the logic gate boundary
required by program gate terminal of a RFET. Unfortunately,
with this change, we will loose HOFs. From the layout point
of view, we have to maintain the Vdd and Vss at P and P.
Actual layout can be decided during physical synthesis. Thus,
in almost (except MUX and EMUX) all the logic gates the area
is made one unit less. For example in nand_nor_min3 logic
gate, the area assumed for the first case is (1.25+242)/2 =
2.625. The new area would be 1.625. Similar adjustments are
made in all the logic gates and the area is calculated again for
the same set of benchmarks. It is to be noted that this reduction
will not be incremental for XOR family logic gates, as the
inputs are still required in both normal and complemented
forms apart from the program gate. This would be analogous to
CMOS flow with all the logic gates having unitary functional
output.

Design, Automation And Test in Europe (DATE 2018)

k2
des
dalu

B Time_S (in sec)
 Time_C (in sec)
Time_SS| (in sec)

rot
1481
C7552
C6288
C3540
C2670
C1908
C1355
C432

Benchmarks

o

0.02 0.04 0.06 0.08 0.1 012 0.14 016 0.18 0.2

Time (in sec)

Fig. 6: Time Taken by Various Flow
40.00
30.00

20.00
10.00 .
0.00 b
! ool e o c,x q o
CXl K o}’ \\x CIY° *
W Net Incr. Area (S-C) in %

Q

S m—

-10.00 ¢} ¥

-20.00

Net Difference w.r.t. CMOS (in %)

-30.00
® Net Incr. Area (S-C) with inv Adj.in %

SS-C) in %
SS- C) with inv. Adj.

Netincr. Area

-40.00

= Net Incr. Area
-50.00 In%

Benchmarks

Fig. 7: Area Numbers Comparison for Various Flow

B. Experimental Setup

The optimization for mapping with hof based logic gates is
done in ABC tool. We have used the ABC tool as it’s the state-
of-the-art logic synthesis tool with a well-developed covering
and mapping flow. All the standard optimizations in ABC are
intact and there is no interference with the default flow. In our
experiments we have just used the ABC commands strash and
balance of the logic network. For timing calculations, we used
time command after map command. The area numbers are
through print_gates commands which also list the adjustment
due to the availability of inverted fan-ins. The benchmarks
used in our experiment are the MCNC benchmarks. The area
numbers for both the flows are compared post the mapping
phase.

VII. RESULTS AND DISCUSSION

Results for the three flows on MCNC benchmarks are listed
in Table III. Due to restriction in space, we are showing
the results for benchmarks suggested for combinational multi-
level set [18]. The letters C, S and SS refer to the CMOS
flow, SINW reconfigurability-aware flow and SiNW static flow
respectively.

A. Time Comparison

The columns in Table III— Time_S, Time_C, Time_C refers
to the time taken by the three cases in seconds during mapping
by ABC tool. From the graph in Fig. 6 it is clear that in
almost all the cases, the time taken by the new mapper is
similar to the CMOS genlib based default mapping. In some
cases, as in C6288, the time taken for Silicon Nanowire flow

771

is more because the mapper uses a large number of XOR
family gate (260 in this case). The XOR gates enables the
area saving due to inverter adjustments which takes some
iterations. Hence if the circuit contains a large number of
XOR nodes, the time taken by the mapper increases slightly. In
contrast, the benchmark t481 takes less time than CMOS flow
because the mapper doesnot use any XOR family gates. The
final averages of 219 testcases are 0.030, 0.033, 0.031 seconds
respectively for CMOS flow, SiNW reconfigurability-aware
and SiNW static flow. Hence, the new mapping is similar to
the contemporary CMOS mapping.

B. Area Comparison

In Table III, the columns Area_C, AREA_S and Area_SS
are the areas number for three runs computed by print_gates
command in ABC. We calculated the net difference with
respect to the CMOS flow for the SINW Flows as shown
in the Fig. 7 Net increase in Area (S-C)% and similarly Net
increase in Area(SS-C) %. Another parameter is to include the
area saving due to the availability of inverted fan-ins in case of
XOR family gates which are represented in respective columns
as Inv. Adj. and Inv. Adj. SS. The net difference with respect to
CMOS flow including inv. adjustment is also calculated. From
the positive averages we can see that due to reconfigurability,
there is an obvious area overhead. That can be also guessed
since all the logic gates mentioned in Table I has the larger area
than their corresponding logic gates in MCNC.genlib. That is
true as well considering the fact that reconfigurability will
surely have an area overhead.

From the graph in Fig. 7, we can notice some benchmarks
are anomalies as they have lesser area as compared to CMOS.
That is true when the mapper uses more higher order functions
to match nodes of the logic circuits. Further, if the circuit
has more XOR based family and if inverted fan-ins are
available, then there would be greater area savings. Some of
the mappings in the complete 219 benchmarks, also used emux
(the new gate we added in genlib) and that leads to extra saving
as it is 5 fanin gate.

The final average net difference of area w.r.t to CMOS for
complete 219 testcases are 17.48% and 16.25% for mapping
of reconfigurable SINW logic Gates. The numbers come down
to —13.76% and —15.05% for mapping of static logic Gates.
For the benchmarks in Table III, net difference comes out be
11.95% and 9.62% for reconfigurability-aware and —14.81%
and —18.34% . The average area saving due to sharing of
inverted fan-ins for complete benchmark suite is 8.2 for
reconfigurability-aware flow and 9.26 for static flow. Further,
this static flow will greatly reduce the routing area as the logic
gates can be changed such that the program gate and the source
and drain are connected to the VDD and VSS within the gate
boundary. The above-mentioned flow can act as a predecessor
to pass information for physical synthesis flow.

An important feature of the above algorithms for mapping is
that it can be potentially extended to any other logic synthesis
tool. This means that for tools like MIG [2], Mixsyn [3] which
were basically extending abstraction for emerging technologies
and have shown better results as compared to ABC in logic
synthesis can be coupled with our algorithm.

VIII. CONCLUSION

In the present work, we demonstrated a modified technology
mapping flow which enables the use of reconfigurable logic

772

gates based on SiINW. We included multi-input gates in our
technology mapping flow to show their benefits in larger range
of circuits. Through experiments, a comparison between static
and reconfigurable-ready technology mapping was done in
terms of area numbers keeping the logic optimization and
minimization steps intact. For flows in which reconfigurability
is not enabled, we get better area numbers (on an average
less 18.38%) with SINW technology as compared to CMOS.
Performance of the new mapping flow was also evaluated
and was found to be similar to the default mapping flow of
ABC. Useful concepts to encapsulate reconfigurability using
Higher Order Functions were also elaborated. A mechanism
to contribute to area saving was presented for XOR-based
logic family using already available inverted forms of fan-
ins. In this paper, we have shown the technology mapping
of reconfigurable SiNW logic gates for larger circuits. The
flow described here is not limited to SINW RFET but can be
extended to any emerging reconfigurable nanotechnology.

ACKNOWLEDGMENT

This work is supported in part by the German Research
Foundation (DFG) within the Cluster of Excellence “Center
for Advancing Electronics Dresden” (CfAED) at the Technis-
che Universitdt Dresden.

REFERENCES

[1] L. Amaru, P. E. Gaillardon, and G. De Micheli. “Efficient arithmetic
logic gates using double-gate silicon nanowire FETs”. In: NEWCAS.
2013.

[2] L. Amard, P. E. Gaillardon, and G. De Micheli. “Majority-Inverter
Graph: A New Paradigm for Logic Optimization”. In: TCAD (2016).

[3] L. Amaru, P. E. Gaillardon, and G. De Micheli. “MIXSyn: An efficient
logic synthesis methodology for mixed XOR-AND/OR dominated
circuits”. In: ASP-DAC. 2013.

[4] R. K. Brayton and Alan Mishchenko. “ABC: An Academic Industrial-
Strength Verification Tool”. In: ed. by Tayssir Touili, Byron Cook, and
Paul Jackson. Springer Berlin Heidelberg, 2010.

[S] R. K. Brayton et al. “MIS: A Multiple-Level Logic Optimization
System”. In: TCAD (1987).

[6] W. Haaswijk et al. “A novel basis for logic rewriting”. In: ASP-DAC.
2017.

[71 André Heinzig et al. “Reconfigurable silicon nanowire transistors”.
In: Nano Letters (2012).

[8] L. Lavagno et al. “MIS-MV: optimization of multi-level logic with
multiple-values inputs”. In: /CCAD. 1990.

[91 M. De Marchi et al. “Polarity control in double-gate, gate-all-around

vertically stacked silicon nanowire FETs”. In: 2012 International

Electron Devices Meeting. 2012.

M. Raitza et al. “Exploiting transistor-level reconfiguration to opti-

mize combinational circuits”. In: DATE. 2017.

E. M. Sentovich et al. “Sequential circuit design using synthesis and

optimization”. In: ICCAD. 1992.

Fabio Somenzi. “CUDD: CU decision diagram package release 2.3.

0”. In: University of Colorado at Boulder (1998).

Technology Mapping Flow for Reconfigurable Silicon Nanowire

FETs. URL: https://cfaed.tu-dresden.de/pd-downloads.

J. Trommer et al. “Enabling Energy Efficiency and Polarity Control

in Germanium Nanowire Transistors by Individually Gated Nanojunc-

tions”. In: ACS Nano (2017).

J. Trommer et al. “Reconfigurable nanowire transistors with multiple

independent gates for efficient and programmable combinational

circuits”. In: DATE. 2016.

W. M. Weber et al. “Non-Linear Gate Length Dependence of On-

Current in Si-Nanowire FETs”. In: European Solid-State Device

Research Conference. 2006.

Congguang Yang and M. Ciesielski. “BDS: a BDD-based logic

optimization system”. In: TCAD (2002).

S. Yang. Logic Synthesis and Optimization Benchmarks User Guide:

Version 3.0. 1991.

Jian Zhang, Pierre Emmanuel Gaillardon, and Giovanni De Micheli.

“Dual-threshold-voltage configurable circuits with three-independent-

gate silicon nanowire FETs”. In: ISCAS. 2013.

[10]
[11]
[12]
[13]
[14]

[15]

[16]

[17]
(18]
[19]

Design, Automation And Test in Europe (DATE 2018)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

