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In biological neural circuits as well as in bio-inspired information processing systems,

trajectories in high-dimensional state-space encode the solutions to computational tasks

performed by complex dynamical systems. Due to the high state-space dimensionality and

the number of possible encoding trajectories rapidly growing with input signal dimension,

decoding these trajectories constitutes a major challenge on its own, in particular as

exponentially growing (space or time) requirements for decoding would render the original

computational paradigm inefficient. Here we suggest an approach to overcome this

problem. We propose an efficient decoding scheme for trajectories emerging in spiking

neural circuits that exhibits linear scaling with input signal dimensionality. We focus on

the dynamics near a sequence of unstable saddle states that naturally emerge in a range

of physical systems and provide a novel paradigm for analog computing, for instance in

the form of heteroclinic computing. Identifying simple measures of coordinated activity

(synchrony) that are commonly applicable to all trajectories representing the same percept,

we design robust readouts whose sizes and time requirements increase only linearly with

the system size. These results moves the conceptual boundary so far hindering the

implementation of heteroclinic computing in hardware and may also catalyze efficient

decoding strategies in spiking neural networks in general.
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Decoding Complex State Space Trajectories

Heteroclinic networks naturally emerge in systems of pulse-coupled neuronal units and

provide the basis for bio-inspired analog computing: switching dynamics in networks of

unstable states. External signals induce complex trajectories resembling sequences of saddle

states, thus yielding computation via a re-encoding of input signals. Remarkably, for a

large class of systems exhibiting heteroclinic dynamics, the number of distinguishable inputs

(percepts) the system is capable of encoding grows exponentially with the number of units

composing the system. Nevertheless, inputs may be not uniquely represented by a single

orbit, but, depending on initial conditions, as anyone out of a set of orbits that also grows

exponentially for each percept. This potentially large number of orbits representing the

same information could, in principle, undermine the system’s main computational features,

i.e. its large encoding capacity, by also requiring a readout with exponentially growing size

or complexity. Here we show how to overcome this problem. We identify simple synchrony

measures common to all orbits representing the same percept in heteroclinic networks and

exploit the system symmetry to design robust readouts whose sizes increase linearly with

the system size. Our results thus provide a vital step towards a viable implementation of a

Heteroclinic Computer.

I. INTRODUCTION

In neuronal or neuro-inspired computations, state-space trajectories of high-dimensional networked

systems typically encode sensory signals or the results of computational tasks. Decoding such

trajectories, however, constitutes a formidable task, specifically because of the high dimensionality

and the often large number of possible trajectories to be decoded. One particularly transparent

example of neural information processing is offered by Heteroclinic Computing1–8. Heteroclinic

dynamics9–11 naturally emerges in a range of physical systems and provides a novel paradigm for

analog computing. In the basic paradigm, excitatory pulses and delayed connections among

symmetrically interacting neural units robustly enable the emergence of closed networks of

unstable saddle states (orbits). Computations are performed when external signals, serving as

inputs, break the system symmetry1,7,12,13 and induce specific periodic orbits resembling cyclic

sequences of saddle states (subset of the original network), thus re-encoding the inputs7,8. By

observing only the sequence of visited saddles, one can determine that a set of k neurons received

2

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
53

42
9



Decoding Complex State Space Trajectories
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FIG. 1. Idealized diagram of a Heteroclinic Computing System. Input signals ξi induce complex periodic
orbits (black line) resembling cyclic sequences of saddle states (circles). The resulting orbit is decoded by
a readout into a simple spike train representation where the k output units corresponding the k strongest
inputs exhibit spike activity while the N− k output units corresponding the N− k weakest inputs do not
exhibit spikes. k is a system feature. In this example {ξ1, . . . ,ξk}> {ξk+1, . . . ,ξN}.

a larger input than the other N−k neurons, thus computing a k-winners-take-all function. Figure 1

depicts an idealized diagram of a Heteroclinic Computing System.

Heteroclinic Computing presents two major aspects of interest: first, the number of internal

representations grows exponential with the number of neurons in the system, in stark contrast to the

linear capacity of stable attractor systems; the second aspect is their tractability and transparency of

how computations are performed in such spiking neural circuits. Due to their symmetry properties,

the characterization of a heteroclinic network, i.e. of all saddle-to-saddle connections, is reduced

to the characterization of a single heteroclinic orbit, independent of the number of orbits, because

all other orbits and their stability are determined by simply permuting the neurons in a single state

in all possible manners13.

In this work we investigate and solve a potentially major problem for heteroclinic computers.

Even though the number of discernible inputs (percepts) encoded in networks of states grows

exponentially with the system size, other system properties may grow even faster and hinder a

heteroclinic computer viability. Notably, the number of periodic orbits representing the same

input also grows exponentially and could, in principle, represent a simple shift of computing load

from an encoding to a decoding step, with no real gain. The fundamental problem is not related to

limitations on traditional approaches to decoding, which may rely on spike times correlation14–16

or learning algorithms17–21, but rather on the lack of understanding the dynamics guided by the

symmetry of the heteroclinic network in state-space and its implications for decoding options. It

has been unknown so far how to decode combinatorial numbers of multi-dimensional dynamic

spiking patterns effectively and robustly. Below, we present a novel design for a readout layer
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Decoding Complex State Space Trajectories

1.5
time t

vo
lta

ge
 x

i 

0 10.5

0.2

0.4

0.6

0.8

xθ=1

0.0
2

reset

𝜏
ε

pulse
arrival

(I,ε,𝜏)

ξ1

ξ2

ξ3

ξ4

ξ5

b

a

FIG. 2. Symmetrical neural network and pulse interaction. (a) Example of a fully symmetrical network
of N = 5 identical neurons defined by three global parameters, I,ε and τ . Circles represent neurons, solid
lines represent internal connections and dashed arrows represent external connections, ξ represent the
external signal. (b) The first pulse interaction between two neurons in the network is shown. After reaching
the threshold xθ , neuron 1 sends a pulse that takes a time τ to arrive. The pulse causes an instantaneous
voltage jump equal to ε on all other neurons (only one is shown). Parameters, Ii = 1.1, τ = 0.5 and ε = 0.08,
γ = 1 and ξi(t) = 0, for all i.

whose size (number of units) scale only linearly with the size of the core heteroclinic processing

network. To achieve this design, we first identify features common to all orbits representing the

same percept (the average degree of synchrony between sets of neurons) and thereby we were

able to avoid the multiplicity of decoding many orbits individually for each percept. Second, we

demonstrate that the network symmetry may be exploited to tackle the exponential growth in the

number of percepts themselves. Combining these results, we present readouts based on standard

spiking layered networks whose size scale linearly with the number of neurons in the heteroclinic

system and moreover requires only a few spikes per readout unit. To illustrate a specific example,

we present a complete system consisting of computing network and readout, all composed of

only one type of unit, the Leaky-Integrate-and-Fire neuron and tested its performance at different

signal-to-noise ratios.
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Decoding Complex State Space Trajectories

II. HETEROCLINIC COMPUTING AND SCALING OF SYSTEM PROPERTIES

Even though the concepts studied here depends only on the existence of a robust heteroclinic

network, for illustration we consider networks of oscillatory Leaky-Integrate-and-Fire neurons

with all-to-all connections. Each neural unit i ∈ {1, . . . ,N} exhibits a voltage-like state variable xi

satisfying the differential equations

dxi(t)
dt

= I− γxi(t)+ξi(t)+
N

∑
j=1

∑
t j,ρ∈Pj

εδ (t− t j,ρ − τ), (1)

for xi ∈ [0,xθ ) where xθ is a spiking threshold. The parameter I represents a constant current,

γ is a dissipation parameter, and ξi an external signal serving as input. Whenever a threshold is

reached xi(t−) ≥ xθ , the state variable is reset to xi(t) = 0 and a pulse (spike) is sent to all other

neurons, mathematically reflected in the time t = t j,ρ of the ρth threshold crossing (ρ ∈ Z), by the

neuron j. Without loss of generality we fix xθ = 1. The sum in (1) is the contribution of all spikes

arriving from the other N−1 neurons j to i at time t, where Pj is the set of all times t j,ρ of spikes

sent by neuron j, where ε > 0 is the coupling strength and τ is the coupling delay. Figure 2 shown

and example of time evolution and the delayed pulse-interaction for a simple network of N = 2

neurons.

It has been shown that the combination of excitatory couplings and delays may promote the

emergence of partial synchronization in networks of pulse-coupled oscillators5,22,23, also called

polysynchrony24, where subsets of neurons synchronize in the absence of global synchrony. In

this work we refer to these subsets simply as “clusters”. How the neurons are distributed among

clusters is characterized by its permutation symmetry. For example, a state with two clusters, one

with 3 synchronized neurons and one with 2 synchronized neurons, has a permutation symmetry

S3× S2. That is, given five identical neurons, we can distribute them in
(5

3

)
= 10 saddle states

with the same spike-time differences between clusters. The underlying mechanism behind such

dynamics are simultaneous resets induced by incoming spikes. When one neuron is reset, it sends

pulses to all other neurons, which arrive simultaneously after a fixed amount of time τ . If the pulses

are strong enough to cause the simultaneous threshold crossings for a set of neurons, they are

simultaneously reset to zero, and thus synchronized. If the frequencies of the neurons are similar

enough, these resets via supra-threshold incoming pulses may become cyclic, leading to a periodic

orbit (in the absence of noise). If all resets during one orbit’s period are triggered by incoming
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Decoding Complex State Space Trajectories
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FIG. 3. Complex periodic orbit computing a (k = 9)-winners-take-all function over 19 inputs. The
voltage of all neurons are plotted each time x1(t) = 0. The ten neurons receiving the smallest inputs form
two groups of five neurons (in blue and red). The neurons receiving the strongest 9 inputs form three
groups of three neurons each (in black). Non of those three groups of three neither the two groups of five
ever synchronize among themselves, only across the group types. Notably, only the three groups of three
neurons (in black) sequentially form the smaller cluster, i.e. form a cluster of size µ . The states’ permutation
symmetry for this example is S8×S8×S3. Thus, n = 8, µ = 3 and m = 2.

pulses, the orbit is called stable, because any small variation in the voltages of synchronized

neurons is reset within one cycle; if one or more resets are not triggered by incoming spikes, small

desynchronizations will induce ever larger desynchronization after each cycle, because incoming

pulses will have different contribution to each neuron due to the nonlinear (concave down) voltage

curves13, and the orbit is called unstable. In particular, if an orbit exhibits stable and unstable

manifolds, we called it a “saddle periodic orbit”.

Interestingly, because the neural network is fully symmetrical, if one saddle periodic orbit

exists, any permutation of neuron will result in another saddle orbit with similar stability properties

and the same symmetry. Furthermore, for a broad range of parameters, those symmetry-related

saddles form closed networks of unstable states, i.e. their stable and unstable manifolds are inter-

connected22. Such switchings occur between saddles exhibiting the same symmetry, a feature we

will make use for the decoding process.

Small but persistent input signals breaks the system symmetry and induce complex periodic

orbits visiting the vicinity of a fixed number of saddles from the original network of states7,8.

But, what is encoded in these resulting orbits? We analyze a frequently occurring type of saddle

periodic orbits near networks of states with each saddle exhibiting m clusters of n neurons and a

single smaller cluster of size µ < n. Known examples include states, for instance, with permutation
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Decoding Complex State Space Trajectories

symmetries S2× S1, S8× S8× S3, S21× S21× S21× S21× S16, etc. Furthermore, their stability is

such that a general perturbation to all neurons desynchronizes only one large cluster with size n,

here denoted as “the unstable cluster”, all other (stable) clusters are resynchronized by incoming

spikes shortly after a perturbation. Near each saddle the unstable cluster splits deterministically.

There is only two possible ways that after breaking a single (unstable) cluster the state symmetry

is recovered after a transient (symmetry preserving switch), either the µ neurons receiving the

strongest inputs in this cluster or the µ neurons receiving the weakest inputs in this cluster must

resynchronize to form a new small cluster. Meanwhile, the other n− µ neurons must join the

originally small cluster to form a new large cluster of size n. Whether the strongest or the weakest

will form the small cluster is a system property, i.e. depends on neural model, the coupling strength

and delays. Finally, an overall shift in relative voltages renders another cluster unstable, thus,

marking the arrival at a new saddle with the same symmetry and stability as the original. As

previously shown7 and also illustrated in Figure 3, if the input signals persist for long enough, the

dynamics converge to a periodic orbit resembling a cyclic sequence of visited saddles. During this

orbit, from the N = mn+ µ neurons, m+ 1 groups of µ neurons are recurrently compared to m

groups of n−µ neurons but not among themselves, thus altogether dynamically categorize inputs

into two groups, one of size (m+1)×µ , that visits the smaller cluster, and one of size m×(n−µ),

that does not, see Figure 3 for a specific example. Therefore, the resulting computation is a k-

winners-take-all function where either

k = (m+1)×µ, (2)

if the neurons receiving the strongest inputs sequentially form the smaller cluster or,

k = m× (n−µ), (3)

if not.

With Equations 2 and 3 and the saddle permutation symmetry we can now estimate how the

relevant system properties scale with network size. There are two quantities that are particularly

interesting, namely the discernible inputs (percepts) and the number of orbits representing the

same input (percept multiplicity). We remark that for different initial conditions (states), even

though the computation is the same (same percept), may lead to different resulting orbits. The

7
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FIG. 4. Number of orbits, percepts and orbits representing the same percepts (multiplicity) grow
exponentially with the number of neurons. Lines represent the exponential interpolation between the
data point represented by circles. The first two points and the last point are real examples, while the
others are predicted states. Arrows together with permutation symmetry labels indicate the symmetry of
the state consider for each chosen N. An increase of two orders of magnitude in the number of neurons
yields an increase of 20 orders of magnitude in the number of percepts. Nevertheless, the number of orbits
representing the same percept grows even faster, with an increase of 60 orders of magnitude.

number of percepts for a network with N neurons computing a k-winners-take-all function is given

by

PN,k =
N!

k!(N− k)!
. (4)

That is, the number of ways we can divide the input into one group with k inputs and a second

group of N− k inputs. The number of orbits Mm,n,µ representing the same input depends on the

number of clusters m+1 and the size of each cluster, n and µ . As discussed above, we have two

distinct sets of neurons: one of size m(n−µ) that is divided into m subsets of the same size (n−µ)

and another of size (m+ 1)µ divided into m+ 1 subsets of size µ . Within each of the two main

sets, the subsets order’s exhibit a circular permutation, see Figure 3. Thus, the multiplicity of a

percept is analogous to finding all the ways we can distribute m(n− µ) distinguishable elements

into m sets of size (n− µ) over a circle combined with all the ways we can distribute (m+ 1)µ

distinguishable elements in (m+1) sets of size µ over a circle. That is,

Mm,n,µ =
((m)(n−µ))!
((n−µ)!)m

1
m
× ((m+1)µ)!

(µ!)m+1
1

(m+1)
. (5)

As shown in Figure 4, Equations 4 and 5 describe system properties that scale exponentially

with the number of neurons composing the system. In particular, the number of percepts indeed

scales exponentially with the number of neurons, providing a way to encode a large number of
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Decoding Complex State Space Trajectories

items in relatively small networks. Nevertheless, other properties such as the number of saddles

and the number of orbits representing the same percept increase even faster. For example, for

N = 100, a network of saddles with cluster permutation symmetry S21×S21×S21×S21×S16 can

already encode P100,20 ≈ 5.3× 1020 percepts7, but it also exhibits a network of about 6.5× 1065

saddles and a multiplicity of M4,21,16 ≈ 1.04×1061 different orbits for each percept.

This large number of orbits representing the same input could in principle undermine the large

encoding capacity of the system by also requiring a readout which size or complexity also grows

exponentially.

III. DECODING COMPLEX PERIODIC ORBITS

We now show that the difficulties imposed by the multiplicity of a percept can be overcome

by identifying a simple synchrony measure that is the same for all orbits representing the same

percept and show that a readout which size increases linearly with the system size is possible by

exploiting the system’s complete permutation symmetry.

In networks of spiking neurons, each orbit representing/encoding a percept may be represented

by N concurrent spike trains, one per neuron (periodic). Thus, from the readout perspective, there

are two simple candidate quantities available for detecting an orbit, (a) differences in firing rates

among the neurons and (b) the synchrony/timing between spikes elicited by different neurons.

Our numerical experiments have shown that the increase in firing rates for the neurons receiving

the strongest inputs is small (≈ 0.1% in some cases), thus approach (a) may not provide a good

indicator to which neurons received the strongest inputs. On the other hand, approach (b) is

promising. The groups receiving the k strongest inputs and the N− k weakest inputs exhibit quite

different synchrony properties during a complex periodic orbit. A characteristic of all networks-

of-states discussed here is the symmetry preserving saddle-to-saddle switches. That is, after the

transient time that follows a perturbation, the final periodic orbit is a simple permutation of

the original, thus not only preserving its symmetry but also its stability properties. Therefore,

analyzing one such switch should already yield the synchrony measure for detecting a percept

(orbits resembling sequences of switches).

One simple characteristic of long periodic orbits representing percepts (as discussed above) is

that only a set of k neurons divided in m+1 groups of size µ may sequentially form a small cluster.

Either the k neurons receiving the strongest inputs or the k weakest. Thus, detecting which neurons
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FIG. 5. Connectivity between layers in a Heteroclinic Computing unit. Signals ξi are first encoded
by a fully connected neural network with only excitatory connections (solid arrows); each neuron from the
decoder is connected to all neurons in the first encoder layer `= 1. Neurons with same index have excitatory
connections and inhibitory connections (dashed arrows) with all other neurons (symmetrical). There is no
in layer connections in the decoder. Connections between layer ` = 1 and ` = 2 are excitatory and exist
only between nodes with the same index. The ` = 2 function is to detect neurons with the k highest input
spike frequencies from `= 1. The overall output are spike activity from the neurons with same index as the
k stronger inputs.

cyclically assume a position in the smaller cluster, exactly decode the result of a computation.

This approach seems reasonable because not only the smaller cluster is only composed of the

neurons of one type (k strongest or k weakest), but it is also synchronized by incoming spikes,

thus small variations in parameters or noise should not be an obstacle for detection. This stability

by incoming pulses also produces a clear pulse pattern of µ simultaneous spikes even during the

saddle-to-saddle transient times, because the small cluster must first merge with other neurons to

form a large cluster before becoming an unstable cluster.

We argued that identifying the neurons recurrently composing the smaller cluster during a

complex periodic orbit is a good indicator of which are the weakest, and which are the strongest

input signals applied to a heteroclinic system. But what scalable readout (system) can detect

this marker? We propose a two layered network (Figure 5). The first layer computes wether a

neuron in the encoding layer spikes with at most other µ − 1 neurons. This includes all neurons

in the smaller cluster and the neurons that are desynchronized during transient. The second layer

computes exactly the neurons that frequently spike with only µ − 1 other nerons, thus decoding

the percept.

The connectivity between the encoding network and the first layer of the decoder (` = 1) is

as follows: it has a single excitatory connection between neurons with the same index which

are strong enough to generate a spike from the neurons in the readout. That is, they always
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FIG. 6. Readout neuron’s response to incoming pulses. Excitatory incoming pulses produce a positive
spike in voltage; Inhibitory incoming pulses produce a negative spike in voltage. After a spike in voltage,
its value exponentially relex to its resting potential at xi = 0. Low amplitude incoming spike trains can also
lead to to a reset, if their frequency is high enough.

generate spikes in the absence of concurrent inhibitory incoming pulses. It also exhibits inhibitory

connections between neurons with different indices, such that if more than µ−1 inhibitory spikes

arrive at a neuron in the readout almost or at the same time as an excitatory pulse, a new spike

is prevented. Moreover, inhibitory connections exhibit slightly shorter delays than exitatory ones,

such that the inhibitiory pulses from synchronized or almost synchronized neurons does not arrive

shortly after an exitatory pulse. The connectivity between the first and the second layer (` = 2)

is very simple. It has a single excitatory connection between neurons with the same index, which

can only induce a spikes in layer `= 2 if pulses arrive with at least a minimum frequency. It takes

advantage of the stability of the smaller cluster, that promotes reliably µ concurrent pulses in the

vicinity of a saddle and during transient times, because it stay stable during the whole process. It

losses stability only after forming a larger cluster.

Specifically, our readout’s nodes consist of Leaky-Integrate-and-Fire neurons which are non-

oscillatory (I = 0),

dx`i (t)
dt

=−γx`i (t)+η
`
i (t)+ ∑

j∈N
∑

t j,ρ∈P`
j

w`
i jδ (t− t j,ρ − τ j), (6)

where γ is a leak constant, ` indicates the network layer (` = 0 refers the heteroclinic system,

` > 0 the readout), w`
i j are the connection weights between neurons i form layer ` and j from

the previous layer and ηi(t) is a white Gaussian noise signal. The positive finite leak grants and

limits the memory of the neuron to a short window. Without it, the system would either integrate

all pulses (very small γ), thus not decode, or do not detect synchrony due to infinitesimal or very

small voltage differences induced by noise (very large γ), see Figure 6 for a depiction of voltage’s
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FIG. 7. Decoding a 9-winners-take-all computation in a N = 19 neural network. (a) The voltage
of all neurons are plotted each time V1(t) = 0. The ten neurons receiving the smallest inputs form two
groups of fine neurons (in blue). The neurons receiving the strongest 9 inputs form three groups of three
neurons each (in black). (b-c) Each dash represents a time at which a neuron spiked. (b) In layer ` = 1,
the neurons corresponding to the strongest inputs (white background) spike more often that the others (blue
background). (c) In layer `= 2, only the neurons corresponding to the k strongest inputs (white background)
spike. Parameters w1

i j = 1.35 for i = j, w1
i j =−0.1 for i 6= j and w2

ii = 0.1
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Decoding Complex State Space Trajectories

response to different inputs.

For illustration, we present a readout for the N = 19 system introduced above. This is a good

example because it already exhibits a large percept multiplicity while it is still possible to depict it

in a concise way. In this system three groups of three neurons switch between two groups of five

neurons, thus µ = 3 and n = 8. Figure 7 shows that the first layer detects whether a neuron spikes

(almost) concurrently with less than µ = 3 other neurons. As expected, output neurons with the

same index as the ones in the smaller cluster spikes during transient and when close to a saddle

orbit, thus, more often than other neurons. The second layer takes advantage of this feature and

compute the inputs with higher frequency, thereby, decoding the original result of the computation,

i.e. (k = 9)-winners-take-all.

As a proposed computing paradigm, it is important to discuss how does Heteroclinic Computing

performs in non-ideal condition. Previous works have shown how noise affects switching times1,25

and switching probabilities26,27 in heteroclinic networks. But, how does noise affect our overall

encoding-decoding process? As the computing system is only composed by neurons of the same

type, that is, separate just in functionality, we will consider the same type of noise acting over

all network nodes. We, thus, also added the noise term ηi(t) to all nodes in the encoding layer.

Noise can affect the computation in different ways. In what concerns the heteroclinic dynamics,

noise can either induce undesired switches, thus transiently computing the wrong rank order, or

completely break the dynamics causing a total system failure. From the readout perspective, noise

can either promote extra spikes by increasing the neural voltage at the receiving pulses times in

` = 1 or preventing them by reducing their voltage at those times. ` = 2 is mostly unaffected

directly by noise because it only integrates the incoming excitatory pulse-trains.

To evaluate the heteroclinic encoder-decoder system under noise, we compute the fraction of

false positives (always accompanied by a false negative) and the fraction of saddles detected as

functions of time for different signal-to-noise rations (SNR), averaged over 50 independent trials

per SNR. To avoid irrelevant spike timing variations across trials due to different initial conditions

and noise, we measure time in number of output pulses (`= 2), thus aligning all trials for a relevant

average measure. Input signals are fixed and set to

ξi = i×∆ξ , i ∈ {1, . . . ,N}, (7)

13

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
53

42
9



Decoding Complex State Space Trajectories

1e-2

SNR
1e+2 11e+1 1e-1

19
neuron i

2 43 10

80%

1

pu
ls

e 
fr

ac
tio

n 
pe

r 
ne

ur
on

100%

60%

40%

20%

0%

b

c

d SNR=1

SNR=1e+2

SNR=1e+1

saddles detected

true positive computations

k=9(N-k)=10

6 875 9 11 12 13 14 15 16 17 18

0.12

0

0.06

SNR=1e-1

SNR=1e-2

e

f

a

heteroclinic dynamics failure

0.12

0

0.06

0.12

0

0.06

0.12

0

0.06

0.12

0

0.06

FIG. 8. Decoder and system performance at different SNR for a network with N = 19 neurons and
k = 9. (a) The fractions of detected saddles (solid line), the fraction of true positive detections (dotted line)
and the fraction of system failures (dashed line) as functions of the SNR. Average over 50 trials per SNR
and measured over 250 pulses from the output layer `= 2. For the consider SNR interval all visited saddles
have been detected; the quality of detection increases with SNR; (b-f) the average fraction of pulses elicited
by each neuron over all pulses for different SNRs. In blue, false positive pulses; in light-gray, true positive
pulses.

where ∆ξ is a fixed constant completely determining the input signal. We define a SNR ration as

SNR =
∆ξ 2

σ2 , (8)

where σ is the standard deviation of the white Gaussian noise signal η(t). Furthermore, we define

as a true positive any pulse from the layer ` = 2 indicating a correct result and as a false positive

any pulse from `= 2 indicating the wrong result. Their fraction is simply given by dividing their

count by the total number of `= 2 pulses.

As an example, we apply the approach described above to a network of N = 19 neurons, details

in Figure 8. Our resutls shows first and foremost that the readout is robust, because it detected

the vicinity of all approached saddle (correctly computed or not) for the broad range of SNRs

14

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
53

42
9



Decoding Complex State Space Trajectories

input

200 spikes  

5k spikes

output

k>d k=d k<d

SNR=255
a

2.55e-5

0

k>d k=d k<d

SNR=5
b

input

200 spikes

5k spikes

output

2.55e-5

0

FIG. 9. Image encoding via output spike-rates Inputs and outputs are represented as 9×9 pixels images.
Input image’s pixel show the combined noise an external signals for a neuron, averaged of approximately
a time period [0,3.26) between two subsequent spikes of one neuron. Input are depicted in a grey gradient
between zero (black) and 2.55× 10−5 (white). A network of 90 neurons (81 depicted) computing a
(k = 30)-wta function encodes the input. d is the number of signals’ non-zero inputs, d = 5 (left), d = 30
(center) d = 49 (right). Output images show the average spike-rate of each neurons (one per pixel),
normalized to the interval [0,2.55× 10−5] after 200 and five thousand output pulses. (a-b) For k > d,
the input is overrepresented, i.e. more neurons are activated than necessary to represent it. False positives
occur repeatedly and generate a grey background, representing neurons that receive no inputs and spike
stochastically. For k = d, only a subset is visited with high probability, so there is a fast convergence to
an (almost) homogeneous spike rate. For k < d, the input is underrepresented by a single periodic orbit
but, for long enough simulations, all neurons receiving input signals eventually generate spikes, because
noise induces changes to the set of winners. (a) the noise contribution (σ = 10−7) to the total input is not
visible as it is smaller than the color gradient precision, nevertheless it supports switching. (b) The noise
contribution is large (σ = 5.1×10−6), but the dynamics still computes properly after five thousand output
pulses. Parameters τ = 1.61, ε = 10−3, w1

i j = 1.32 for i = j, w1
i j =−0.015 for i 6= j and w2

ii = 0.12.

considered. The quality of the computation, measured as the fraction of true positives, decrease

monotonically but not linearly with decreasing SNRs. Furthermore, the number of system failures

within the first 250 spikes form layer ` = 2, that is, in which the dynamics leave the heteroclinic

network, increases inversily proportional to the SNR.

As a second example of computation, we apply a heteroclinic computing unit to represent a set
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Decoding Complex State Space Trajectories

of images serving as inputs, see Figures 9 and 10. Specifically, a network composed of 90 neurons

computing a (k = 30)-winners-take-all function is used to represent images with 9×9 pixels. From

the 90 neurons, 81 receive direct connections form the image, one per pixel. The other nine receive

not input. A black pixel represents an input equal zero; a white pixel represents a signal with

amplitude equal 2.55× 10−5. Independent Gaussian noise of variance σ = 10−7 is added to all

nodes, promoting switching when a set of inputs is in part identical. The output is also expressed in

an image of 9×9 pixels. The color of each output pixel reflects its firing rate in relation to the other

neurons’ firing rates. The largest firing rate is depicted as white. If a neuron does not spike, the

firing rate is zero, represented by the color black. Intermediary values are scaled accordingly and

depicted in a linear grey scale. For generic inputs, three cases may emerge (see Figures 9): first,

the number of non-zero inputs d is smaller than the k being computed. In this case, d neurons fire

the most and repeatedly, while the other neurons fire with a lower probability and stochastically.

For k = d the input is precisely represented, with neurons receiving no input not producing spikes

(for small enough noise). For k < d, the image is under represented at each cycle, but the whole

image can be represented if the computation is long enough. Again, neurons receiving no input do

not generate any spikes. To show how this system responds to a more natural set of inputs, we also

compute its reponse to low resolution representations of the numerals {0,1,2,3,4,5,6,7,8,9} and

depict the results in Figure 10. The results are similar to the ones depicted in Figure 9. All numeral

representations are overrepresented by the network, because d < k for all numerals. Notice that,

differently from our previous examples, the numerical experiments shown in Figures 9 and 10

exhibit cases in which there are multiple neurons receiving the same input, so there is no ranking

order difference between many of them. Momentary differences are induced by noise, thereby the

outputs are stochastic and their firing rates reflect their probability of being in the set of “winners”.

We argue that our results are general because the underlying features exploited by our readout

is independent of the precise neural model or system size: first, simultaneous pulses generated by

the heteroclinic system are robust and precise, because suprathreshold inputs erase small enough

voltage differences; and second, the readout does not operate on unstable states as the heteroclinic

system, but is rather driven from its single and stable ground state at Vi = 0 for all i by recurrent

incoming spikes.
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FIG. 10. Numerals’ representation via output spike-rates. Inputs and outputs are represented as 9× 9
pixels images. Input image’s pixel show the combined noise an external signals for a neuron, averaged of
approximately a time period [0,3.26) between two subsequent spikes of one neuron. Input are depicted
in a grey gradient between zero (black) and 2.55× 10−5 (white). A network of 90 neurons (81 depicted)
computing a (k = 30)-wta function encodes the input. d is the number of non-zero inputs. Output images
represent the average spike-rate of the neurons (one per pixel), normalized to the interval [0,2.55×10−5] of
shades of grey after 200 and after five thousand output pulses. Each numeral exhibits a different d value, all
overrepresented (d < k). Parameters τ = 1.61, ε = 10−3, σ = 10−7 (noise variance), w1

i j = 1.32 for i = j,
w1

i j =−0.015 for i 6= j and w2
ii = 0.12.

IV. DISCUSSION

In this work we identified and solved a potential major problem on computing with state-space

trajectories in bio-inspired dynamical systems. After a brief review about heteroclinic computing,

we have shown that not only the number of percepts, but also the number of periodic orbits

representing (encoding) the same percept grows exponentially with the number (N) of neurons

in the system. The exponential variety brings the benefit of a large number of outputs that are

computable but also poses the question whether a readout is required that is exponentially large

or needs exponentially long time for decoding the state space trajectory that reflects the result

of the computation. We have shown that this is not the case by first defining a readout strategy

that exploits features that are common to exactly orbits that represent the same input type. A

simple synchrony measure, i.e. concurrent pulses from an (always present) small cluster serves to

identify the percepts independent of the actual orbit. Second, we exploit the system symmetry to

mediate the exponentially growing number of percepts with the system size, yielding readouts that

grows linearly with the system size. To present a concrete example, we implemented a heteroclinic

computing unit, including a readout, using only leaky Integrate-and-Fire neurons. Interestingly,

because it is based mostly on symmetry , the readout approach presented here is independent of

network size or saddle permutation symmetry, as long as only a single smaller cluster is present
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(the predominant case). Furthermore, the approach is robust to noise because, if the dynamics is

not disrupted, noise is first filtered in the heteroclinic system, due to simultaneous supra-threshold

events, and second the readout performs a short average over its inputs, with memory that scale

inversely proportional to their voltage leak constant (exponential decay).

We emphasize that we were able to design the general readout presented above only by

following a conceptual theoretical approach, exploiting symmetry features that are not constrained

to any specific system. The readout is thus applicable across system settings (units, parameters

and all sizes of systems that exhibit the type of heteroclinic dynamics we discuss) and is moreover

independent of any details of synchronization patterns generated by the (near-) heteroclinic

dynamics. For instance, to obtain similar results using any purely computational approach,

through machine learning17–21, would be feasible only for any fixed system at given parameters,

system size and heteroclinic dynamics. In addition, the system size would be strongly limited due

to the combinatorial growth of the number of encoded features. To generalize any such result to

arbitrary settings is viable only with some additional information about the mechanisms underlying

the dynamics, and thus would require further theoretical insight of the type we provided in this

article. Moreover, machine learning approaches uninformed about mechanisms underlying the

dynamics would likely be hugely computationally demanding as all readout parameters (a priori

an exponential number of them) would need to be determined. Our results are largely independent

of the neural model used in the readout. In fact, any readout subsystem capable of discerning

between two sets of almost synchronized incoming pulses, one smaller than the other, should be

able to decode the signal. Our specific readout architecture simply stresses that symmetry informs

us on how to build readouts of sub-exponential (and even linear) size, independent of the grouping

of the neurons in the (near-) heteroclinic dynamics and the resulting symmetry of saddle states.

So, the readout design presented is unique in its generality. We still mention that we do not claim

any optimality of the readout, in terms of, e.g. the number of spikes, units, or processing steps

required. The readout presented thus just constitute the first (to date) example to function, with

many questions about optimally to be addressed.

The proposed framework for readouts has some interesting implications. By providing a spatial

correlation between inputs and outputs, our readout brings the applicability of the Heteroclinic

Computing paradigm on par with other approaches of computing partial rank order with spiking

systems28–32. Furthermore, building readouts using the same substrate as the main system, neuron-

like units, may help to model and explain how complex trajectories are decoded in neural system

18

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
53

42
9



Decoding Complex State Space Trajectories

models based in heteroclinic dynamics, for example models of the olfactory system3,6,33. Overall,

we present the first general and scalable readout approach to a heteroclinic computing systems,

making them theoretically feasible and bring them one step closer to an actual implementation,

also providing a clear way to couple such system with other systems and, possibly, machine

learning approaches.
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