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Does dynamics reflect topology in directed networks?
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Abstract. – We present and analyze a topologically induced transition from ordered, synchro-
nized to disordered dynamics in directed networks of oscillators. The analysis reveals where
in the space of networks this transition occurs and its underlying mechanisms. If disordered,
the dynamics of the units is precisely determined by the topology of the network and thus
characteristic for it. We develop a method to predict the disordered dynamics from topology.
The results suggest a new route towards understanding how the precise dynamics of the units
of a directed network may encode information about its topology.

Networks of interacting units prevail in a variety of systems, ranging from gene regulatory
networks and neural networks to food webs and the world wide web [1, 2]. A fundamental
question is: What kind of dynamics can we expect given a network of prescribed connection
topology [3]? Even in networks of known dynamical units, known type of interactions between
them and known topological details, it is hard to infer which kind of typical collective dynamics
the network will display (cf. refs. [3–6]). If parts of the network exhibit residual symmetries,
such as permutation or translation invariance, some general properties of the dynamics can
be deduced [6]. If, however, no symmetries remain, it is still an open question how topological
factors can control network dynamics. See, e.g., [7–9] for some interesting recent approaches
for phase oscillator networks of specific connectivities.

In this letter, we study directed networks of phase oscillators that exhibit a mechanism to
synchronize and reveal general principles about how topology controls dynamics: Specifically,
in networks with an invariant state of in-phase synchrony we analyze how the topology can
control the units’ dynamics in a neighborhood of synchrony. We find that such networks,
depending on their coarse-scale topological properties, belong to one of two classes exhibiting
very different long-term dynamics: Networks of class I show in-phase synchrony in which
each unit displays identical dynamics, independent of the unit’s topological identity [10], i.e.
independent of where in the network it is located. Networks of class II, instead of synchrony,
show disordered dynamics. Here, together with the initial condition, the fine-scale topology
precisely controls the dynamics of each unit. The dynamics therefore strongly depends on
where the unit is located in the network —its topological identity. We develop a method
to predict the disordered dynamics from the network’s topology. Due to their topological
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Fig. 1 – Synchronization-disorder transition in directed network dynamics. (a), (b) The long-time
dynamics of two different random network realizations of N = 100 units with the same connection
probability p = 0.05 started from the same random initial condition. The phase differences ∆φi :=
φi − 〈φj〉j with respect to the average phase 〈φj〉j of all units are shown vs. the units i, plotted
relative to their possible range, 2π.

origin, both the separation of the ensemble of networks into two unique classes and the specific
disordered dynamics realized by a network appear to be general phenomena and not restricted
to the system studied here.

Let us elaborate these findings. Consider a network of N phase oscillators i that interact
via directed connections. The network topology is arbitrary and determined by the sets
In(i) of those units j that have input connections to i, denoted j → i. We analyze a simple,
paradigmatic model of interacting periodic oscillators, the Kuramoto model [11–13] defined by

d
dt

φi(t) = ωi +
∑

j∈In(i)

Jij sin(φj − φi), (1)

where the phase variable φi(t) ∈ [0, 2π) (with periodic boundary conditions) determines the
state of unit i at time t, ωi is its frequency, and Jij ≥ 0 is the strength of coupling from j
to i with Jij = 0 if there is no connection j → i. In order to stress the topological effects,
we neglect inhomogeneities in the dynamical parameters: we consider identical units ωi = ω
and homogeneous total input coupling strengths such that

∑
j Jij = J (in all illustrating

examples we choose Jij = J/ki if unit i receives ki input connections from other units j).
Without loss of generality, we take J = 1 in the following. We consider initial states in a
neighborhood of the in-phase synchronous solution to reveal those features that apply for
other oscillator networks as well.

Observing the dynamics (1) on different topologies, it was intriguing to find that seem-
ingly similar networks (such as realizations of networks with identical degree distribution) yet
displayed very different dynamics. Consider, for instance, the long-term dynamics of random
networks in which every connection j → i is present with probability p. Several such networks
show in-phase synchrony (cf. fig. 1a). Thus, the final states of the units display no information
about the network topology. The units’ topological identity is hidden. Other networks with
identical statistical properties display disordered periodic dynamics, even when initialized in
the same state (fig. 1b). In such disordered states almost every unit displays a different phase.
It turns out (see below) that the network topology precisely controls the dynamics of these
units. The units’ dynamics thus display their topological identity!

This phenomenon raises a number of questions. In which networks and how does the
disordered state emerge? What determines the individual units’ dynamics if the network
displays disorder?

To answer these questions, we studied the dynamics of small networks that exhibit qualita-
tively the same disordered state (see, e.g., fig. 2a). We tried to find a systematic dependence
of the units’ states on the network topology. As a first step, we ordered the units of the
network (fig. 2a) such that units with similar phases are displayed at proximate positions
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Fig. 2 – (Color online) Dynamics of small networks (N = 11) started from the same random initial
condition. The upper column of each panel displays the directed networks with units labeled i ∈
{1, . . . , N}. The lower displays the relative phase differences ∆φi/(2π) vs. i. (a) A network with
homogeneous in-degree ki = 2 for all units i exhibits an irregular asymptotic state. (b) Same network
as in (a) with units with similar phases grouped. (c) A network with only one more directed edge
(8 → 6) (red; red dashed edge in (a)) compared to that of (b) induces a completely ordered state
with identical dynamics of all units.

(fig. 2b). This ordering reveals a division of the network in terms of its strongly connected
components (SCCs) [14]. Whereas there are some units with identical phases, several phases
appear uniquely. In a network with just one more edge (fig. 2c), the collective dynamics
is completely synchronized such that the topological identity of all units is hidden (cf. also
fig. 1a). The above finding that ordering of the phases seems to reveal information about the
coarse scale network topology led us to hypothesize that the partition of a network into SCCs
is important to understand its dynamics.

To test this hypothesis, we first analyze the dynamics of networks of arbitrary connectivity
in a neighborhood of in-phase synchrony (φi(t) = φ0(t) for all units i and all times t). Dis-
connected parts of a network can be treated independently, such that we focus on connected
networks here. Sufficiently small perturbations δi(t) := φi(t)−φ0(t) to the synchronous state
satisfy

δ̇i =
∑

j∈In(i)

Jij sin(δj − δi) (2)

for all i, which in first-order approximation reads δ̇i = −Jδi +
∑

j∈In(i) Jijδj , or δ̇
.= Mδ in

matrix form, where

Mij =




−J if j = i,
Jij if j ∈ In(i),
0 if j /∈ {i} ∪ In(i)

(3)

are the matrix elements of M and δ = (δ1, . . . , δN )T is the vector of the individual units’
perturbations δi. This results in the first-order period-T map (T = 2π/ω) given by

δ(T ) = Aδ(0), (4)

where the matrix elements of A = eMT satisfy Aij ≥ 0, reflecting the attractive couplings
Jij ≥ 0, and

∑
j Aij = 1 due to time translation invariance of the periodic orbit.
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Fig. 3 – (Color online) Decomposition of networks shown in fig. 2 in terms of their strongly connected
components (SCCs). On the left, the vertices of the networks are grouped to SCCs s ∈ {1, 2, 3, 4}
(large italic numbers). On the right, the level structure of these components is shown. (a) Three-level
network with two source, cf. figs. 2a, b. (b) One additional link makes it a four-level network with
one source, cf. fig. 2c.

Fig. 4 – Prediction of the dynamics in a disordered state (cf. fig. 2a, b) based on the composition
analysis. The relative phase difference ∆φi/(2π) is shown for the grouped units i. The linear predic-
tion (×) of the actual phases (•) (based on one intial state) well distinguishes the ordered from the
disordered state (which would be a constant at zero) and even is a good indicator of the quantitative
dynamics of the units. The asymptotic phase dynamics started from a different initial state (gray
circles) illustrates that in this example other initial states yield a pattern that is distinguished from
the former pattern only by a real mulitplicative factor (in first-order approximation).

For networks of arbitrary connectivities, this implies, via the Geršgorin disk theorem [15],
that all eigenvalues λi of A satisfy |λi| ≤ 1. A sufficiently small perturbation to the syn-
chronous state cannot grow (in maximum norm), cf. [5], such that synchrony is at least
marginally stable. Moreover, independent of the network connectivity there is one eigenvalue
λ1 = 1 with an eigenvector v1 = (1, 1, . . . , 1) corresponding to the uniform phase shift.

If the network is strongly connected [14] the Perron-Frobenius theorem [15] guarantees
that the largest eigenvalue λ1 = 1 is unique and all other eigenvalues satisfy |λi| < 1 for
i ∈ {2, . . . , N}. This implies that the synchronized state is asymptotically stable and thus
locally attracting. In networks of irregular topology we even often find that the system
converges towards it from arbitrary initial conditions.

If the network is not strongly connected it consists of two or more strongly connected
components (SCCs) and the analysis of the asymptotic dynamics is more involved. For better
accessibility of the main points of this letter we describe the details of this analysis in the
appendix. Briefly, for a given network, we first determine the SCCs and the uni-directional
connections among them. Second, we determine the level structure of this super-network of
SCCs (cf. fig. 3). Based on this composition analysis we have revealed a number of distinctive
features of the dynamics on directed networks.

The ensemble of networks divides into two classes with qualitatively different-long-term
dynamics (initialized sufficiently close to the in-phase solution). All networks that have M = 1
source SCC (which does not receive any input from other SCCs) belong to class I: this source
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SCC is guaranteed to synchronize because it itself is a strongly connected network without
further input. Since each unit i performs a local weighted averaging of phases determined
by the weights Aij in (4), all units outside the source component asymptotically converge
towards the (common) phase of the units within the (only) source SCC. This result also
follows explicitly from the analysis given in the appendix in the special case of only one source
component in level � = 1 (and no source components in levels � > 1). It implies that for all
networks with one source SCC the local asymptotic dynamics is also in-phase synchrony.

In contrast, networks having M ≥ 2 source SCCs (class II) typically show disordered
dynamics. These M source SCCs can synchronize independently of each other, creating M −1
independent phase differences which result in an (M − 1)-dimensional continuous family of
periodic orbits, that include the synchronous state as only one specific orbit. All these orbits
are marginally stable, in particular the synchronous state has a basin of attraction of measure
zero, such that the dynamics is almost surely disordered. For the examples above, we find
that the dynamics shown in fig. 1a originates from a class-I network whereas that of fig. 1b
originates from a class-II network.

The composition analysis also reveals how the details of the topology of the network
precisely control its dynamics in the disordered state: The topological identity of each unit,
particularly the fine-scale topology of that SCC it is part of, determines the unit’s dynamics.
In fact, we can predict the disordered dynamics on a fine scale: Given the initial state φ(0),
we uniquely determine the approximate phases of all units recursively level by level, and hence
predict the complete collective dynamics of the network from the topological identity of their
units (see the appendix). Figure 4 illustrates such a prediction. It resembles well the actual
dynamics of the units.

Reversely, partial information about the topology of the network may be obtained from
knowing the disordered dynamics of its units: Iterating eq. (5), we obtain explicit linear re-
strictions of the space of all networks from the disordered dynamics by imposing its invariance.
So only a lower-dimensional subset of networks is consistent with the phase pattern.

What is the mechanism underlying the transition to topology-induced disorder? The
following description is general; nevertheless it is instructive to imagine, as an illustrating
example, a network composed of two source SCCs and one sink SCC which receives input
from the other two. A strongly connected network, and thus each source SCC, synchronizes
completely. However, different of these source SCCs typically converge towards different
phases, that depend on the initial state. If now different units in a downstream SCC are
pulled towards different phases, and there is a complicated pattern of connections between
them within this SCC, the dynamics of all its units will typically be distinct. In particular, the
units’ dynamics depend on the phases of the units in connected upstream SCCs, i.e. indirectly
on the initial state of the network and on the specific topology of the SCC considered.

All these phenomena appear to be general and are not restricted to the model system (1)
considered here. This is due to the topological origin of the phenomena: First, the transition
line between networks of classes I and II is identical for various kinds of oscillator networks
having an invariant in-phase solution. Second, given an initial state sufficiently close to syn-
chrony, the disorder in the long-term dynamics is characteristic for the topology of a network:
The linear analysis (see the appendix) holds as well for all disordered dynamics that are
topologically equivalent within the class of periodic single-variable oscillator networks. We
checked this explicitly for networks of i) Kuramoto oscillators (1) with coupling functions dif-
ferent from the sine function and ii) spiking neural oscillators where interactions are delayed
and mediated by pulses that occur only at discrete instances of time [5,16]. Although we have
no proof of how general these results are beyond single-variable oscillators, we also observed
that even iii) networks of diffusively coupled chaotic Rössler systems [17] behave similarly. On
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the same network topology, the dynamics of these three kinds of distinct systems show closely
related patterns of phase disorder.

Commonly, transitions from synchrony to disordered dynamics have been devoted to het-
erogeneities of, e.g., dynamical parameters or the degree distribution, cf. [18–20]. However,
the precise impact of topology onto the dynamics of directed networks revealed here was so
far not noticed. Even recent studies, considering the exact dynamics of networks of given,
specific topologies (see, e.g. [5,21] and references therein) have not taken notice of this impact.
The main reason for this may be that all example networks chosen to look at explicitly again
were standard cases such as highly connected random networks or lattices.

Real-world oscillator networks, occurring across disciplines in physics, biology and tech-
nology [3, 13], however, have a far more complicated topology, and, as demonstrated in this
letter, may thus strongly deviate in their dynamics. In a study [22] related to ours, the notion
of long-range action has been introduced showing that in certain directed networks of iterated
maps the dynamics of boundary units can control the dynamics of the entire network. Our
results suggest that local and global topological features, such as the SCC super-network and
the detailed topology of particular SCCs, may act together to precisely control the dynamics
of individual units in complex directed networks. The concepts developed here may thus also
help to uncover information about the topologies of such networks from their dynamics.
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Appendix

Level structure of the SCC super-network. – The level structure of the SCC super-network
is constructed in three steps. First, we determine the SCCs of the network using a standard
method [23], the computational complexity of which is O(N). Second, connections between
them are straightforwardly derived from the underlying connections between units comprising
these SCCs. A connection from one SCC to another, s → s′ is present if there are i ∈ s and
j ∈ s′ with a connection, i → j between them. Third, we find the longest undirected path
from any source SCC (without incoming connections) to any sink SCC (without outgoing
connections). The length of such a path is found by counting a connection followed along
its direction as “+1” and against its direction as “−1”. All units i in a source SCC of the
longest path is given the level number �(i) = 1. The levels of all other SCCs are determined
recursively according to the above counting rule. The computational costs of finding the inter-
SCC connections and the level structure strongly depend on the network under consideration.

Dynamics from network topology. – Given the level structure, the linearized dynamics
of every unit is determined for all units in every given level, starting with level � = 1 and
proceeding through subsequent levels recursively. Let φ =

(
φ(1), . . . ,φ(L)

)
= (φi1 , . . . , φiN

)

denote the asymptotic phases of all units φi in terms of the collection of phases φ(�) of the
units at a given level � ∈ {1, . . . , L}. For all units i with �(i) = 1, their final states are
φ

(1)
i = cs, where cs depends on the initial state φs(0) restricted to the SCC s. It equals the

first component of the vector cs = V −1φs(0), where V = (vi1 , . . . ,viR
) is a matrix of the R
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eigenvectors vir
of A localized on the SCC s and vi1 is the eigenvector corresponding to the

eigenvalue λi1 = 1. This yields the vector φ(1) of asymptotic phases in all units in level � = 1.
The phases φ(�) of units in the other levels � ≥ 2 are determined iteratively given the

phases φ(�−1) of units in level � − 1. If some of the φ(�) are part of a source SCC in level
�, these phases φ(�)

source are determined analogous to those in level � = 1. The corresponding
sub-matrices A�,�−1 and A�,� of the matrix A in (4) needed to determine the remaining phases
φ(�)

no source describe the interactions with units of the previous level �− 1, and within the SCCs
of the current level �, respectively. Note that by definition of the level structure, there are
no interactions from level � to level � − 1. Thus the equation encoding this uni-directional
dependence, φ(�)

no source = A�,�−1φ
(�−1) + A�,�φ

(�)
no source, yields

φ(�)
no source = (1 − A�,�)−1A�,�−1φ

(�−1) (5)

such that, together with the φ(�)
source from above, all phases φ(�) of units in level � are deter-

mined. Iterating this for all levels � ∈ {2, . . . , L} we obtain the linear prediction of the complete
disordered asymptotic state φ. This analysis only depends on the linearized effective couplings
Aij that determine the SCC super-network and is thus not restricted to the system (1).
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