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Robust synchronization (phase locking) of power plants and consumers centrally underlies the stable

operation of electric power grids. Despite current attempts to control large-scale networks, even their

uncontrolled collective dynamics is not fully understood. Here we analyze conditions enabling self-

organized synchronization in oscillator networks that serve as coarse-scale models for power grids,

focusing on decentralizing power sources. Intriguingly, we find that whereas more decentralized grids

become more sensitive to dynamical perturbations, they simultaneously become more robust to topo-

logical failures. Decentralizing power sources may thus facilitate the onset of synchronization in modern

power grids.
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The drastic change of electric power supply in the up-
coming decades provides an extraordinary challenge for the
operation of future power grids [1–5]. For decades, electri-
cal energy was almost exclusively provided by relatively
few large power plantsmainly based on coal, gas, or nuclear
power. As actual political plans indicate, in the near future
energy will mostly be provided by a large number of wind
parks, photovoltaic arrays, biogas power generators, and
other renewable energy sources [1]. One major question is
how to ensure stable operation of the entire grid given
widely distributed, predominantly small power sources [2].

Stable operation of power grids is based on maintaining
a phase-locked, partially synchronous state of the entire
system [3,4]. Currently, the synchronization of a power
grid is achieved by actively controlling every power gen-
erator connected to the network. To cope with the more
distributed supply in the future, this strategy shall be ex-
tended to controlling the consumer side via a so-called
‘‘smart grid’’ (see, e.g., [5,6]). Exactly how to realize this
remains an open challenge, in part because coarse-scale
descriptions of self-organized collective dynamics of
power grids are scarce.

So far, researchers have considered power grid models
from two major classes: (i) abstract, large-scale network
models [7–10] for characterizing flow, quasistatic, or
probabilistic features of the grid and (ii) detailed,
component-level models of engineering used for specific
simulations [11]. Whereas the former class is accessible to
methods of statistical physics or nonlinear dynamics, it
provides only statistical information or a pure dc picture.
The latter provide a very detailed picture of power grids,
but they demand a huge number of parameters and varia-
bles, thereby restricting general insights about dynamics
on large scales. How the nonlinear dynamics of complex
power networks self-organizes to exhibit synchrony thus
remains not fully understood, in particular, for grids that
decentralize further.

In this Letter, we contribute towards bridging this gap by
investigating the dynamics of nonlinear oscillator networks
as power grid models. A bifurcation study shows that
normal operation and power outage coexist already in
elementary model grids, implying a coexistence regime
in all larger networks that contain such elementary ones.
We demonstrate that and how power grids with connection
topologies as complex as the British transmission grid may
collectively phase-lock in a self-organized way and how
they may fail. Intriguingly, whereas more decentralized
grids tend to be less robust to dynamical perturbations,
they simultaneously become more robust against structural
perturbations to the grid topology.
Nonlinear oscillator networks as a power grid model.—

To reveal essential aspects of the oscillatory dynamics of
power grids and principal collective phenomena emerging
through their nonlinear dynamics, we consider coarse-scale
oscillator models of power grids. They are derived from the
physics of synchronous generators (representing power
plants) and motors (representing consumers), generalizing
[12] to complex networks (cf. also [13]). Both types of unit
obey the same type of equation of motion with a parameter
P giving the generated (P> 0) or consumed (P< 0) power.
The state of each unit j is determined by its mechanical
phase �jðtÞ ¼ �tþ�jðtÞ and phase velocity _�jðtÞ, where
� ¼ 2�� 50 Hz (or 60 Hz) is the grid’s reference fre-
quency. The equation of motion for the phase deviation
�jðtÞ is obtained via the principle of energy conservation:

The generated or consumed power Psource;j of each element

jmust equal the power exchanged with the grid Ptrans;j plus

the accumulated Pacc;j ¼ 1
2 I

d
dt ð _�jÞ2 and the dissipated

power Pdiss;j ¼ �ð _�jÞ2. Here � is a friction coefficient,

and I is the moment of inertia. The power flow between
two elements i and j depends on their phase difference and
is given by Pmax;ij sinð�i � �jÞ, where Pmax;ij denotes the

maximum capacity of the transmission line connecting the
two elements; cf. [12]. The energy conservation law reads
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Psource;j ¼ Pdiss;j þ Pacc;j þ
X
i

Pmax;ij sinð�i � �jÞ: (1)

Assuming j _�j � �, one finds the equation of motion

d2�j

dt2
¼ Pj � �

d�j

dt
�X

i

Kij sinð�i ��jÞ; (2)

where we abbreviate Pj ¼ ðPsource;j � ��2Þ=ðI�Þ, �¼
2�=I, and Kij ¼ ðPmax;ijÞ=ðI�Þ. A steady state can exist

only if
P

jPj ¼ 0; i.e., the total consumed (Pj < 0) matches

the generated power (Pj > 0).

Coexistence in elementary grids.—Already the most
basic grid topology exhibits a regime of coexistence
of normal operation and power outage; see Fig. 1.
Consider a two-node topology consisting of one generator
(Pg ¼ þP0) and one consumer (Pc ¼ �P0). The phase

difference �� ¼ �g ��c satisfies

d2��

dt2
¼ 2P0 � �

d��

dt
þ 2K sinð��Þ; (3)

the equation of motion of damped nonlinear pendulum that
is driven by a state-independent force. For P0 >K, no
fixed point exists (the dynamics of phase differences ap-
proaches a limit cycle) such that stable grid operation is not
possible. For P0 <K, there is one attractive fixed point at

�� ¼ arcsinðP0=KÞ (4)

representing stable grid operation. In addition, a limit cycle
exists if the increase in kinetic energy due to P0 compen-
sates the decrease due to friction. This is possible only for

P0 * 4�
ffiffiffiffi
K

p
=� assuming weak damping (small �); cf.

[14]. Figure 1(b) illustrates such coexistence of a fixed
point (normal operation) and the limit cycle (power out-
age). To avoid costly overcapacity of transmission lines,
major power grids are often operated in such a region of
coexistence where the actual load of a transmission line is
of the same order of magnitude as the line capacity (but
still below it). In this coexistence regime, however, the

collective dynamics depends crucially on the initial con-
ditions, a situation not covered by flow or dc models. Given
a coexistence regime for a basic N ¼ 2 network, this
implies a coexistence regime in any larger network of
arbitrary topology as long as it contains that 2-unit system
as a subnetwork.
Synchronization in complex networks.—Larger net-

works of complex topologies equally exhibit coexistence
and self-organized synchrony [15]: For instance, Fig. 2
shows the dynamics of a network with the coarse-scale
topology of the British grid [cf. Fig. 2(a) and [9] for the
topology], explicating the possibility of self-organized
synchronization. If the capacity of the transmission lines
is too small [cf. Fig. 2(b)], no steady state of the power grid
exists. The generators accumulate energy such that their
phases�jðtÞ are accelerated while the majority of consum-

ers slow down. Notably, the generators do not desynchron-
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FIG. 1 (color online). Coexistence of normal operation (fixed
point) and power outage (limit cycle) in the dynamics of an
elementary network (one generator connected to one consumer,
� ¼ 0:1 s�1). (a) Stability phase diagram in parameter space.
(b) A stable fixed point (red cross: stable operation with constant
power flow) and a limit cycle (red line: no phase locking and
fluctuating power flow) coexist (P0 ¼ 1 s�2, K ¼ 1:1 s�2).

FIG. 2 (color online). Transition to self-organized synchroni-
zation in a complex power grid. (a) Topology of the British
power grid, consisting of 120 nodes and 165 transmission lines
(thin black lines) [9]. Ten nodes are randomly selected to be
centralized power plants (Pj ¼ 11P0, h); the others are con-

sumers (Pj ¼ �P0, �). Power plants are connected to their

neighbors with a higher capacity cK, c � 1 (thick lines); the
remaining transmission lines have a capacity K. (b),
(c) Dynamics of the generators’ (red) and consumers’ (blue)
frequencies d�j=dt and the respective order parameter rðtÞ for
(b) weak and (c) strong coupling. (d) The order parameter r1 and
the asymptotic mean frequency difference !1 as a function of
the coupling strength K for c ¼ 2.
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ize at once but rather in a cascade of failures (cf. also [7,9]).
Because of the damping, the system tends towards a limit
cycle where the average frequency difference ! ¼P

jjd�j=dtj=N assumes a nonzero value !1 > 0. If the

transmission lines are strong enough, all units of the power
grid synchronize [Fig. 2(c)], stable operation is possible
without an active phase control of the units, and !1 ¼ 0.
The phase ordering of the power grid is measured by the

order parameter rðtÞ ¼ P
je

i�jðtÞ=N, respectively its long

time average

r1 :¼ lim
t1!1

1

t2

Z t1þt2

t1

rðtÞdt; (5)

assuming a sufficiently large time interval t2. Both the
average frequency !1 and the order parameter r1
are plotted as a function of the coupling strength K in
Fig. 2(d), showing the onset of synchronization above a
critical coupling strength K � Kc � 13P0.

Thus, the power grid model presented here captures
essential features of a real grid, including self-organized
synchrony and its coexistence with power outage.

Dynamic stability.—How does decentralization
impact the system’s stability to dynamic perturbations?
In the model, we successively replace large power plants
(Pj ¼ þ11P0) by smaller ones (Pj ¼ þ1:1P0, ten per

large plant). We test the stability against fluctuations on
the consumers’ side by transiently increasing (away from
stationarity) the power demand of each consumer during a
short time interval (here, 5 s). The condition of equal

P
jPj

on both the consumers’ and producers’ side is violated
during the perturbation, and therefore the system cannot
remain in a stable state.

After the perturbation is switched off, the system either
relaxes back to a steady state or does not, depending on the
strength of the perturbation, as illustrated in Figs. 3(a) and
3(b), respectively. The results are summarized in Figs. 3(c)

and 3(d). We find that the maximally allowed perturbation
strength shrinks with decentralization, but still all grids are
stable up to strengths a few times larger than the unper-
turbed load [Figs. 3(c) and 3(d)].
Decentralization supports synchrony.—It has been ques-

tioned whether a network of many small, distributed power
sources can be effectively synchronized without the help of
a reference signal generated by large power grids (see, e.g.,
[3]). We find that self-organized synchronization is even
promoted when more but smaller and decentralized
sources are present. Figures 4(a)–4(c) show how the syn-
chrony of the power grid is affected by this procedure.
Most interestingly, the phase order parameter r1 increases
with decentralization. At the same time, the average fre-
quency!1 decreases. The critical coupling strengthKc for
the onset of synchronization thus decreases; i.e., synchrony
can be realized already with less transmission capacity.
Intuitively, the transmission lines connecting the power

plants to the rest of the grid are heavily loaded and thus
most likely to fail. Stability thus would be increased just
because these lines become less loaded if large generators
are replaced by (several) smaller ones. This notwithstand-
ing, decentralization itself, by its more distributed nature,
supports synchrony, not sensitively depending on local line
overload. To show this, we increased line capacities con-
necting the power plants to the grid compared to other lines
by a factor c. Self-organized synchronization is still pro-
moted by decentralization for c ¼ 2 [Fig. 4(b)] and even
for c ¼ 10, completely compensating the tenfold differ-
ence in plant power [Figs. 4(c) and 4(d)]. Further studies on
small-world and other grid topologies show qualitatively
the same results. We conclude that, at least for stationary
operation, further decentralizing a grid promotes self-
organized synchronization.
Decentralization supports robustness against structural

damage.—The grid is also robust against structural dam-
ages of its interconnections. We have simulated the impact
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FIG. 3 (color online). Stability of a power grid against perturbations in power demand. (a),(b) Time evolution of the phases of
the generators (red) and consumers (blue) in case of a weak (a) and strong (b) perturbation in the time interval 0–5 s (shaded area).
(c),(d) The color maps indicate the fraction of random grids which are unstable against a perturbation as a function of the perturba-
tion strength Ppert and the fraction of small distributed generators. Numerical results have been averaged over 100 realizations,

where the replacing smaller power sources were randomly placed in the grid. Parameters are K ¼ 20 and c ¼ 2 in (c) and K ¼ 20 and
c ¼ 10 in (d).
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of the damage of single transmission lines on the stability
of the power grid. An example is shown in Fig. 4(a) for the
British power grid, comparing the stability properties of a
fully centralized grid with one where 10% of the plants are
decentralized. The importance of each link for the stability
of the synchronized state is indicated by the color of the
lines. Green indicates noncrucial lines that can be removed
without losing synchrony for both grids. Black indicates
bridges, whose removal disconnects the grid. Two trans-
mission lines (blue solid arrows) are crucial for the stability
of the initial grid, but not anymore when the marked power
plant is replaced by distributed generators. Six lines
(dashed red arrows) are crucial in both cases.

Moreover, for power grids with smaller, more distributed
generators, the number of crucial links decreases such that
a global failure is less likely [Fig. 4(e)]. Further inspection
of the detailed consequences of removing links suggests a
rough intuitive explanation: The probability of a global
failure is highest when in the immediate neighborhood
there is no pathway which can take over the respective
power load. This is more often the case for few, large power
plants, as there are less transmission paths in the network.
We conclude that replacing large power plants by distrib-
uted generators may not only promote synchrony but also
increase the robustness of the power grid with respect to
structural damages.

Conclusion and outlook.—In summary, we have ana-
lyzed a coarse-scale oscillator model of power grids de-

rived from the properties of the underlying physical
machines in the limit of weak damping, generalizing [12]
to complex networks. The model exhibits collective syn-
chrony and coexistence of stable operation and power
outage, as in real grids. Still, the model class is simple
enough to reveal basic principles, simulate larger-scale
networks, and understand collective dynamic phenomena
on complex topologies.
Intriguingly, we found two counteracting tendencies due

to decentralization: As might be expected, networks be-
come less stable against short-term, large-amplitude dy-
namic perturbations with increasing decentralization. At
the same time, networks with more distributed power
sources are less vulnerable to transmission line failures,
i.e., structural perturbations. This suggests that real-world
grids with a large fraction of renewable energy sources will
require control as anticipated. Yet it seems that such con-
trol will be required due to the ongoing dynamic fluctua-
tions only and not caused by decentralization that in turn
harnesses inhomogeneities and fluctuations given an ex-
tended regime of stable synchrony.
Taken together, our results indicate that decentralizing

power sources maymoderately decrease the grids’ dynamic
stability, but support the onset of self-organized synchrony,
and make it more robust to structural damages. It is of great
scientific and economic interest to understand how synchro-
nization depends on details of the topology of power grids
and to derive viable strategies for how to establish new
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FIG. 4 (color online). Decentralizing power plants decreases synchronization threshold and increases robustness to structural
damage. This figure illustrates simulated future development of the British grid, replacing large centralized power plants by small
distributed ones. (a) First step of decentralizing: One power plant (marked by black square) is disabled; i.e., the generated power is set
to zero (Pj ¼ 0). Instead, ten new small generators are added to the grid at random positions (green diamonds). The color of the links

illustrates their relevance for the global structural stability of the power grid (see the main text). Removing certain single links causes a
power outage: Two links (blue solid arrows) are crucial for the stability of the initial grid, but not anymore when the marked power
plant is replaced by distributed generators. Six links (red dashed arrows) are crucial in both cases. Parameters are K ¼ 12 and c ¼ 10.
To increasingly decentralize the grid, randomly chosen single large plants are successively replaced by ten smaller ones. (b),
(c) Promotion of self-organized synchronization due to the replacement of centralized power plants. Panel shows order parameter jr1j
and mean frequency!1 as a function of coupling strength K for c ¼ 2 (b) and c ¼ 10 (c), respectively. (d) Change of critical coupling
strength Kc for the onset of synchronization due to the replacement of the centralized power plant for c ¼ 10. (e) Change of structural
stability. Panel shows a number of critical links in the network, whose removal leads to a loss of synchrony and thus a major power
outage, discarding bridges. Here, coupling strength is fixed to K ¼ 15 and c ¼ 10. Quantities in (b)–(e) are averaged over 100
realizations, as in Fig. 3. The shaded areas in (d) and (e) show standard deviation.
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transmission lines. For instance, an enormous challenge for
the development of power grids is that often renewable
energy sources are built predominantly at the seaside such
that energy is generated far away from consumers. The
insights and methods presented here may further our under-
standing of the collective dynamics of today’s power grids
as well as help investigating different scenarios for upgrad-
ing the grid.
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[10] D. Heide, M. Schäfer, and M. Greiner, Phys. Rev. E 77,

056103 (2008).
[11] See, e.g., the power system simulation packages PSS/E

(http://www.energy.siemens.com) or EUROSTAG (http://
www.eurostag.be).

[12] G. Filatrella, A.H. Nielsen, and N. F. Pedersen, Eur. Phys.
J. B 61, 485 (2008).

[13] F. Dörfler and F. Bullo, arXiv:0910.5673v4 [SIAM J.
Control Optim. (to be published)].

[14] H. Risken, The Fokker-Planck Equation (Springer, Berlin,
1996).

[15] From now on, we assume that a basic consumer (repre-
senting, e.g., a small town) receives power of 105 MWand
I � 2� 104 kgm2, � � 103 kgm2=s. We set P0 ¼ 1 s�2

and the damping constant � ¼ 0:1 s�1.

PRL 109, 064101 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

10 AUGUST 2012

064101-5

http://dx.doi.org/10.1016/j.enpol.2003.10.004
http://dx.doi.org/10.1109/TIE.2006.878356
http://dx.doi.org/10.1109/TIE.2006.878356
http://dx.doi.org/10.1109/TIE.2006.881997
http://dx.doi.org/10.1109/TIE.2006.881997
http://dx.doi.org/10.1038/445586a
http://dx.doi.org/10.1038/454570a
http://dx.doi.org/10.1103/PhysRevE.66.065102
http://dx.doi.org/10.1103/PhysRevE.66.065102
http://dx.doi.org/10.1103/PhysRevLett.96.108701
http://dx.doi.org/10.1103/PhysRevLett.96.108701
http://dx.doi.org/10.1103/PhysRevLett.100.218701
http://dx.doi.org/10.1103/PhysRevE.77.056103
http://dx.doi.org/10.1103/PhysRevE.77.056103
http://www.energy.siemens.com
http://www.eurostag.be
http://www.eurostag.be
http://dx.doi.org/10.1140/epjb/e2008-00098-8
http://dx.doi.org/10.1140/epjb/e2008-00098-8
http://arXiv.org/abs/0910.5673v4

