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Geometric constraints impact the formation of a broad range of spatial networks, from amino acid
chains folding to proteins structures to rearranging particle aggregates. How the network of interactions
dynamically self-organizes in such systems is far from fully understood. Here, we analyze a class of spatial
network formation processes by introducing a mapping from geometric to graph-theoretic constraints.
Combining stochastic and mean field analyses yields an algebraic scaling law for the extent (graph
diameter) of the resulting networks with system size, in contrast to logarithmic scaling known for networks
without constraints. Intriguingly, the exponent falls between that of self-avoiding random walks and that
of space filling arrangements, consistent with experimentally observed scaling of the radius of gyration of
protein tertiary structures with their chain length.
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Introduction.—Most networks forming in the real world
are spatially extended and often geometrically constrained.
Common examples include volume exclusion in the
dynamics of polymers, chemical interactions in folding
proteins, and local electromagnetic forces in ferrofluidic
aggregates [1–6]. How geometric constraints impact the
dynamic formation processes of spatial networks and
thereby their function, is far from fully understood.
In many physical, chemical, and biological systems,

interaction structure and geometrical arrangement are
equally important [7], in particular for their dynamics.
Key examples include proteins folding into their tertiary
structures [8,9]. During the folding process, not only do
amino acids interact with their neighbours along the
chain but also with units that are far apart in the chain
but close in space [10,11]. On the level of abstract contact
networks [12–14], the process of protein folding can thus
be considered as adding interaction links to a network,
akin to percolation [15–17], but spatially transforming the
network at the same time.
In this Letter, we demonstrate that geometric constraints

induce algebraic scaling laws in the formation of spatial
networks, suggesting self-similar (“fractal”) structures. We
introduce a stochastic model that explicitly captures the
essential impact of such geometric constraints on establish-
ing spatial contacts and map them to constraints on graph-
theoretic link additions. Combining probabilistic analysis
with mean field calculations, we show that the extensions
of the resulting networks exhibit an algebraic scaling law

with system size. In stark contrast, network formation
processes without such constraints exhibit logarithmic
scaling [18] such that geometric constraints qualitatively
change the nature of the scaling law. Intriguingly, the
algebraic scaling law per se as well as its exponent are
consistent with the scaling of the experimentally observed
spatial radius of gyration with the chain length of protein
tertiary structures.
Geometrically constrained network formation.—To

understand basic principles underlying geometrically con-
strained network formation dynamics, consider an initial
chain of identical, spatially extended units, each in contact
with its nearest neighbor units. For later analytic acces-
sibility, we take the space to be two dimensional and the
chain to be closed to a single cycle such that initially the
units are indistinguishable. The latter does not change
the scaling behavior, because folding an open chain results
in a collection of closed cycles, as we will see below. This

FIG. 1. Mapping spatial structure formation onto network
formation. Units coming into spatial contact (green dashed lines)
induce additional links on the network level. The network becomes
more and more compact as links add, in two dimensions, yielding
a subgraph of the triangular grid. For illustration, panels show
networks of N ¼ 11 units for time steps t ∈ f1; 2;…; 8g.
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chain represents the original aggregate such as an unfolded
protein where the units are amino acids or an initial contact
sequence of ferrofluidic particles.
In a time-discrete network forming process (Fig. 1), the

units randomly come into contact with each other under the
geometric constraints that in each step (i) no two units
overlap and (ii) units in contact at some point in time stay in
contact. The chain thus nonlocally deforms each time a new
contact forms (Fig. 1). The sequence of connections models
the emergence of pair-wise contacts between interacting
units moving in space under the above constraints. In the
model, new contacts keep forming until no additional
contacts are consistent with the constraints. Thus, the
resulting network is a collection of nonoverlapping disks
arranged to rigid triangles in two-dimensional space
(or spheres arranged to rigid hexagonal layers in three-
dimensional space). Checking whether this rigidity
property can still be achieved for every newly established
contact constitutes a nonlocal, computationally difficult
problem and is not simply feasible.
To analytically access the problem, we first map the

spatial contact process with geometric constraints to a link
addition process of network formation, with constraints on
changes in the network topology only (Fig. 2). The map
yields an approximate ensemble of networks that represent
the spatial structure formation process. The topological
constraints in the network model become the following.
(a) Links can only form between two units that are part of
the same face of the graph (region enclosed by a cycle in the
network). This ensures that geometric constraint (i) is not
violated by links crossing. (b) Links do not form across the
outer face. This ensures that no unit can be enclosed by less
than six other units (which is geometrically impossible)

such that (i) stays satisfiable. (c) The maximum degree of
each unit is six. This also ensures that (i) is not violated by
forcing more than six units around one given unit. (d) Once
connected by a link, pairs of units do not disconnect,
representing geometric constraint (ii).
Spatial scaling of the network.—The spatial extension of

an aggregate is often measured by its radius of gyration

Rg ¼ N−1
�
1

2

X
i;j

ðri − rjÞ2
�

1=2
∼ Nν; ð1Þ

quantifying the average root-mean-square distance between
any pair out of N units. Here, ri is the spatial position
of unit i ∈ f1;…; Ng and ν−1 is the scaling dimension.
Real three-dimensional protein structures indeed exhibit
an algebraic scaling law [Fig. 3(a)] with an exponent
ν ≈ 0.42� 0.04 above a lower bound ν3DSF ¼ 1=3 implied
by compact space filling aggregates [19–22] and below
an upper bound ν3DRW ¼ 3=5 resulting from self-avoiding
random walks in three dimensions without further restric-
tions [23–25], together yielding

νSF < ν < νRW: ð2Þ

For spatially embedded networks where each unit occupies
space of the same order of magnitude we expect the

FIG. 2. Mapping constraints from spatial geometry to network
topology. Links in the contact graph form when two randomly
chosen units come into spatial contact, subject to geometric
constraints (a)–(d) specified in the text. Process 1: adding a link
(green dashed line) is allowed because all conditions (a)–(d) are
satisfied. Process 2: adding a link (red dashed line) is forbidden
due to condition (a) to avoid overlapping units. Process 3: adding
a link on the outer face is forbidden due to condition (b) to avoid
the possibility that units (here the one shaded yellow) may with
later links (red dotted line) be enclosed by less than six other units
during a subsequent step (e.g., red dotted line)

(a) (b)

FIG. 3. Algebraic scaling laws in spatial network formation.
(a) Scaling of chain lengths of experimentally analyzed proteins
vs their radii of gyration [Eq. (1)] (37 162 data points from [19]
logarithmically binned into 100 equally spaced intervals on log
(N) scale, with error bars indicating standard deviations). Best fits
suggest algebraic (red) rather than logarithmic (gray) scaling.
[Logarithmic fitting by Rg ¼ a lnðbN þ cÞ − a lnðcÞ ensuring
that limN→0RgðNÞ ¼ 0.] (b) Algebraic scaling of graph diameter
DfinalðNÞ as derived in this Letter (orange line), plotted vs the
chain lengths N. Black dots indicate 450 stochastic realizations of
network formation processes [uniformly sampled on a logarith-
mic chain length scale, binned and evaluated as in (a)] indicating
the diameter of the original graph with best algebraic fit (red line).
The algebraic scaling law with the (inverse) scaling dimension ν
lying between that of self-avoiding random walk νRW (green
dashed lines) and that of space filling aggregates (blue dotted
lines) is consistent with biological data but inconsistent with
logarithmic scaling as expected from network formation proc-
esses without geometric constraints.
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diameter D to increase linearly with spatial extension.
Direct numerical simulations of the model processes for
various system sizes indicate an algebraic scaling law

Dfinal ∼ Nν ð3Þ

as found for biological protein tertiary structures; see Fig. 3.
Specifically, the obtained scaling exponent ν ≈ 0.62� 0.04
moreover satisfies the same types of upper and lower
bounds [Eq. (2)] as experiments on proteins suggest,
between space filling configurations (in two dimensions
ν2DSF ¼ 1=2) and that of self-avoiding random walks
(ν2DRW ¼ 3=4).
Network formation integrating constraints.—To under-

stand the emergence of this scaling law and estimate its
exponent, we mathematically analyze the network forma-
tion in the simplified network model with graph-theoretic
constraints (a)–(d) inherited from the geometric ones (i)
and (ii).
Consider at time t ¼ 1 an initial graph consisting of one

cycle of N units that evolves in a process in discrete time
t ∈ f1; 2;…g, with exactly one link adding at a time. Each
new link divides one cycle into two smaller cycles. Such a
process exclusively generates networks that are planar
graphs consisting of cycles.
How does the above scaling emerge? How do the

constraints impact the structure formation process on the
network level? The graph-theoretical diameter of the dual
graph of a given network serves as a natural quantity
measuring the networks’ extension. The vertices of the dual
of a graph are defined by the faces of the cycles of the
original, with two vertices connected if the two cycles they
result from are neighboring, that is, share an edge in the
original graph. At time t, the diameter Dt of the dual
therefore equals the length of (one of) its longest paths,
representing a longest sequence of neighboring cycles in
the original graph. We call such a sequence a diameter
path. The union of all diameter paths [all sequences of
cycles of the same (largest) length] in the original graph is
called the diameter graph.
For small times t, the cycles are typically of different

lengths, for larger times become similar and eventually all
become triangles. Thus, for sufficiently large times t, the
diameter of the network is proportional to that of the dual
(Fig. 4). We thus take a mean field view and simply talk
about the diameter, also when analyzing the scaling of the
diameter of the dual. Since no two cycles share more than
one link, and no unit of the original network becomes
enclosed in any path [due to condition (b)], the resulting
dual graph stays a tree at all times. The diameter graph thus
is the union of all paths of cycles of lengthDt. We note that
the total number of cycles present at that time t equals t.
We now derive a recurrence relation for the average

diameter hDti to then estimate how the final diameter scales
with the chain length. Let hVti be the expected number of

cycles on the diameter graph and let hEti be the number of
end cycles (degree-one vertices of the dual) on any diameter
path, as shown in Fig. 4. The average diameter hDti evolves
with time in three different ways. First, if a new link divides
a cycle that is not part of the diameter graph, the diameter
hDti stays unchanged. Second, if a new link divides an end
cycle of the diameter graph (Fig. 4), which in mean field
approximation occurs with probability hEti=t, hDti grows
by one. Finally, if in the diameter graph a new link divides
a cycle that is not an end, which analogously occurs
with probability ðhVti − hEtiÞ=t, hDti grows by one if
the splitting is transverse to a diameter path, which in turn
occurs with some probability Pþ

t ; otherwise, if the splitting
is parallel to the diameter path, hDti also remains
unchanged; compare Fig. 5. We thus obtain the recurrence
relation

FIG. 4. Diameter path, diameter graph, and end cycles. A
diameter path is a sequence of cycles of maximum length (here
Dt ¼ 7, indicated by the dashed red line. For large graphs with
defined average cycle length,Dt is proportional to the diameter of
the original graph (black dots, black solid lines, pink solid lines
indicate diameter). The diameter graph is the union of all such
diameter paths (all shaded regions). Vt denotes the number of
cycles on the diameter graph (here Vt ¼ 12) and Et the number of
end cycles (with only one neighbor) on any diameter path (here
Et ¼ 5, shaded light rose).

FIG. 5. Diameter-increasing vs diameter-conserving link addi-
tion. Example illustrating three cycles of length l, l0, and l″
along the diameter graph with the dashed lines signifying the rest
of the network. Adding a link (red) parallel to the diameter path
leaves the diameter constant and creates a branch. Adding a link
(blue) transverse to the path (and thus parallel to the edges
indicated by wiggled lines) increases the diameter by one. Out of
the lðl − 3Þ=2 potential links to add, h1h2 − 2 may add
transversely.
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hDtþ1i ¼ hDti þ
1

t
ðhEti þ ðhVti − hEtiÞPþ

t Þ ð4Þ

for the expectation value of the diameter. It remains to
estimate Pþ

t , hEti, and hVti and to iterate the recurrence
relation in time to obtain the diameter of the final network.
Approximating Pþ

t .—To find Pþ
t , we first compute the

probability PtðDt increasesjlÞ of the diameter increasing
given that a link adds in a cycle of length l on the diameter
path [26]. There are two ways such a link can add; see
Fig. 5. If adding a link splits the cycle parallel to the
diameter path, the newly created cycle becomes a side arm
of the path, leaving the diameter unchanged. Alternatively,
if the new link splits the cycle transversally to the
direction of the path, the diameter extends by one. Let
h1 and h2ð¼ l − h1Þ be the numbers of units in the two
fractions transversal to the diameter path (Fig. 5).
Increasing the diameter thus requires to connect one of
the h1 units to one of the other h2 units. Then
PðDt increasesjl; h1Þ ¼ 2f½h1ðl − h1Þ − 2�=½lðl − 3Þ�g,
because there are lðl − 3Þ=2 ways of connecting any two
units in the cycle and h1ðl − h1Þ ways of forming a
transversal connection—the term “−2” taking care of the
two links that already exist between the two fractions of the
original cycle. As every splitting of the cycle into two parts
is equally likely for part sizes h1 ∈ f1;…;l − 1g, we find

PtðDt increasesjlÞ ¼ 1

l − 1

Xl−1
h1¼1

2
h1ðl − h1Þ − 2

lðl − 3Þ

¼ 4

3l
þ 1

3
: ð5Þ

Finally, the probability PtðlÞ of picking a cycle of length l
on the diameter path depends on the entire past history
and cannot be rigorously derived. We thus approximate
Pþ

t ¼
P

N
l¼4PtðDt increasesjlÞPtðlÞ≈PtðDt increasesjhltiÞ

by its rigorous lower bound given by Jensen’s inequality.
We take the desired expected cycle length for sufficiently

small times t to be its average length hlti ¼ Nþ2ðt−1Þ
t of

all cycles at time t. As no links can be added to cycles
of less then l ¼ 4 units, we take hlti ¼ 4 once the
previous average reaches that value from above,
½N þ 2ðt − 1Þ=t� ≤ 4, i.e., for t ≥ N=2 for sufficiently large
N, yielding

Pþ
t ≈

(
4t

3ðNþ2ðt−1ÞÞ þ 1
3

for t ≤ N=2;

2
3

for t > N=2:
ð6Þ

We now approximate the detailed dynamics (6), by its time
average, Pþ

t ≈ Pþ ¼ ðN − 2Þ−1 PN−2
t¼1 Pþ

t ≈ 0.602.
Approximating hVti.—Next we estimate the average

number of cycles in the diameter graph

hVti ¼ hDti þ
X
b

VbðtÞPbðtÞ ð7Þ

given by two contributions, the average diameter itself,
and the summed sizes VbðtÞ of all side branches b of an
arbitrary but fixed diameter path, weighted with the
probability Pb that branch b creates an alternative diameter
path overlapping with the original. As longer side chains
are exponentially suppressed, the second term is negligible
for the scaling in the limit of large N (see Supplemental
Material [27] for more details).
Iterated recurrence and scaling law.—This suggests that

hDti and hVti scale the same and therefore hEti can be
neglected in Eq. (4) without changing the scaling behavior.
With hVti ≈ hDti, the recurrence (4) becomes

hDtþ1i ≈ hDti þ
Pþ

t
hDti: ð8Þ

The solution through the initial condition hD2i ¼ 1 is

hDti ¼ 2ΓðPþ þ tÞ=½ΓðPþ þ 1ÞΓðtÞ� ≈ 2=ΓðPþ þ 1ÞtPþ
,

where Γð:Þ is the Gamma function. In the limit of large
t ¼ N − 2, a power law with specified exponent results,

hDNi ∼ NPþ
⇒ νtheory ¼ Pþ: ð9Þ

As found above already through direct numerical simu-
lations, the scaling law now also obtained analytically is
consistent with experimentally obtained law (1) for pro-
teins, with scaling exponent between the set upper and
lower bounds (2); compare Figs. 3(b) with 3(a).
Interestingly, the generally concave form of the dynamics
of Pþ

t (see Supplemental Material [27]) indicates that any
estimate of the time average νtheory ¼ Pþ must lie within an
interval νtheory ∈ ½νmin; νmax�, where νmax < 2=3 and
νmin > 1=2. Thus even without the approximation of the
dynamics (6), an algebraic scaling is guaranteed and its
exponent is above that for space filling aggregates,
νtheory > νSF.
The scaling law intrinsically results from the geometric

constraints: without such constraints the process analyzed
above exactly reduces to the formation of Watts-Strogatz
small-world networks with new links randomly adding to a
circular graph [28–30]; for sufficiently many links, the
diameter of such networks exhibits logarithmic scaling that
is thus inconsistent with the algebraic scaling we found.
Roughly speaking, due to the geometric constraints, any
new link between two units drastically increases the
probability of creating further links in these units’ respec-
tive neighborhoods. As a consequence, the structures
cannot be arbitrarily compact. Our numerical results as
well as analytic derivations above indicate that the spatial
extent is modified qualitatively, changing a logarithmic to
an algebraic scaling law.
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Conclusion and outlook.—Taken together, we uncovered
an algebraic scaling law for network formation processes
under geometric constraints. We have analyzed a spatial
network formation model by mapping geometric con-
straints in space to purely graph-theoretical constraints
on the topological changes of a network. Direct numerical
simulations as well as analytic mean field calculations
strongly indicate a scaling law with the graph diameter
growing algebraically with system size, representing spa-
tially self-similar (“fractal”) networks. This algebraic scal-
ing law is largely independent of the details of the model
setup and clearly induced by geometric constraints. Even
without the time-averaging approximation of the dynamics
(6) an algebraic scaling is guaranteed, exhibiting an
exponent larger than that of a space filling aggregate,
ν > νSF, thus indicating self-similar features. Both the
algebraic scaling per se and its exponent are consistent
with experimentally observed scaling of protein tertiary
structures in real space [19,20,22]. More generally, our
results suggest that geometric constraints may qualitatively
change scaling laws of networks forming in space.
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