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Discontinuous epidemic transition due to limited
testing
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High impact epidemics constitute one of the largest threats humanity is facing in the 21st

century. In the absence of pharmaceutical interventions, physical distancing together with

testing, contact tracing and quarantining are crucial in slowing down epidemic dynamics. Yet,

here we show that if testing capacities are limited, containment may fail dramatically because

such combined countermeasures drastically change the rules of the epidemic transition:

Instead of continuous, the response to countermeasures becomes discontinuous. Rather than

following the conventional exponential growth, the outbreak that is initially strongly sup-

pressed eventually accelerates and scales faster than exponential during an explosive growth

period. As a consequence, containment measures either suffice to stop the outbreak at low

total case numbers or fail catastrophically if marginally too weak, thus implying large

uncertainties in reliably estimating overall epidemic dynamics, both during initial phases and

during second wave scenarios.
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For high impact epidemics such as the ongoing COVID-19
pandemic, countries at least initially rely on non-
pharmaceutical interventions to slow the outbreak dynam-

ics. Keeping the maximum number of simultaneously infected
individuals sufficiently low is of paramount importance to not
overload health care system capacities1,2. Testing, quarantining,
and contact tracing have been combined with severe physical
distancing measures across countries. Nevertheless, unlike, e.g.,
for the 2002–2004 SARS outbreak3 and the 2013–2016 Western
African Ebola virus epidemic4 such combined countermeasures
could not yet stop the present COVID-19 pandemic. It thus
remains an open question how testing, quarantining, and contact
tracing in combination with various physical distancing measures
affect the epidemic dynamics, and in particular the epidemic peak
that represents a worst case scenario regarding the pressure on
the health care system.

Researchers and policy makers often implicitly assume that the
peak, i.e., the largest fraction of simultaneously infected indivi-
duals, continuously varies with epidemic parameters and with
the level of countermeasures implemented. In this article,
we demonstrate that this fundamental assumption is incorrect
once testing resources are limited. We reveal that the nature of
the epidemic dynamics changes drastically from this naive picture
and has unexpected, severe consequences. In particular, limited
testing generically yields a discontinuous transition in the fraction
of infected individuals in a population, a phenomenon dynami-
cally accompanied by an interval of faster than exponential
growth. Similar to related types of phase transitions in statistical
physics such as discontinuous or explosive percolation
transitions5–8, limited testing effectively delays the transition,
such that the fraction of infected individuals explosively becomes
macroscopically large once effective epidemic parameters even
only marginally cross a threshold. As a consequence, in the
presence of limited testing, slight changes in countermeasures
may induce huge macroscopic changes in the fraction of infected
individuals, severely restricting the predictability of the epidemic
transition. Discontinuous epidemic transitions have previously
been pointed out in the context of limited vaccination supplies9,
limited control10, and limited resources11.

In many epidemic models, such as the Susceptible-Infectious-
Recovered (SIR) model, the population is commonly considered
large and divided into compartments such as susceptible (S),
infectious (I) or recovered (R), and the evolution of these com-
partments is traditionally12 modeled by ordinary differential
equations (ODEs). For small populations, number fluctuations
become relevant such that stochastic, microscopic network
models are more appropriate, whereas for increasingly large
populations, deterministic mean field approaches are usually
considered suitable because relative fluctuations in the suscep-
tible, infectious etc. populations become less and less important.
In comparison to more complex models that take into account
population structure and stochasticity, ODE models are often also
motivated by the simplicity of implementation, as well as by the
greater ease in analyzing and interpreting the results. With this
perspective in mind, in large-scale outbreaks such as the ongoing
COVID-19 pandemic, traditional ODE models would be expected
to capture the overall general features of the epidemic dynamics.

As we explain below, if a disease spreads despite intervention, a
large population size and a large number of tests do not constitute
a sufficient condition for neglecting fluctuations. The key quantity
during the early growth phase of an epidemic is the difference
between two of these numbers, the number NT of daily tests and
the number NS of individuals suspected to carry the disease and
thus (ideally) to be tested. Regardless of the overall population
size and other macroscopic population numbers, the difference
ΔTest=NT−NS may be or become small and thus introduces

relevant fluctuations. If it becomes negative the epidemic spread
subsequently accelerates, i.e., during this phase the growth is
faster than exponential. It is precisely this acceleration that fun-
damentally alters the nature of the epidemic transition and makes
it discontinuous. As a consequence, a small variation of the epi-
demic parameters does not cause the expected small change to the
growth process but yields disproportionate consequences with an
explosive increase of the fraction of infected individuals in the
population. The role of testing in inhibiting disease spread can be
loosely considered analogous to pressurizing a fluid to hinder its
vaporization. If the control parameter is too large, the situation
will eventually get out of hand. For an epidemic, a reproduction
number above one will eventually exhaust any finite test capacity.
Once exceeded, the disease spread undergoes the aforementioned
explosive phase and despite continued testing the reproduction
number unavoidably increases towards its basic, uninhibited
value. Likewise if heat is supplied to a pressure vessel at a too high
rate, the increasing internal pressure eventually leads to the ves-
sel’s rupture and unavoidably a macroscopic fraction of the fluid
vaporizes, essentially at once.

Results
We will first illustrate the above mechanism in simulations of a
basic dynamic agent-based model that simultaneously captures
the epidemic dynamics and the influence of countermeasures and
has previously been studied for analyzing the dynamics and
control of Ebola13. Subsequently, we will show that the phe-
nomenon is robust and hence independent of any details of the
epidemic model used. For simplicity, we initially focus on two-
dimensional square lattice grids where each agent represents an
individual and interactions can be either short-range (via the four
nearest-neighbor contacts) or long-range (see Fig. 1). The former
represent fixed contacts, e.g., close family or colleagues, while the
latter contacts are dynamically allocated (i.e., changed at each
time step) and represent random encounters, e.g., during travel,
shopping etc. An agent falls into one of four compartments,

Fig. 1 Spatial epidemic model with testing and quarantining. The
base model is illustrated on a square grid. Every day each infectious
individual (agents are represented here as a tile on a lattice) interacts with
their neighbors and with a randomly selected individual, and transmits the
disease (arrows in figure) with constant probability if the individuals they
interact with are susceptible. The tiles with yellow and white stripes denote
the potential contacts that can be exposed. Upon identification of a positive
case (red tile) all the neighbors are put into quarantine and tested (blue
dashed border). Weak-symptom cases (brown tile with blue dashed border)
can only be identified if they are neighbors of a known positive case.
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susceptible (S), exposed (E), infectious (I), or recovered (R)
resulting in an SEIR model. In addition, we split the infectious
population into two categories, strong- and weak-symptom cases,
where the latter represent individuals with either unspecific or no
symptoms. As a result of intervention measures, an agent in each
of the above states may or may not be quarantined, formally
increasing the number of possible states to eight (for a detailed
description of all the states and possible interactions see Sup-
plementary Fig. 1). This basic model incorporates the main
ingredients required to simulate epidemic outbreaks (i.e., it cap-
tures phase transitions to exponential disease spread), and has
been shown to faithfully reproduce the course of the 2013–2016
Ebola outbreak13.

Key features of the model can be understood from the example
illustrated in Fig. 1. We consider discrete time dynamics with
time steps representing days. Strong-symptom individuals (red)
are immediately identified and automatically quarantined (blue
dashed border). After testing positive, its four nearest neighbors
are quarantined and queued for testing. For every new positive
case, the quarantining and testing procedure is continued. In this
simple scenario, all local contacts (four neighbors) are traced,
however, prior interactions with distant sites are assumed
untraceable. Weak-symptom cases (brown tile bottom right of
Fig. 1) go undetected unless identified through contact tracing. At
each time step, they can spread the disease with a constant
probability to the four nearest neighbors plus to a randomly
chosen distant site.

We start the simulations from a small number of weak-
symptom infectious agents randomly scattered across a popula-
tion of P= 3162 × 3162 ≈ 107. The incubation and infectious
period are modeled with a Gamma distribution with parameters
in the range of the ones reported14 for COVID-19. The trans-
mission probability is set to 0.28 to reproduce the average growth
∝ exp(κt) with the rate κ= 0.3 day−1 observed during the early
exponential phase of the ongoing COVID-19 pandemic. In
addition, we take 50% of the newly infected agents to show only
weak symptoms. While the exact ratio of weak-symptom carriers
of COVID-19 is unknown, their prevalence is reported in mul-
tiple studies15–18. Moreover, to allow for a scenario relevant to
real testing we set an upper limit of daily tests of 10−4 P (i.e., 1000
tested individuals per day). This limit represents the largest
fraction of the population tested in any European country during
the first months of the COVID-19 outbreak19. In most countries,
the daily tests conducted were significantly lower during the early
phase of the epidemic but have since increased and at present are
often larger. While focusing on the early stages the results
reported below are robust against the specific values of NT as long
as the daily test limit is significantly smaller than the total
population size (NT≪ P). Specifically, we show that all main
features remain unchanged for a tenfold increase in test numbers,
as well as for daily increasing and fluctuating test numbers, see
Supplementary Fig. 6. The parameters chosen for the present
study result in a basic reproduction number R0 ≈ 3. For large P
and NT an outbreak (leftmost curve in Fig. 2a) with such a high
transmission rate can not even be halted by the highly efficient
testing and contact tracing intervention scheme described above.

We next consider how the outcome of the epidemic is altered if
the testing and contact tracing interventions are aided by addi-
tional mitigation measures (e.g., physical distancing). Unlike
testing and quarantining that are simulated directly, additional
mitigation measures are modeled by a reduction in the trans-
mission rate. In order to investigate the response to different
levels of mitigation the transmission rate is reduced, which
translates to a continuous decrease in the basic reproduction
number. As shown in Fig. 2a, the epidemic curve flattens at first
continuously as the mitigation strength increases. However, once

the basic reproduction number marginally drops below a value of
2.5 the epidemic peak discontinuously drops to a very low value.
Hence for R0 < 2.5, the outbreak is halted (the fraction of infected
tends to zero in the thermodynamic limit). The familiar con-
tinuous picture of flattening the curve is recovered when testing
interventions are removed as shown in Fig. 2b. Here, a con-
tinuous reduction in R0 causes the expected continuous decrease
of the peak of the epidemic curve (see also Supplementary
Video 1).

The discontinuity in the presence of testing and contact tracing
is equally apparent when considering the total number NF of
infected at the end of the epidemic, shown for decreasing miti-
gation strength (i.e., increasing R0) in Fig. 2c. While testing and
contact tracing can suppress outbreaks with basic reproduction
numbers significantly larger than one, once containment fails it
does so catastrophically, i.e., the fraction of the population
eventually infected jumps from close to zero directly to a large
fraction, in this case approximately 0.5 P. The cause of the dis-
continuous response can be understood from the time evolution
of the empirically computed13 effective reproduction number Rt.
As shown in Fig. 2d, for a suppressed outbreak (R0= 2.3, black
circles) testing and contact tracing reduce the reproduction
number to just below one and hence the number of infectious
decreases exponentially and the outbreak is eventually sup-
pressed. For R0= 2.7, however, the effective reproduction number
can only be reduced to a value slightly larger than one. Conse-
quently the number of infectious individuals increases
exponentially.

So far the difference between these two cases is marginal,
exactly as standard models would predict. As time proceeds
however, in the latter case the number of suspects will eventually
reach the test capacity limit, ΔTest= 0 (at this point the positivity
rate increases see Supplementary Fig. 2). Subsequently, a fraction
of the infectious are only tested with a delay and therefore have a
larger probability to transmit the disease. As shown in Fig. 2d,
this leads to an increase in the reproduction number and hence
the outbreak accelerates. Once set into motion, the number of
unchecked suspects continues to increase and so does the
reproduction number. Instead of the familiar exponential growth
during epidemics, the growth at this stage is faster than expo-
nential (see Supplementary Fig. 3) because Rt and thereby the
exponent of the growth dynamics, increases with time. A mar-
ginal difference in R0 (compared to the suppressed case) is
amplified into a significant difference in the effective reproduc-
tion number Rt once the contact tracing capacity limit is excee-
ded. It is precisely this basic amplification mechanism that turns
flattening the epidemic curve into a process with discontinuous
overall outcome. This mechanism is independent of the epidemic
model used. Exhausting test capacities during a high impact
epidemic must necessarily lead to faster than exponential growth
and an acceleration of the disease spread. While in practice this
effect is not easy to identify because by definition test numbers
are insufficient to capture the full spreading rate at this stage,
faster than exponential growth phases have indeed been detected
during the second wave of COVID-19 in various countries. For
Italy, a European country exhibiting a clear and dominant second
wave, a joint analysis of time series of new observed case numbers
and of the positivity rate qualitatively agrees with our predictions,
as illustrated in Fig. 3. In particular, a period of faster than
exponential growth (Fig. 3a) coincides with an increase in the
positive rate (Fig. 3b), supporting the hypothesis that limited tests
are responsible for accelerated growth.

To further illustrate the robustness of the above results, we
performed simulations in networks of varying complexity. First, a
small world20,21 network that includes agents of high connectivity
while still keeping the simple grid structure. Next, beyond a basic
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grid, a scale-free network22 and finally a scale-free network with
additional random dynamic interactions (see Supplementary Fig. 4).
We find that the discontinuity emerges across these various net-
works and is independent of the model complexity. As additional
proof of the robustness of the results, we considered perturbations
to the model parameters, domain sizes, and testing strategies (see
Supplementary Figs. 5–7) and found consistent evidence for a
discontinuous transition. Moreover, as no details about how the
disease operates or spreads enter our qualitative modeling and
analysis, all findings should be valid also beyond COVID-19 and in
particular may support understanding and containing future pan-
demics. Together, these results strongly suggest that the induced
discontinuous transition generally emerges once testing and contact
tracing have an upper capacity limit.

A limited testing capacity does not only alter the response to
mitigation during the early stages of an epidemic but equally
introduces a discontinuity when considering lockdown scenarios
of varying strength. For a simple illustration we again simulate an
outbreak (at basic reproduction number R0= 2 in a population of
size P= 3162 × 3162 ≈ 107) that has initially spread to 104 infected

agents. The value of R0= 2 could be either interpreted as a less
contagious disease, or as the same disease as in the previous case,
where the reproduction number has been reduced by physical
distancing measures. At this stage of the outbreak the number of
suspects in the population already far exceeds the number of daily
available tests (ΔTest < 0) and contact tracing cannot suppress the
outbreak. To get the situation back under control, strong mitiga-
tion measures (i.e., a lockdown) are required and we consider that
as a result the basic reproduction number is further decreased by
0 <ΔR0 < 2, taking a lockdown period of 30 days for our illus-
trative examples (Fig. 4). For sufficiently strong lockdowns (ΔR0 >
ΔRc ≈ 0.5) the outbreak is eventually suppressed (i.e. the effective
reproduction number is reduced below one). However, if the
lockdown is just marginally weaker and ΔR0 <ΔRc containment
catastrophically fails: At the end of the lockdown the number of
suspects still (marginally) exceeds the test capacity and as time
proceeds Rt increases (not shown). While in Fig. 2a the dis-
continuity separates epidemics subject to different mitigation
levels, here the discontinuity arises from the difference in the
number of active cases at the end of the lock down.

Fig. 2 Discontinuity in flattening of epidemic curves. a Daily new cases for continuously decreasing values of R0 (3 > R0 > 0), mimicking mitigation
measures of increasing strength. Testing and quarantining are carried out at the same time with a capacity limit of NT= 1000 tested individuals per day.
Initially the peak reduces continuously in response to mitigation (red curves from left to right), however, once R0 is reduced below 2.5 the epidemic curve
drops to very small numbers of new cases (curves not visible in the figure scale). b Daily new cases for decreasing values of R0 (1.5 > R0 > 0) without testing
and quarantining. Decreasing progressively R0 gradually flattens the epidemic curve (blue curves from left to right) until a very low number of cases is
reached (curves not visible in the figure scale). c Final fraction of infected (NF/P) as a function of R0 corresponding to the curves shown in a (red dots) and
b (blue dots). The black dots denote outbreaks that have been effectively suppressed. When testing and quarantining are active the epidemic transition
becomes discontinuous and happens at a higher basic reproduction number (R0 ≈ 2.5) in comparison to the usual continuous epidemic transition observed
at R0= 1. d Evolution of the reproduction number with testing and quarantining active. Such measures efficiently reduce the reproduction number Rt below
unity for R0 < 2.3 (black dots). For larger values of R0 testing and quarantining can initially reduce the reproduction number to a constant level, however, Rt
remains above one (red dots). Owing to the continuing spread the number of suspects will eventually exceed the daily test limit and hence ΔTest changes
sign (red dashed line in d). At this point the spread accelerates and R0 increases. The values of Rt have been averaged over 400 and 100 simulations for
R0= 2.3 and R0= 2.7, respectively. In all these cases the population size is P= 3162 × 3162≈ 107 people and epidemics start with 100 initial infectious.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22725-9

4 NATURE COMMUNICATIONS |         (2021) 12:2586 | https://doi.org/10.1038/s41467-021-22725-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


In common epidemic models, testing and contact tracing are
often incorporated in the basic reproduction number, yet that
approach does not take into account capacity limits and hence
cannot reflect scenarios in which such capacities are eventually
exhausted as the epidemic continues to spread. As we have
demonstrated, however, such capacity limits drastically alter the
overall epidemic dynamics and thus need to be carefully con-
sidered both in research and for policy making. This holds in
particular during early growth periods of the outbreak, as well as
during potential second (or later) waves.

While during the COVID-19 pandemic the focus has been on
the key role of mitigation in protecting the health care systems,
the above results indicate that additional mitigation measures
may play an equally vital role in protecting the efficiency of
testing and contact tracing. If it fails, no matter how marginally,

the disease begins to spread at an accelerating rate and in due
course will likely hit a large fraction of the population. In practice,
the eventual outcome of the epidemic might still be averted, if
countermeasures are severely strengthened quickly after this
acceleration. However, the suppression at this stage comes at a
high cost and requires an extended lockdown to regain control.
Our study suggests that a far better strategy is to use lockdowns as
a preemptive tool. The faster than exponential growth phase
should be avoided at all cost and hence additional measures must
be implemented well before ΔTest crosses zero, so that testing and
contact tracing can work at their full efficiency throughout.
Compared to the common practice of using a lockdown as the
last resort, a preemptive strategy reduces the necessary economic
downtime and saves human lives.

Methods
Spatial epidemic model. Our base model is a spatial SEIR (Susceptible-Exposed-
Infectious-Recovered) model, in which a population P= 3162 × 3162 is represented
by a two-dimensional grid where each grid point represents an individual. In
addition to the above four compartments we distinguish between symptomatic (IS)
and weak-symptom (IW) individuals, where the latter ranges from people who may
have nonspecific symptoms (e.g., coughing) to entirely asymptomatic. With the
introduction of intervention measures aimed at containing the disease spread, the
individuals in the states S, E, IS, and IW can be put under quarantine (QS for S, QE

for E, and QI for IS and IW). All the eight states and the possible transition paths are
shown in Supplementary Fig. 1 and described in the caption. Simulations start from
a small group of 100 IW that are randomly scattered across the grid. Each infec-
tious individual (IS or IW) is assigned an infectious period, which is drawn from a
Gamma distribution with mean 4 days and one day as scale parameter. During the
infectious period these individuals can interact with each of the four neighbors and a
randomly chosen additional individual. The disease is transmitted with a given
probability, if the target individuals are susceptible (cf. Fig. 1). After the infectious
period IS and IW transform into recovered (R) and can not interact any more with
the population. Once a susceptible individual is infected, it transforms into exposed
(E) and is assigned an incubation period, which is drawn from a Gamma dis-
tribution with mean 3 days and one day as scale parameter. After the incubation
period is elapsed, the state of the individual is transformed from E into IW with
probability pW= 0.5. For a large population size, pW thus represents the ratio of
weak-symptom cases to the infected population. The transmission probability is

Fig. 3 Period of faster than exponential growth during the second wave of
COVID-19 in Italy. a Number of new daily cases per million (logarithmic
axis) reported in Italy. The red dotted lines indicate time intervals over
which the new cases double, while the black dashed line represents an
exponential fit to the data from day 180 to day 200. After a period of
relatively weak exponential growth (days until 200) new cases surge
suddenly leading to an intermediate phase of faster than exponential
growth similar to what is observed in our simulations (cf. Supplementary
Fig. 3). b The positivity rate, the fraction of tests that resulted positive in a
given day, during the same time interval. As the number of new cases
rapidly increases the contact tracing and testing strategy is put under strain
and the positivity rate starts to increase. In the inset we compare the daily
increment of positivity rate measured in Italy (blue curve) with the one
predicted by a simulation (red curve). In both panels the data represent a 7-
days moving average. The simulation parameters are the same ones used
to generate the red curve of Fig. 2d.

Fig. 4 Discontinuous nature of lockdown scenarios. Cumulative total
number of cases for R0= 2 starting from 104 infectious agents in a
population P= 3162 × 3162≈ 107 and subjected to gradually stronger
lockdowns. Mitigation measures are simulated by a reduction in the basic
reproduction number in the range of 0 <ΔR0 < 2.0. The duration is 30 days
in all scenarios. Testing here is limited to NT= 1000 individuals per day.
Mild interventions (0 <ΔR0 < 0.5, red curves) only result in an initial drop
(see inset) in daily new cases but ultimately cannot prevent a subsequent
rise in numbers and eventually a high proportion of the population becomes
infected. Stronger interventions (0.5 <ΔR0 < 2, blue curves) on the other
hand efficiently bring the epidemic under control. Inset, corresponding
epidemic curves of daily new cases. Reducing continuously R0 during
lockdown produces a family of epidemic curves that ultimately result in a
discontinuous outcome: Either the outbreak is suppressed (blue curves), or
containment fails catastrophically leading to a high proportion of the
population being infected (red curves).
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chosen to reproduce the average growth rate observed during the early exponential
phase of the ongoing COVID-19 pandemic. To this end, we run several simulations
without any containment and we pick the transmission probability that minimizes
the difference from the growth ∝exp(κt) with rate κ= 0.3 day−1.

Testing and quarantining model. The implementation of the epidemic mitigation
is based on identification, quarantining and testing of suspect cases (cf. Fig. 1 for an
illustrative cartoon of the process). The response starts when a first symptomatic
case (IS) appears and is recognized as a suspect case. The individual is immediately
quarantined and tested. Upon the positive test result, the status is switched to R and
its neighbors are quarantined and queued for testing. Each day, NT (daily available
number of tests) individuals in the queue are tested. The test outcome is revealed
with a delay of one day and the same known positive cases can not be used more
than once for tracing its neighbors. In case of negative test (QS) the individual is
reverted to susceptible.

Alternative networks. The model can be easily extended to a different network
structure while retaining the state transition rules and parameters. In order to
assess the robustness of our results we considered three additional networks (the
results are shown in Supplementary Fig. 4). For the first one, we chose Kleinberg’s
Navigable Small World as implemented in NetworkX 2.4 Python library. Here,
each individual is connected to a random person on the grid, with the probability
of being connected to a person decreasing as d−2, where d is the taxicab distance
over the grid. Moreover, the connection is static and it is not assigned on a daily
basis. In the second model we adopt a fully scale-free network with the number of
connections per person drawn from a discrete zeta distribution with parameter 2
and cutoff 100, and all are static and do not change during the simulation. The
third network is a scale-free network, but in addition every day each person is
allowed to interact with an arbitrary random individual of the network. The
resulting topology is dynamic and changes during the simulation.

Data availability
The datasets generated and analyzed during the current study are available in the Zenodo
repository, https://doi.org/10.5281/zenodo.458956723.

Code availability
The codes used the network simulations are available in the Zenodo repository, https://
doi.org/10.5281/zenodo.458956723.
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