
538 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 4, APRIL 2010

Iterative Probabilistic Performance Prediction for
Multi-Application Multiprocessor Systems

Akash Kumar, Member, IEEE, Bart Mesman, Henk Corporaal, Member, IEEE,
and Yajun Ha, Senior Member, IEEE

Abstract—Modern embedded devices are increasingly becom-
ing multiprocessor with the need to support a large number
of applications to satisfy the demands of users. Due to a huge
number of possible combinations of these multiple applications, it
becomes a challenge to predict their performance. This becomes
even more important when applications may be dynamically
started and stopped in the system. Since modern embedded sys-
tems allow users to download and add applications at run-time, a
complete design-time analysis is not always possible. This paper
presents a new technique to accurately predict the performance
of multiple applications mapped on a multiprocessor platform.
Iterative probabilistic analysis is used to estimate the time spent
by tasks during their contention phase, and thereby predicting
the performance of applications. The approach is scalable with
the number of applications and processors in the system. As
compared to earlier techniques, this approach is much faster
and scalable, while still improving the accuracy. The analysis
takes 300 µs on a 500 MHz processor for ten applications.
Since multimedia applications are increasingly becoming more
dynamic, results of a case-study with applications with varying
execution times are also presented. In addition, results of a case-
study with real applications executing on a field-programmable
gate array multiprocessor platform are shown.

Index Terms—Heterogeneous multiprocessor, multiple applica-
tions, non-preemption, performance prediction, synchronous data
flow graphs.

I. Introduction

CURRENT DEVELOPMENTS in modern embedded
devices like a set-top box and a mobile phone integrate

a number of applications or functions in a single device, some
of which are not known even at design time. Therefore, an
increasing number of processors are being integrated into
a single chip to build multiprocessor systems-on-chip. To
achieve high performance in such systems, the limited compu-
tational resources must be shared causing contention. Model-
ing and analyzing this interference is essential to building cost-
effective systems which can deliver the desired performance
of the applications.

Manuscript received February 13, 2009; revised May 25, 2009 and October
13 2009. Current version published March 19, 2010. This paper was recom-
mended by Associate Editor, Y. Paek.

A. Kumar and Y. Ha are with the Department of Electrical and Computer
Engineering, National University of Singapore, Singapore 117576 (e-mail:
akash@nus.edu.sg; elehy@nus.edu.sg).

B. Mesman and H. Corporaal are with the Eindhoven University of Technol-
ogy (TUe), Eindhoven 5612AZ, The Netherlands (e-mail: b.mesman@tue.nl;
h.corporaal@tue.nl).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2010.2042887

However, with an increasing number of applications running
in parallel leading to a large number of possible use-cases,
their performance analysis becomes a challenging task. (A
use-case is defined as a possible set of concurrently running
applications.) Future multimedia platforms may easily run 20
applications in parallel, resulting in up to 220 potential use-
cases. It is clearly impossible to verify the correct operation
of all these situations through testing and simulation. This
has motivated researchers to emphasize the ability to analyze
and predict the behavior of applications and platforms without
extensive simulations of every use-case.

Fig. 1 puts different approaches for performance evaluation
in perspective. The way to obtain the most realistic
performance estimates is measuring it on the real system.
However, this is often not available until late in the design
process. An alternative is simulating the (partitioned)
application code on a multiprocessor simulation platform that
models all the details, like a multi-processor ARM simulator.
However, this is rather slow. System hardware prototypes on
a field-programmable gate array (FPGA) are also a viable
alternative that is faster once the platform is available.
However, this often implies a high synthesis time making the
approach infeasible for design space exploration (DSE). In
order to reduce this time, application models may be derived
that simulate the behavior of applications on a high level.
These models may then be simulated using a transaction level
simulator that also takes the architecture and mapping into
account. Besides software, some hardware platforms are also
available for this simulation [1]. The benefit of using such
a simulator is that it is much faster than a cycle-accurate
simulator or synthesizing a prototype for FPGA. However,
when dealing with a large number of use-cases, this approach
may still not be feasible for DSE, and certainly not for
run-time implementation. To further speed performance
estimation, analyzing models mathematically is the best.

The focus of this paper is on analyzing performance when
multiple applications share a multiprocessor platform for a
given mapping. While this analysis is well understood (and rel-
atively easier) for preemptive systems [2]–[4], non-preemptive
scheduling has received considerably less attention. However,
for high-performance embedded systems (like cell-processing
engine and graphics processor), non-preemptive systems are
preferred over preemptive systems for a number of reasons
[5]. Further, even in multiprocessor systems with preemptive
processors, some processors (or coprocessors/ accelerators) are

0278-0070/$26.00 c© 2010 IEEE

Authorized licensed use limited to: National University of Singapore. Downloaded on April 06,2010 at 01:51:58 EDT from IEEE Xplore. Restrictions apply.

KUMAR et al.: ITERATIVE PROBABILISTIC PERFORMANCE PREDICTION FOR MULTI-APPLICATION MULTIPROCESSOR SYSTEMS 539

Fig. 1. Comparison of various techniques for performance evaluation.

usually non-preemptive; for such processors non-preemptive
analysis is still needed.

A. Our Contribution

In this paper, we propose a new technique to accurately
predict performance of multiple applications executing on a
non-preemptive multiprocessor platform. In our analysis, we
use the synchronous data flow (SDF) model since this is the
most compact model that still allows analysis of properties
easily and public tools are available for analyzing application
performance in isolation [6]. Since the application is modeled
as an SDF graph, the communication and memory access can
also be modeled as an actor (or multiple actors, depending
on the type of communication fabric) in the graph using
techniques presented in [7]. The execution time of such
actors corresponds to the delay during data communication
or memory access.

While in this paper we have applied this approach to SDF
graphs, it can be applied on any model of computation which
allows analysis of performance parameters like throughput
and buffer-requirement of independent applications. Some
examples are cyclo-static data flow and homogeneous
synchronous data flow. Recently, an extension to SDF has
been proposed, known as a scenario aware data flow (SADF)
graph, that allows modeling of dynamism in an SDF graph.
Models like Kahn process networks cannot be used since the
execution time is not known a priori.

When applications are modeled as SDF graphs, their perfor-
mance on a (multiprocessor) system can be easily computed
when they are executing in isolation. However, when they ex-
ecute concurrently with other applications, there is contention
for resources. Determining the time the individual tasks (or
actors) have to wait for resources to become available is impor-
tant in order to accurately estimate the overall application per-
formance. In this paper, we present a technique to predict the
time that tasks (or actors) have to spend during the contention
phase for a resource. This technique evaluates the probability
of a task blocking a resource by considering how often the
task requests the resource, and how long it takes during each
execution. Using this information, the expected waiting time
for all tasks sharing a resource is computed. These waiting
time estimates, together with the original execution times, are
used to predict the performance of applications. This, in turn,

affects the probability of blocking the resource, and the entire
analysis is repeated until it converges. Therefore, we call this
iterative probabilistic performance prediction (IP3) technique.
The approach is very fast and can be used at both design-time
and run-time owing to its low implementation complexity, in
contrast with simulating or executing the application on an
FPGA or the models using a simulator.

Following are the key features of the IP3 analysis presented.
1) Accurate: The observed accuracy in the experiments is

between 2 and 15% on average.
2) Fast: The algorithm has the complexity of O(n), where

n is the number of actors on each processor.
3) Scalable: The algorithm is scalable in the number of

actors per application, the number of processing nodes,
and the number of applications in the system.

4) Suitable for embedded systems: The algorithm has been
tested on an embedded processor on FPGA, and requires
very few cycles to estimate the application period.

We also see the effectiveness of this approach when
applied to dynamic execution times in the experiments
section. Results of a case-study done with typical real-life
applications in a mobile phone are also presented. Further,
we compare the results of the analysis with an actual
multiprocessor implementation. However, it should be added
that this approach does not provide any timing guarantees.
Further, contention caused by shared bus and input/output
(I/O) devices is not considered enough.

The remainder of this paper is organized as follows.
Section II gives an introduction to SDF graphs. Section III
explains the iterative probability technique that is used to pre-
dict performance of multiple applications. Section IV checks
the validity of the model assumptions by doing experiments
and measuring the probability distribution. Section V presents
and compares the results obtained with other state-of-the-
art techniques. Section VI discusses related work about how
performance analysis is traditionally done—for single and
multiple applications, and finally, Section VII presents the
major conclusions and gives directions for future work.

II. Synchronous Data Flow Graphs (SDFGs)
SDFGs (see [8]) are often used for modeling modern digital

signal processing (DSP) applications [9] and for designing
concurrent multimedia applications implemented on a multi-
processor system-on-chip. Both pipelined streaming and cyclic
dependences between tasks can be easily modeled in SDFGs.
Tasks are modeled by the vertices of an SDFG, which are
called actors. SDFGs allow one to analyze a system in terms
of throughput and other performance properties, e.g., latency,
buffer requirements [10].

Fig. 2 shows an example of an SDF graph. There are three
actors (also known as tasks) in this graph. As in a typical
data flow graph, a directed edge represents the dependence
between actors. Actors also need some input data (or control
information) before they can start and they usually also
produce some output data; such information is referred to as
tokens. The number of tokens produced or consumed in one
execution of actor is called rate. In the example, a0 has an
input rate of 1 and output rate of 2. Actor execution is also

Authorized licensed use limited to: National University of Singapore. Downloaded on April 06,2010 at 01:51:58 EDT from IEEE Xplore. Restrictions apply.

540 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 4, APRIL 2010

Fig. 2. Example of an SDF graph.

called firing. An actor is called ready when it has sufficient
input tokens on all its input edges and sufficient buffer space
on all its output channels; an actor can only fire when it is
ready. When the actor gets ready to execute on a processor, it
is also said to arrive on that processor. The edges may also
contain initial tokens, indicated by bullets on the edges, as
seen on the edge from actor a2 to a0 in Fig. 2.

One of the most interesting properties of SDFGs relevant to
this paper is throughput. Throughput is defined as the inverse
of the long term period, i.e., the average time needed for one
iteration of the application. (An iteration is defined as the
minimum non-zero execution such that the original state of
the graph is obtained.) This is the performance parameter that
we use in this paper. We now define the following properties
of an SDF graph.

Definition 1 (Actor Execution Time): Actor execution time,
τ(a) is defined as the execution time needed to complete exe-
cution of actor a on a specified node. τ(a) is also represented
as τa interchangeably.

τ(a0) = 100, for example, in Fig. 2. When the actor
represents a communication or a memory node, the execution
time determines the time for data transfer or memory access,
respectively.

Definition 2 (Repetition Vector): Repetition vector q of an
SDFG A is defined as the vector specifying the number of
times actors in A are executed for one iteration of SDFG A.

For example, in Fig. 2, q[a0 a1 a2] = [1 2 1].
Definition 3 (Application Period): Application period

Per(A) is defined as the time SDFG A takes to complete one
iteration on average.

Per(A) = 300 in Fig. 2. (Note that actor a1 has to execute
twice.) This is also equivalent to the inverse of throughput.
An application with a throughput of 50 Hz takes 20 ms to
complete one iteration. When network and memory access is
also modeled in the graph, then the throughput of the graph
will also take such delay into account.

Determining the worst-case-execution time of an actor is
one of the hardest things. A number of tools are available to
do the same for the designer [11]. A number of techniques
are present in the literature to do the partitioning of program
code into tasks. Compaan is one such example that converts
sequential description of an application into concurrent tasks
by doing static code analysis and transformation [12]. Sprint
also allows code partitioning by allowing the users to tag the
functions that need to be split across different actors [13].
Yet another technique has been presented that is based on an
execution profile [14]. For this paper, we shall assume that the
analysis has already been done and the application is already
modeled as an SDF graph.

Fig. 3. Two application SDFGs A and B.

Often an application can be associated with multiple quality
levels as has been explained in existing literature [15]. Each
quality of the application will, in that case, be depicted with
a different task graph with (potentially) different requirements
of resources and different performance constraints.

Further, we shall assume that all actors have an auto-
concurrency of 1. Auto-concurrency of an actor implies how
many instances of an actor can be active in parallel. Auto-
concurrency of more than 1 implies that an actor is simul-
taneously executing on multiple processors. Allowing this in
practice would lead to a number of complications and require a
lot of hardware support including code-duplication, ensuring
that data-tokens produced from different processors are still
fed in the succeeding actor sequentially, and so on. However,
having said that, any actor with auto-concurrency of more than
1, say n, can be represented with n actors each with auto-
concurrency of 1. Therefore, assuming auto-concurrency of 1
in the analysis is sufficient and practical.

III. Probabilistic Analysis

When multiple applications execute in parallel, they often
cause contention for shared resources. A probabilistic model
can be used to predict this contention. The time spent by an
actor in contention is added to its execution time, and the total
gives its response time

tresp = texec + twait. (1)

The twait is the time that is spent in contention when waiting
for a processor resource to become free. (This time may
be different for different arrivals of a repetitive task.) The
response time, tresp, indicates how long it takes to process an
actor after it arrives at a node. When there is no contention,
the response time is simply equal to the execution time. Using
only the execution time gives the maximum throughput that
can be achieved with the given mapping. At design-time, since
the run-time application-mix is not always known, it is not
possible to exactly predict the waiting-time, and hence the
performance. In this section, we explain how an estimate is
obtained using a probabilistic approach.

We now refer to SDFGs A and B in Fig. 3. Say a0 and b0 are
mapped on a processor Proc0. a0 is active for time τ(a0) every
Per(A) time units (since its repetition entry is 1). τ(a0) = 100
time units and Per(A) = 300 time units on average. Assuming
the process of executing tasks is stationary and ergodic, the
probability of finding Proc0 in use by a0 at a random moment
in time equals 1

3 . We now assume that the arrivals of a0 and b0

are stationary and independent; thus, the probability of Proc0

Authorized licensed use limited to: National University of Singapore. Downloaded on April 06,2010 at 01:51:58 EDT from IEEE Xplore. Restrictions apply.

KUMAR et al.: ITERATIVE PROBABILISTIC PERFORMANCE PREDICTION FOR MULTI-APPLICATION MULTIPROCESSOR SYSTEMS 541

Fig. 4. Different states an actor cycles through.

being occupied when b0 arrives is also 1
3 .1 Further, since b0

can arrive at any arbitrary point during execution of a0, the
time a0 takes to finish after b0 arrives on the node, given
the fact that a0 is executing, is uniformly distributed from
[0, 100]. Therefore, the expected waiting time is 50 time units
and b0 has to wait for 50 time units on average on a long-run
execution whenever it finds Proc0 blocked due to a0. Since
the probability that the resource is occupied is 1

3 , the average
time actor b0 has to wait is given by 50

3 ≈ 16.7 time units. The
average response time of b0 will therefore be 66.7 time units.

A. Formal Analysis

Fig. 4 shows that any actor of an SDF graph has to go
through three different states. When the actor does not have
enough input data or output space, i.e., sufficient tokens on all
of its incoming edges and available buffer capacity on all of
its output edges, it is not ready. This state is denoted by Sn.
When the data is available, the actor becomes ready. However,
if the required resource is busy then the actor may still have to
wait. We denote this state of ready but waiting for the resource
to become available as Sw. When the processor or another
resource becomes available, the actor starts executing and this
state is denoted as Se. For an actor whose execution time is
constant, the time spent in the executing state Se does not
change, and is simply equal to its execution time τ(a). The
time spent during waiting state Sw depends on the available
resources. If there is no other actor mapped on a particular
resource, then this time is simply zero. The time spent during
not-ready state Sn depends on the graph structure and the
period of the graph.

We can define the state of the task (Fig. 4) as a stochastic
process S(t). We assume that this process is ergodic and
stationary. The total probabilities of finding an actor in any
of these states are clearly 1. Thus, we obtain

P(S(t) = Sn) + P(S(t) = Sw) + P(S(t) = Se) = 1 (2)

where S(t) denotes the state at time t. We will see that
the steady-state probabilities of an actor being in the states
described above can be computed by considering the graph
structure, the actor execution time, and some properties of
other actors mapped on the sharing resource. The probability
of finding an actor a in executing state Se can be computed
by considering how often it executes, i.e., its repetition vector
entry q(a), and its execution time τ(a). To put it precisely,
the actor a executes q(a) times every period Per(A) of the
application A to which a belongs, and each time it spends τ(a)
cycles in the state Se. Thus, the total time spent is q(a).τ(a)
every Per(A). Thus, because of the stationarity of the process,

1We know that in reality these are not independent since there is a
dependence on resources. This assumption is made in order to simplify the
analysis and keeping it composable. We study the impact of this assumption on
the accuracy of the prediction made by this probabilistic model in Section IV.

the steady-state probability of finding actor a in the executing
state is given by the following equation:

P(S(t) = Se) =
q(a).τ(a)

Per(A)
. (3)

When the actor is sharing resources with other actors it may
also have to wait for the resource to become available. If the
average waiting time is denoted by twait(a), then the total time
spent in the waiting state, on average, is given by q(a).twait(a)
every Per(A). Thus, the steady-state probability of finding
actor a in the waiting state is given by the following equation:

P(S(t) = Sw) =
q(a).twait(a)

Per(A)
. (4)

Since the total probability for all the states should be 1,
the probability of actor a being in the non-ready state can be
computed as follows:

P(S(t) = Sn) = 1 − q(a).twait(a)

Per(A)
− q(a).τ(a)

Per(A)
. (5)

The actor a only blocks the resource when it is either
waiting or executing at the resource. (Blocking is defined as
occupying a resource when another actor requests for it.) Thus,
we define two types of blocking probabilities.

Definition 4 (Execution Blocking Probability): Execution
Blocking Probability, Pe(a), is defined as the probability that
actor a of application A blocks the resource it is mapped on,
and is being executed. Pe(a) = P(S(t) = Se).

Definition 5 (Waiting Blocking Probability): Waiting
Blocking Probability, Pw(a), is defined as the probability that
actor a of application A blocks the resource it is mapped on
while waiting for it to become available. Pw(a) = P(S(t) = Sw).

When other actors, say b and c are sharing resources with
a, it is important to know how long they may need to wait
due to contention with a. This clearly depends on which of
the three states a is in when these actors are queued, and the
arbiter used. For our analysis, we shall assume a first-come-
first-serve (FCFS) arbiter unless otherwise stated, since it is
one of the most commonly used dynamic arbiter. With FCFS
if b arrives when a is in the non-ready state Sn, then a does
not contribute to the waiting time of b for that particular time.
If b arrives when a is also waiting in the queue, i.e., state Sw,
then b goes behind a in the queue (since we have FCFS), and
it has to wait for the whole execution of a to finish before b

can get its turn. When a is executing, the waiting time for b

depends on where a is in its execution. If it is about to finish
then b has to wait for a short while, but if a has just started,
then b has to wait for almost the entire execution time of a.

Assuming that the arrival time of b is completely indepen-
dent of the different states of a, the probability of b finding a in
a particular state is simply the stationary probability of a being
in that state. (See Footnote 1.) Further, our assumption also
implies that when b arrives and finds a in a particular state,
a may be anywhere, with uniform distribution, in that state.
Thus, if b finds a in the Se state, then the remaining execution
time is uniformly distributed. Since the probability of finding
a in a particular state is directly related to the waiting time of
b, we obtain the probability distribution for waiting time of b

as shown in Fig. 5.

Authorized licensed use limited to: National University of Singapore. Downloaded on April 06,2010 at 01:51:58 EDT from IEEE Xplore. Restrictions apply.

542 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 4, APRIL 2010

Fig. 5. Probability distribution of the waiting time added by actor a to
another actor when actor a is mapped on the resource.

As shown in Fig. 5, the time actor b has to wait depends
on the state of actor a when b arrives. When b arrives in the
Sw state of a, it has to always wait for τ(a). This gives the
δ−function of Pw(a) at τ(a). On the other extreme we have
the δ−function at origin due to b arriving in the Sn state of
a. The probability of this is simply equal to the probability of
a being in this state, as mentioned earlier. In the middle we
have a uniform distribution with the total probability of Pe(a),
i.e., a being in Se state.

If Y denotes how long actor b has to wait for the resource
it shares with actor a, the probability density function, P(y)
of Y can be defined as follows:

P(y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 y < 0

δ(y).(1 − Pe(a) − Pw(a)) y = 0
1

τ(a) .Pe(a) 0 < y < τ(a)

δ(y − τ(a)).Pw(a) y = τ(a)

0 y > τ(a).

(6)

The average waiting time due to actor a for b, E(Y) can
now be computed as follows:

E(Y) =
∫ ∞

−∞ y P(y) dy

=
∫ τ(a)

0 y 1
τ(a) .Pe(a) dy + τ(a).Pw(a)

= 1
τ(a)Pe(a)

[
y2

2

]τ(a)

0
+ τ(a).Pw(a)

= τ(a)
2 Pe(a) + τ(a).Pw(a)

= τ(a)
(

Pe(a)
2 + Pw(a)

)
.

(7)

If τ(a) is not constant but varying, E(Y) also varies with
τ(a). In such cases, E(Y) can be computed as follows:

E(Y) = E
(

(τ(a)
(

Pe(a)
2 + Pw(a)

))

= E(τ(a))
(

Pe(a)
2 + Pw(a)

)
.

(8)

Thus, an actor with variable execution time within a uniform
distribution is equivalent to an actor with a constant execution
time, equal to the mean execution time.2 If τ(a) is uniformly
distributed between τmin(a) and τmax(a), the overall average
waiting time is given below

E(Y) =
(τmin(a) + τmax(a)

2

)(Pe(a)

2
+ Pw(a)

)
. (9)

Since (7) represents the waiting time of one actor due
to another actor, when there are more actors mapped on a

2It is equivalent only in terms of its expected value, not of its distribution.

Fig. 6. Iterative probability method. Waiting times and throughput are up-
dated until needed.

resource each of the mapped actors causes a given actor to
wait. For the total waiting time due to n actors, we get the
following equation:

twait =
n∑

i=1

(τai

2
Pe(ai) + τai

Pw(ai)
)
. (10)

B. Iterating the Analysis

A key observation from the analysis provided above is that
the periods of the applications change from the initial estimate
of executing in isolation. For example, the period of applica-
tion A in isolation was 300 time units, but is now estimated
to be 358 time units. This in turn modifies the execution and
waiting probabilities of all the actors. Thus, the waiting times
of actors have to be recomputed, which in turn may change the
period. Thus, the entire analysis needs to be repeated to update
the period of the applications. Fig. 6 shows the flow for the
iterative probability approach. The inputs to this flow is the
application structure for each application, and the execution
time and mapping of each actor in all the applications. These
are first used to compute the base period (i.e., the minimum
period without any contention) and the execution blocking
probability of the actor. Using the mapping information, a list
of actors is compiled from all the applications and grouped
according to their resource mapping. For each processor, the
probability analysis is done according to (10). The waiting
times thus computed are used again to compute the throughput
of the application and the blocking probabilities. Applying
this analysis for the example in Fig. 3 updates the period
of both applications to 362.7, 364.1, 364.2 and 364.2 time
units, thereby converging at 364.2. Fig. 7 shows the updated
application graphs after the iterative technique is applied.

The main reason why the analysis technique is fast is
that it ignores the resource dependences that are created
when actors from different applications share a resource. This
very property can also become its weakness and result in
arbitrarily bad estimation when cases are carefully constructed
such that the resulting order on a processor does not suffer
from any contention, or always suffers from the worst-case
contention. In such cases, the average waiting time is no longer

Authorized licensed use limited to: National University of Singapore. Downloaded on April 06,2010 at 01:51:58 EDT from IEEE Xplore. Restrictions apply.

KUMAR et al.: ITERATIVE PROBABILISTIC PERFORMANCE PREDICTION FOR MULTI-APPLICATION MULTIPROCESSOR SYSTEMS 543

Fig. 7. SDF application graphs A and B updated after applying the iterative
analysis technique.

applicable and may lead to erroneous estimates. In order to
take such cases into account, one has no choice but to resort
to considering all the data and resource dependences in one
big SDF graph, and consider all possible executions of all
the graphs involved, avoiding which was the very motivation
behind this article. However, such cases are mostly artificial
and unrealistic. In the large number of experiments, we never
came across any example with this behavior. Further, when the
execution times of actors are dynamic, it is even more unlikely
for these cases to occur.

C. Terminating Condition

While the analysis can be repeated for a fixed number
of iterations, it can also be based on the convergence of
some parameters. Some candidates for testing convergence are
provided below.

1) Application period: When the application period for
all the applications does not change more than a pre-
defined percentage, the analysis can be said to have been
converged. In our experiments, we observed that just
after six iterations all applications had a change of less
than 1%.

2) Processor utilization: The analysis termination can also
be based on the change in processor utilization. The
utilization of processors varies with the load predicted
by the algorithm. The load on a processor is defined as
the sum of the probabilities of execution, Pe(a), of all
actors mapped on it. When the algorithm has converged,
the load on the processor does not change.

We have reason to believe that the algorithm converges, since
in all the experiments we conducted so far (over a thousand
use-cases), it always converged. Further, a particular use-case
always gave the same answer, irrespective of how far off the
starting estimate was. In order to formally prove it, fixed-point
arithmetic theory could be applicable [16]. However, we did
not yet succeed in proving convergence.

D. Conservative Iterative Analysis

For some applications, the user might be interested in having
a more conservative bound on the period, i.e., it is better
to have a less accurate pessimistic estimate than an accurate
optimistic estimate; a much better quality than predicted is
more acceptable as compared to even a little worse quality
than predicted. In such cases, we provide here a conservative
analysis using our iterative technique.

In earlier analysis, when an actor b arrives at a particular
resource and finds it occupied by say actor a, we assume

Fig. 8. Probability distribution of waiting time another actor has to wait
when actor a is mapped on the resource for the conservative iterative analysis.

that a can be anywhere in the middle of its execution, and
therefore, b has to wait on average half of execution time of a.
In the conservative approach, we assume that b has to always
wait for full execution of a. In the probability distribution as
presented in Fig. 5, the rectangular uniform distribution of
Pe(a) is replaced by another delta function at τ(a) of value
Pe(a). This is shown in Fig. 8. The waiting time equation is
therefore updated to the following:

twait =
n∑

i=1

τai

(
Pe(ai) + Pw(ai)

)
. (11)

Applying this analysis to the example in Fig. 3, we obtain the
period as 416.7, 408, 410.3, 409.7, and 409.8. Note that in
our example, the actual period will be 300 in the best case
and 400 in the worst case. The conservative iterative analysis
correctly finds the bound of about 410, which is only 2.5%
more than the actual worst case. If we apply real worst-case
analysis in this approach [using (14)], then we get a period of
600 time units, which is 50% over-estimated.

This analysis can be either applied from the original period
directly, or only after the basic iterative analysis is already
converged and terminated. The latter has the benefit of using
a realistic period, instead of a conservative period. Since a
conservative period is generally higher than the corresponding
realistic period, the execution and waiting probability is cor-
respondingly lower when using the conservative period. Thus,
using a realistic period with a conservative analysis for the last
iteration gives the most conservative results. In the experiments
section, we present results of both approaches.

E. Parametric Throughput Analysis

Throughput computation of an SDF graph is generally
very time consuming. Lately, techniques have been presented
in [17] that can compute throughput of many multimedia
applications within milliseconds. However, those results have
been taken on a high-end computer while assuming fixed
actor execution times. Therefore, throughput computation of
an SDF graph is generally done off-line or at design-time for
a particular graph. However, if the execution time of an actor
changes, the entire analysis has to be repeated. Recently, a
technique has been proposed to derive throughput equations
for a range of execution times (defined as parameters) at
design-time, while these equations can be easily evaluated
at run-time to compute the critical cycle, and hence the
period [18]. This technique greatly enhances the usability of
the iterative analysis. With this the iterative analysis can be
applied at both design-time and run-time.

Authorized licensed use limited to: National University of Singapore. Downloaded on April 06,2010 at 01:51:58 EDT from IEEE Xplore. Restrictions apply.

544 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 4, APRIL 2010

For example, for application A shown in Fig. 3, there is
only one critical cycle. If the execution times of all actors of
A are variable, the following parametric equation is obtained
(assuming auto-concurrency of 1):

Per(A) = τ(a0) + 2 × τ(a1) + τ(a2). (12)

Thus, whenever the period of application A is needed, the
above equation can be computed with the updated response
times of actors a0, a1 and a2. This technique makes the
iterative analysis suitable for run-time implementation.

F. Intra-Task Dependences

There are two ways of handling the situation when more
than one actor of the same application are mapped on the same
resource, depending on how it is handled in the real system.
One way is to serialize (or order) executions of all actors of
a given application. This implies computing a static-order for
actors of a given application such that maximum throughput
is guaranteed. This can be done using SDF3 tool [6]. Once the
static-order is computed, the partial order of actors mapped on
the same resource can be extracted. The arbiter has to ensure
that at any one point in time the actors of an application are
executed in this pre-computed order. This ensures that actors
of the same application are not queued at the same time. Thus,
there is no waiting time added from these actors. For example,
in Fig. 3 if actors a0 and a2 are mapped on the same processor,
the static schedule for that processor will be (a0a2)*. A static
order adds an extra dependency on actors a0 and a2, ensuring
that they cannot be ready at the same time, and hence cannot
cause contention for the actors mapped on the same processor.
Equation (10) for an actor of application A can then be updated
for this case as follows:

twait =
n∑

i=1,ai /∈A

(τai

2
Pe(ai) + τai

Pw(ai)
)
. (13)

The above approach however, requires extra support from
the arbiter. The easiest approach from the arbiter perspective
is to treat all the actors mapped on the resource identically
and let the actors of the same application also compete
with each other for resources. The latter is evaluated in the
experiments section.

G. Handling Other Arbiters

The above analysis has been presented for FCFS arbitra-
tion. For static-order schedulers like round-robin or another
arbitrary order derived from SDF3 [6], the schedule can be
directly modeled in the graph itself. Other dynamic-order
schedulers, like priority-based, can be easily modeled in the
probability approach. One key difference between a priority-
based scheduler as compared to FCFS is that in FCFS, once
the actor arrives, it always has to wait for actors ahead of it
in the queue. In a priority-based system, if it is preemptive, a
higher priority actor can immediately preempt a lower priority
actor, and if it is non-preemptive, it has to only wait for lower
priority actors if they are executing. Let us define the priority
of an actor a by Pr(a), such that a higher value of Pr(a)

implies a higher priority. Equation (10), that is presented for
FCFS, can be rewritten as

twait,Pr =
n∑

i=1

(τai

2
Pe(ai)

)
+

n∑
i=1,Pr(ai)≥Pr(a)

(
τai

Pw(ai)
)
.

It shows the waiting time for an actor a when sharing a
resource with actors a1 to an. Note that the waiting time
contributed by the arrival of actor a during the queuing phase
of an actor with a priority lower than that of a, is not added
in the equation. Similarly, the conservative waiting time for
priority-based schedulers is given by

twait,Pr,C =
n∑

i=1

(
τai

Pe(ai)
)

+
n∑

i=1,Pr(ai)≥Pr(a)

(
τai

Pw(ai)
)
.

It can be seen that the above equations are a generalized
form of earlier (10) and (11), respectively, since in FCFS the
priorities of all actors are equal, i.e., Pr(a) = Pr(ai) ∀ i =
1, 2, ...n. It should be further noted, that since the priorities
are only considered for local analysis on a specific processor
(or any resource), different processors (or resources) can have
different arbiters.

IV. Model Validation
In this section, we describe our experimental setup and

study the impact of assumptions used in the probabilistic
model. We start with experiments to show the impact of our
assumptions on the predictions of our probabilistic model for
arrival of actors on a resource. This is followed by comparing
the predicted waiting time with measured waiting time on two
processors—one fully utilized, and one less utilized.

A. Setup

Ten random SDFGs named A–J are generated with eight to
ten actors each using the SDF3 tool [6], mimicking DSP and
multimedia applications. These are referred to as applications
A–J . The execution time and the rates of actors are also set
randomly. The edges of these graphs were randomly generated,
resulting often in very complex graph topology. Some sample
graphs used in this paper are available online [19]. A ten-
processor heterogeneous system is used for simulation and
analysis. The SDF3 tool is used to analytically compute
the periods of the graphs. Simulations are performed using
parallel object oriented specification language (POOSL) [20]
to measure the actual performance of the SDF models with a
given mapping.

POOSL allows the designer to model both the application
and the architecture up to an arbitrary level of detail. In
our set up, we model each processor with a first-come-first-
serve arbiter. Applications are modeled as SDF graphs with a
number of actors having data dependences with other actors.
When all the input data for an actor is available, the actor is
queued at the mapped processor arbiter. When it gets access to
the resource, it produces the output data after a given amount
of delay, as specified in the model. The model is very useful
for performance prediction when multiple applications share
multiprocessor systems.

Besides our iterative technique, two other analysis tech-
niques are used—the worst-case-waiting-time approach [21]

Authorized licensed use limited to: National University of Singapore. Downloaded on April 06,2010 at 01:51:58 EDT from IEEE Xplore. Restrictions apply.

KUMAR et al.: ITERATIVE PROBABILISTIC PERFORMANCE PREDICTION FOR MULTI-APPLICATION MULTIPROCESSOR SYSTEMS 545

and the exponential probability approach [22]. The worst-
case-waiting-time for non-preemptive systems for FCFS as
mentioned in [21] is computed by using the following formula:

twait =
n∑

i=1

texec(ai) (14)

where actors ai for i = 1, 2, . . . n are mapped on the same
resource. The waiting time according to the exponential
probability analysis presented in [22] is computed using the
following formula (P(a) is represented as Pa for brevity.):

twait =
n∑

i=1
µai

Pai

(
1 +

n−1∑
j=1

(−1)j+1

j+1∏
j(Pa1 . . . Pai−1Pai+1 . . . Pan

))
(15)

where ∏
j

(x1, ..., xn) =
∑

1≤k1<k2...<kj≤n

(xk1xk2 ...xkj
).

∏
j(x1, ..., xn) is an elementary symmetric polynomial de-

fined in [23]. In simple terms, it is the summation of all
products of j unique terms in the set (x1, ..., xn). The number
of terms clearly increases exponentially with increasing n.
The total number of terms in the symmetric polynomial in
(15) is given by (n−1

j), i.e., (n−1)!
j!(n−1−j)! . As the number of actors

mapped on a node increases, the complexity of the analysis
also becomes high. To be exact, the complexity of the above
formula is O(nn+1), where n is the number of actors mapped on
a node. Since this is done for each actor, the overall complexity
becomes O(nn+2). This high complexity arises from the fact
that the approach in [22] looks at all possible combinations of
other actors blocking a particular actor. Thus, while there are
only three potential combinations when there are two other
actors, there are 1023 combinations with ten other actors.
Equation (15) is constructed by adding the contribution of
individual actors (note the ai before the first bracket). The
terms inside the outer bracket are the probabilities of an actor
being ahead in the queue, being there with at least one other
actor, being there with at least two other actors, and so on
and so forth. Since the case of being with at least two other
actors is included in the case of at least one other actor, we get
(−1)j+1 to take care of the extra probabilities that are added
and subtracted alternately. In our experiments a fourth-order
approximation of 15 is used as a good compromise between
complexity and accuracy, as proposed by the authors in [22].
The fourth-order approximation implies that all probabilities
of a particular actor being in the queue with up to at least
three other actors are considered.

B. Arrivals During Actor Execution

In order to check the accuracy of the probabilistic distri-
bution of waiting times presented in Fig. 5, we let all the
applications execute concurrently, and measured exactly when
actors arrive when sharing a processor (or another resource)
with another actor. For every execution of an actor a, three
events are recorded in the processor log file—queuing time
(tq), execution start-time (ts), and execution end-time (te).
When other actors arrive between tq and ts, they have to wait
for the entire execution of a. When they arrive between ts and

Fig. 9. Probability distribution of the time other actors have to wait for
actor a2 of application F. a2 is mapped on Processor 2 with a utilization of
0.988. The average waiting time measured is 12.13 cycles, while the predicted
average time is 13.92 cycles.

Fig. 10. Probability distribution of the time other actors have to wait for
actor a5 of application G. a5 is mapped on Processor 5 with a utilization of
0.672. The average waiting time measured is 4.49 cycles, while the predicted
average time is 3.88 cycles.

te, the waiting time depends on where a is in its execution.
When the actors arrive between te and the next tq, a does
not have any effect on their waiting time. This was measured
and summarized for the entire simulation for all the actors.
Here we present results of two actors—one randomly chosen
from a processor with high utilization and another with low
utilization. This is done in order to check if the model still
holds as the utilization of the processor approaches 1.

Fig. 9 shows the distribution of this waiting time for actor
a2 of application F mapped on Processor 2. Processor 2 has
a high utilization of almost 1. The distribution is obtained
from about three thousand arrivals. This actor takes 35 cycles
to execute. The distribution of actor arrival times assumed in
the model is also shown in the same figure for comparison.
A couple of observations can be made from this figure. The
distribution between 0 and 35 is more or less uniform, though
the probability in this uniform distribution is a little lower.
The number of arrivals of other actors when a2 is not in the
queue is somewhat higher than that assumed in the model,
and the arrivals in the queuing time of a2 are rather accurate.
If we look at the total waiting time contributed by a2, the
prediction using the assumed arrival model is 13.92, whereas
the measured mean delay contributed by a2 is 12.13—about
15% lower. The conservative analysis predicts the waiting time
to be 17.94 due to a2. Fig. 10 shows a similar distribution
for actor a5 of application G mapped on Processor 5. This
processor has comparatively low utilization of 0.672.

Thus, we see that our assumption of the probability distribu-
tion in Fig. 5 consisting of two delta functions and a uniform
distribution in the middle holds rather well and gives a good
estimate of the waiting time.

Authorized licensed use limited to: National University of Singapore. Downloaded on April 06,2010 at 01:51:58 EDT from IEEE Xplore. Restrictions apply.

546 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 4, APRIL 2010

Fig. 11. Change in period computed using iterative analysis with increase
in the number of iterations for application H .

V. Performance Evaluation

In this section, we present some results obtained for the
iterative analysis as compared to simulation, and other analysis
techniques. The overall application throughput predicted is
compared with the measured throughput. Comparison with
other analysis techniques (including our previous work) is
also presented. Case-studies with dynamic execution times and
mapping multiple actors of the same application on a node
are presented. We also present case-studies with applications
in a mobile phone, and comparison with Sobel and JPEG
encoders executing on an FPGA multiprocessor platform. The
section concludes with implementation of our technique on
an embedded processor—Microblaze, and comparison of its
complexity with existing techniques.

A. Application Throughput

We consider the same set of ten applications that is used
in the earlier section for model validation. All ten applica-
tions are executed together on a ten-processor platform to
measure the performance of these applications when exe-
cuting concurrently. The iterative analysis is also used to
compute the performance of all the applications. The results
of other techniques, namely the worst-case and exponential
technique to fourth order, are also computed, as per (14) and
(15), respectively. An iterative technique is also applied to
the results of worst-case and exponential approach, to study
the effectiveness of the iterative approach. The effectiveness
of the conservative iterative technique is also studied.

Fig. 11 shows the results of iterative analysis with an
increasing number of iterations for application H . For this
particular application, the original period (i.e., when running in
isolation) is 416. When running concurrently in this use-case,
the period is 1130 time units. The fourth-order approximation
estimates the performance as 1456, while the worst-case
estimate is 4800. The iterative approach when applied from the
original period after five iterations predicts a period of 1200,
and after ten iterations 1184 time units. After ten iterations
there is no change in the estimate of applications.

The figure shows some very interesting results. First, we
can see that the iterative approach is converging. Regardless of

Fig. 12. Comparison of periods computed using iterative analysis techniques
as compared to simulation results (all ten applications running concurrently).

how far and at which side the initial estimate of the application
behavior is, it converges within a few iterations close to the
actual value. Second, the final value estimate is independent
of the starting estimate. The graph shows that the iterative
technique can be applied from any initial estimate and still
achieve accurate results. We note that ten iterations are more
than sufficient to achieve a good and stable estimate. Further,
we see that the conservative analysis converges on a value
slightly higher than the simulation value, as expected.

Fig. 12 shows the estimates and measured periods of all ten
applications used in this case-study for different techniques.
The estimates are normalized to the results achieved in the
simulation. The results of the worst-case-waiting-time (14) are
not shown on this graph, since they are more than two or three
times the simulation results and putting them on the same scale
makes the other results unreadable.

The figure shows that the iterative analysis is accurate for
all the applications in this use-case. After ten iterations, the
maximum error that can be seen is about 3% (in Application
H), and the average error is less than 2%. On the other hand, in
the exponential approach prediction, the average error is 10%,
and the maximum error is 29% in the same application. An-
other observation we can make is that the estimate provided by
the conservative iterative technique is always higher than the
simulation result. On average, the conservative approach over-
estimates the period by about 8%—a small price to pay when
compared to the worst-case bound that is 162% over-estimated.

The error in the iterative analysis (defined as mean absolute
difference) is presented in Table I. Both the average and
the maximum error are shown. Different starting points for
the iterative analysis are taken. A couple of observations can
be made from the table. Regardless of the starting estimate,
the iterative analysis always converges. If we define 2% error
margin as acceptable, we find that the fourth-order estimate
requires only four iterations to converge while others require
six iterations. However, obtaining the estimate of the fourth-
order analysis is computationally intensive. Using the worst-
case or the original period itself as the starting point for the
iterative analysis saves the initial computation time, but takes a
little longer to converge. Another observation we can make is

Authorized licensed use limited to: National University of Singapore. Downloaded on April 06,2010 at 01:51:58 EDT from IEEE Xplore. Restrictions apply.

KUMAR et al.: ITERATIVE PROBABILISTIC PERFORMANCE PREDICTION FOR MULTI-APPLICATION MULTIPROCESSOR SYSTEMS 547

TABLE I

Measured Inaccuracy for Period in % as Compared With

Simulation Results for Iterative Analysis

Iterations Fourth Order Worst Case Original Conservative
0 9.9 (28.9) 72.6 (83.1) 163 (325) 72.6 (83.1)
1 6.7 (17.6) 88.4 (144) 12.6 (36) 252 (352)
2 3.5 (11.9) 6.3 (17.6) 6.7 (23.2) 7.9 (23.2)
3 2.9 (6.2) 4.5 (11.9) 4.3 (13.3) 8.8 (24.7)
4 2 (4.8) 2.5 (7.7) 3.1 (9.1) 8.4 (23.2)
5 1.9 (3.9) 2.2 (4.8) 2.5 (6.2) 8.3 (23.2)
6 1.6 (3.6) 1.7 (3.4) 2 (4.8) 8.1 (21.8)
7 1.9 (4) 1.8 (3.4) 1.7 (3.9) 8 (21.8)
8 1.7 (3.6) 1.7 (3.4) 1.8 (3.6) 8 (21.8)
9 1.9 (3.4) 1.7 (3.6) 1.7 (3.4) 8 (21.8)
10 1.7 (3.4) 1.3 (3.1) 1.9 (3.4) 8.1 (21.8)

The maximum error is shown in brackets.

that in general, there is not much change after five iterations.
Thus, five iterations present a good compromise between the
accuracy and the execution time.

B. Dynamic Execution Times

Many applications are dynamic in nature. When there is
a variation in the execution time of the application tasks,
the SDF graph is not able to capture their exact behavior.
The techniques that are conventionally used to analyze the
application behavior give an even more pessimistic bound.
To evaluate the performance of our technique, we re-ran the
simulation by using dynamic execution time of the application
tasks. Two sets of experiments were done—one with a uniform
variation of up to 40% from the mean execution time and
another with up to 80% deviation. Fig. 13 shows the results
of experiments with dynamic execution times. We observe that
the period of applications when execution time is allowed
to vary does not change too much. In our experiments it
varies by at most 2%. Clearly, it may be possible to construct
examples in which it does vary significantly, but this behavior
was not observed in our applications. Further, the conservative
analysis still gives results that are more than the period of
applications with variable execution times. In this figure, we
also see the difference between applying conservative analysis
throughout the ten iterations, and applying this analysis for
only the last iteration. While in the former case, the prediction
is sometimes very close to the measured results (Application
C) and sometimes very far (Application H), in the latter the
results make a nice envelope that is on average 10% more than
the measured results.

C. Mapping Multiple Actors

So far we only considered cases when one actor per ap-
plication is mapped on one processor. Since each application
in the experiment contained up to ten actors, we needed ten
processors. Clearly, this is not always efficient. Therefore,
we mapped all actors of an application randomly on a 4-
processor systems and checked if the iterative approach still
works in that case. Since we do not consider intra-task de-
pendency, the analysis remains the same, except that there are
potentially more actors on any processor causing contention.
For this experiment, we used four processors. Fig. 14 shows
the comparison of the predicted results with the measured
performance. The average error (mean absolute deviation) in

Fig. 13. Comparison of periods with variable execution time for all applica-
tions. A new conservative technique is applied; the conservation mechanism
is used only for the last iteration after applying the base iterative analysis for
ten iterations.

this experiment is just 1%, while the maximum deviation is
3%. This shows that the approach is effective even when
multiple actors of the same application are mapped on a
resource. Further, in this experiment some processors had up
to 30 actors mapped. This shows that the approach scales well
with the number of actors mapped on a processor.

D. Mobile Phone Case-Study

In this section, we present results of a case-study with
real-life applications. We did not do any optimization to
the application specifications and granularity obtained from
the literature to avoid favoring our approach. We consider
five applications—video encoding (H263) [21], video de-
coding [7], JPEG decoding [24], modem [25], and a voice
call scenario. These applications represent a set of typical
applications—often executing concurrently—on a modern mo-
bile phone. Sufficient buffer-space is assumed to be present
among all channels in the applications, such that applications
do not deadlock due to lack of buffer-space. This buffer-space
on each channel (just enough to avoid deadlock) and auto-
concurrency of one was modeled in the application graphs to
compute the initial throughput using the SDF3 tool.

This set of applications poses a major challenge for per-
formance prediction since they consist of tasks with varying
granularity of execution times, e.g., the anti-aliasing actor of
MP3 decoder takes 40 time-units while its sub-inversion actor
requires 186 500 time units. Further, the repetition vectors
of these applications vary significantly. While the sum of
repetition vector entries of JPEG is 26, i.e., actors of JPEG
have to compete for processor resources to become available
26 times for one iteration, the sum of repetition vector entries
of H263 decoder is 1190. Further, the number of tasks in each
application vary significantly. While H263 decoder has only
four tasks, the modem application has a total of 14 tasks. For
this case-study, one task was mapped to one processor for
each application, since multiple actor mapping options would
have resulted in a huge number of potential mappings. This
implied that while some processors had up to five actors, some

Authorized licensed use limited to: National University of Singapore. Downloaded on April 06,2010 at 01:51:58 EDT from IEEE Xplore. Restrictions apply.

548 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 4, APRIL 2010

Fig. 14. Comparison of application periods when multiple actors of one
application are mapped on one processor.

Fig. 15. Comparison of performance observed in simulation as compared to
the prediction made with iterative analysis for applications in a mobile phone.

processors had only one actor. Thus, this case-study presents
a big challenge for any performance prediction mechanism,
and our iterative probabilistic technique was used to predict
performance of these applications executing concurrently.

Fig. 15 shows the comparison between the prediction of
the iterative analysis and the simulation result.3 The results of
the bound provided by the worst-case estimate are also shown
for comparison. A couple of observations can be made from
the graph. First of all, the period of applications increases in
different proportions when executing concurrently with other
applications. While the period of modem application increases
by only 1.1 times, the period of H263 decoder increases by
about 12 times, and that of a voice call by about 18 times.
This depends on the granularity of tasks, the number of tasks
a particular application is divided into, and the mapping of
tasks on the multiprocessor platform. The modem application
consists of about 14 tasks, but only six of them experience
contention. The remaining eight tasks have a dedicated pro-

3For these results, a bar chart is used instead of lines to make the graph
more readable. Using a line would squeeze all the points of the modem, for
example, to a single point. Further, it is difficult to make the gap in y-axis
(needed for voice call) meaningful using lines.

Fig. 16. SDF model of Sobel algorithm for one pixel, and JPEG encoder
for one macroblock. (a) Sobel. (b) JPEG.

Fig. 17. Architecture of the generated hardware to support Sobel and JPEG
encoder.

cessor, and therefore have no waiting time. Further, the six
tasks that do share a processor are only executed once per
application iteration. In contrast, the inverse-quantization actor
of the H263 decoder executes 594 times per iteration of
the decoder, and has to wait for the processor to become
available each time. This causes significant degradation in its
performance. The second observation we can make is that the
iterative analysis is still very accurate. The average deviation in
throughput estimate is about 15%, and the maximum deviation
is in the voice call application of 29%. The worst-case estimate
in contrast is up to 18 times overly pessimistic. It should be
mentioned that in this experiment FCFS arbitration was used.
A different arbitration mechanism and a better mapping can
distribute the resources more evenly.

E. Comparison With an FPGA Multiprocessor Implementation

In addition to POOSL and the analysis approaches, we
also used a prototyping approach (as presented in Fig. 1) to
test performance of multiple applications on a real hardware
multiprocessor platform.4 A Microblaze-based multiprocessor
platform was built using the MAMPS tool [19], [26]. This
tool generates desired architecture for Xilinx-based FPGAs
using their soft-processor (Microblaze) and point-to-point con-
nections for data transfers using fast simplex links—FIFOs.
Application C-code for the corresponding processors is then
used and performance is measured for multiple applications.
Here, we present results for Sobel (edge-detection algorithm)
and JPEG encoding applications.

Fig. 16 shows the SDF model for Sobel and JPEG encoders.
The Sobel model is based on pixel-level granularity while
the JPEG model is based on macro-block granularity. The
execution times shown in this figure are obtained by profiling
the C-code of the corresponding applications on Microblaze
processors, and include the communication delay for sending
and receiving the data as well. As can be seen, the two
applications have very different granularity of actors and poses
a challenge for any analysis algorithm. Fig. 17 shows the
generated hardware platform to support these two applications.
The dedicated point-to-point links generated are shown by

4The applications presented earlier are too big to be accommodated in our
FPGA multiprocessor platform.

Authorized licensed use limited to: National University of Singapore. Downloaded on April 06,2010 at 01:51:58 EDT from IEEE Xplore. Restrictions apply.

KUMAR et al.: ITERATIVE PROBABILISTIC PERFORMANCE PREDICTION FOR MULTI-APPLICATION MULTIPROCESSOR SYSTEMS 549

TABLE II

Period of Concurrently Executing Sobel and JPEG Encoder

Applications as Measured or Analyzed

Application FPGA POOSL Iterative P3

Period Error Period Error
Sobel 17 293 17 134 0.92% 16 589 4%
JPEG Enc. 103 672 104 451 0.75% 103 686 0.01%

TABLE III

Number of Clock Cycles Consumed on a Microblaze Processor

During Various Stages, the Percentage of Error (Both

Average and Maximum), and the Complexity

Algorithm/Stage Clock Cycles Error in % Complexity
Avg (Max)

Load from CF card 1 903 500 – O(N.n.k)
Throughput computation 12 688 – O(N.n.k)
Worst case 2090 72.6 (83.1) O(m.M)
Exponential—fourth order 1 740 232 9.9 (28.9) O(m4.M)
Iterative—one iteration 15 258 12.6 (36) O(m.M)
Iterative—one iteration* 27 946 12.6 (36) O(m.M + N.n.k)
Iterative—five iterations* 139 730 2.2 (3.4) O(m.M + N.n.k)
Iterative—ten iterations* 279 460 1.9 (3.0) O(m.M + N.n.k)

∗ Including throughput computation time.
N: number of applications; n: number of actors in an application; k: number
of throughput equations for an application; m: number of actors mapped on
a processor; M: number of processors.

arrows. All links had a buffer-capacity of 1024 integers. This
buffer limitation is modeled as a back-edge in the application
graph in Fig. 16. Table II shows the period of both the ap-
plications as measured on this FPGA platform. The estimates
obtained by simulating the SDF models using POOSL and
our proposed iterative technique are also shown. The errors
in these estimates in comparison with the results measured on
the FPGA board are also shown. The error in estimates from
POOSL is less than a percent while the maximum error in our
iterative technique results is 4%.

F. Implementation Results on an Embedded Processor

One of the main benefits of this approach is the speed
and accuracy that makes it ideal for run-time resource man-
agement. In order to precisely compute the delay on an
embedded processor, the proposed algorithms were ported to
Microblaze—a soft-core provided by Xilinx. This required
some rewriting to optimize the implementation for timing
and reduced memory use. The default time taken for the
exponential approach to fourth-order approximation, for ex-
ample, was 72M cycles. Table III shows the time taken during
various stages and algorithms after rewriting. The algorithmic
complexity of each stage and the error as compared to the
simulation result is also shown.

The error in various techniques as compared to the perfor-
mance achieved is also shown in Table III. As can be seen, the
exponential analysis with fourth order gives an average error
of about 10% and a maximum error of 29%. The iterative
technique after just five iterations predicts a performance that
is within 2% of the measured performance on average and has
only 3% maximum deviation in the entire set of applications.

The loading of application properties from the compact
flash (CF) card took the most amount of time. However,

this is only done once at the start of the system, and hence
does not cause any bottleneck. On a system operating at
500 MHz, it takes about 4 ms to load the applications-
specification. Parametric throughput computation is quite fast,
and takes about 12 K cycles for all ten applications. For the
iterative analysis, each iteration takes only 15 K cycles. If
five iterations are carried out, it takes a total of 140 K cycles
for all ten applications, including the time spent in computing
throughput. This translates to about 300 µs on a 500 MHz
processor when the performance of all ten applications is
computed. Since starting a new application is likely to be done
only once in every few minutes, this is a small overhead. In
comparison, the exponential approach takes about 3.5 ms, i.e.,
about 12 times more time.

VI. Related Work

In [27], the authors propose to analyze the performance of a
single application modeled as an SDF graph by decomposing
it into a homogeneous SDF graph (HSDFG) [9]. The through-
put is calculated based on analysis of each cycle in the result-
ing HSDFG [28]. However, this can result in an exponential
number of vertices [29]. Thus, algorithms that have a polyno-
mial complexity for HSDFGs have an exponential complexity
for SDFGs. Algorithms have been proposed to reduce average
case execution time [17], but it still takes O(n2) in practice
where n is the number of vertices in the graph. When mapping
needs to be considered, extra edges can be added to model
resource dependences such that a complete analysis taking
resource dependences into account is possible. However, the
number of ways this can be done even for a single application
is exponential in the number of vertices [30]; for multiple ap-
plications the number of possibilities is infinite. Further, only
static order arbitration can be modeled using this technique.

For multiple applications, an approach that models resource
contention by computing worst-case-response-time (WCRT)
for time division multiple access scheduling (requires pre-
emption) has been analyzed in [31]. This analysis gives a
very conservative bound. Further, this approach requires pre-
emption for analysis. A similar worst-case analysis approach
for round-robin is presented in [21], which also considers
non-preemptive systems, but suffers from the same problem
of lack of scalability. WCRT is computed by adding the
execution times of all the actors mapped on a resource.
However, as the number of applications increases, the bound
increases much more than the average case performance, as
also shown in Section V. Real-time calculus has also been used
to provide worst-case bounds for multiple applications [32]–
[34]. Besides providing a very pessimistic bound owing to
cyclic dependences in an SDF graph, the analysis is very
intensive and requires a very large design-time effort. On the
other hand, our approach is very simple. However, we should
note that the above approaches give a worst-case bound that
is targeted at hard-real-time (RT) systems.

A common way to use probabilities for modeling dynamism
in application is to use stochastic task execution times [35]–
[37]. In our case, however, we use probabilities to model the
resource contention and provide estimates for the throughput
of applications. This approach is orthogonal to the approach

Authorized licensed use limited to: National University of Singapore. Downloaded on April 06,2010 at 01:51:58 EDT from IEEE Xplore. Restrictions apply.

550 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 4, APRIL 2010

of using stochastic task execution times. In our approach we
assume fixed execution time and provide equivalent model
for dynamic task execution times with uniform distribution.
To the best of our knowledge, there is no efficient approach
of analyzing multiple applications on a non-preemptive het-
erogeneous multiprocessor platform. A technique has been
presented in [22] to also model and analyze contention, but the
approach in this paper is much better. The technique in [22]
looks at all possible combinations of actors blocking another
actor. Since the number of combinations is exponential in
the number of actors mapped on a resource, the analysis has
an exponential complexity. The IP3 approach, on the other
hand, computes how much a particular actor contributes to the
waiting time of the other actors. This has linear complexity
in the number of actors.

Queuing theory also allows computing the waiting times
when several processes are being served by a resource [38]; it
has been applied for networks [39] and processor-sharing [40].
However, this is not applicable in our scenario for a number
of reasons. First, since we have circular dependences in the
SDF graphs, feedback loops are created that cannot be handled
by the queuing theory. Second, the execution time of tasks
on a processor does not follow a common distribution. Each
task may have an independent execution time distribution.
Therefore, a general expression for the service time for tasks
mapped on a processor cannot be determined. The same reason
makes it hard to apply queuing theory when applications are
modeled as petri-nets.

VII. Conclusion and Future Work

In this paper, we presented a new probabilistic technique
to estimate the performance of applications when sharing
resources. An iterative analysis is presented that can predict
the performance of applications very accurately. Besides, a
conservative flavor of the iterative analysis is presented that
can also provide conservative predictions for applications for
which the mis-prediction penalty may be high.

An experiment with ten random applications concurrently
executing shows the average error in prediction using iterative
probability to be less than 2% and the maximum error as 3%.
Further, it takes about four to six iterations for the prediction
to converge. The execution-time complexity of the algorithm is
low—it takes only 300 µs with ten applications on a 500 MHz
processor. The implementation results on an embedded
processor show that the iterative technique outperforms
the earlier exponential technique in [22]—it requires 12
times less compute time, and shows better accuracy. The
accuracy of the approach is validated with Sobel and JPEG
encoder applications executing concurrently on an FPGA
multiprocessor system. However, it should be mentioned
that this system only supports point-to-point connections;
therefore, the network contention is limited.

Further, we presented results of a case-study of applications
commonly used in a mobile phone. The models of these
applications vary in the number of tasks, granularity of tasks,
and also their repetition vectors differ largely. Even in this
particular use-case, the prediction by iterative analysis is close
to the simulation result. This shows the robustness of the

technique. We also see that applications with coarser task gran-
ularity perform better in the first-come-first-serve arbitration
as compared to applications that have a finer granularity. This
occurs since the tasks with finer granularity have to compete
for resources more often. Different arbitration mechanisms can
potentially alleviate this problem, and more research should
be done into that. One of the limitations of this approach is
that it does not provide any guarantees. In future, we intend
to extend our technique to provide probabilistic guarantees
for soft real time tasks. Yet another limitation is that we
only consider contention for processor(s) shared by multiple
tasks. Contention caused by shared bus and I/O devices is not
considered enough. Such contention is left as future work.

Acknowledgment
The authors would like to thank the reviewers for their

valuable feedback which has led to an improved paper. They
would also like to thank M. Geilen for discussions regarding
probability, and A. Shabbir for his help in FPGA implemen-
tation of multiprocessor platform and profiling.

References
[1] J. Wawrzynek, D. Patterson, M. Oskin, S. Lu, C. Kozyrakis, J. Hoe,

D. Chiou, and K. Asanovic, “RAMP: Research accelerator for multiple
processors,” IEEE Micro, vol. 27, no. 2, pp. 46–57, Mar.–Apr. 2007.

[2] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61,
Jan. 1973.

[3] S. Davari and S. K. Dhall, “An on line algorithm for real-time tasks
allocation,” in Proc. IEEE Real-Time Syst. Symp., 1986, pp. 194–200.

[4] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Proportion-
ate progress: A notion of fairness in resource allocation,” Algorithmica,
vol. 15, no. 6, pp. 600–625, Jun. 1996.

[5] K. Jeffay, D. Stanat, and C. Martel, “On non-preemptive scheduling of
periodic and sporadic tasks,” in Proc. 12th IEEE Real-Time Syst. Symp.,
1991, pp. 129–139.

[6] S. Stuijk, M. Geilen, and T. Basten, “SDF3: SDF for free,” in Proc.
6th Int. Conf. Applicat. Concurrency Syst. Design (ACSD), 2006, pp.
276–278.

[7] S. Stuijk, “Predictable mapping of streaming applications on multi-
processors,” Ph.D. dissertation, Dept. Electron. Syst., Eindhoven Univ.
Technol., Eindhoven, The Netherlands, 2007.

[8] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Trans. Comput.,
vol. 36, no. 1, pp. 24–35, Jan. 1987.

[9] S. Sriram and S. Bhattacharyya, “Background terminology and nota-
tion,” in Embedded Multiprocessors: Scheduling and Synchronization.
New York: Marcel Dekker, 2000, pp. 31–53.

[10] S. Stuijk, M. Geilen, and T. Basten, “Exploring trade-offs in buffer
requirements and throughput constraints for synchronous data flow
graphs,” in Proc. Design Autom. Conf., 2006, pp. 899–904.

[11] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D.
Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution-time problem—Overview of methods and survey of tools,”
ACM Trans. Embedded Comput. Syst., vol. 7, no. 3, pp. 1–53, Apr. 2008.

[12] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprette,
“System design using Kahn process networks: The Compaan/Laura ap-
proach,” in Proc. Design Autom. Test Europe Conf., 2004, pp. 340–345.

[13] J. Cockx, K. Denolf, B. Vanhoof, and R. Stahl, “Sprint: A tool to
generate concurrent transaction-level models from sequential code,”
EURASIP J. Appl. Signal Process., vol. 2007, no. 1, p. 213, Jan. 2007.

[14] S. Rul, H. Vandierendonck, and K. De Bosschere, “Function level
parallelism driven by data dependences,” ACM SIGARCH Comput.
Architecture News, vol. 35, no. 1, pp. 55–62, Mar. 2007.

[15] P. Yang, P. Marchal, C. Wong, S. Himpe, F. Catthoor, P. David, J.
Vounckx, and R. Lauwereins, “Managing dynamic concurrent tasks in
embedded real-time multimedia systems,” in Proc. 15th Int. Symp. Syst.
Synthesis, 2002, pp. 112–119.

Authorized licensed use limited to: National University of Singapore. Downloaded on April 06,2010 at 01:51:58 EDT from IEEE Xplore. Restrictions apply.

KUMAR et al.: ITERATIVE PROBABILISTIC PERFORMANCE PREDICTION FOR MULTI-APPLICATION MULTIPROCESSOR SYSTEMS 551

[16] R. Burden and J. Faires, “Error analysis for iterative methods,” in Numer-
ical Analysis, 8th ed. Pacific Grove, CA: Cole, 2005, ch. 2.4, pp. 75–83.

[17] A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, B. D. Theelen,
M. R. Mousavi, A. J. M. Moonen, and M. J. G. Bekooij, “Throughput
analysis of synchronous data flow graphs,” in Proc. 6th Int. Conf.
Applicat. Concurrency Syst. Design, 2006, pp. 25–36.

[18] A. H. Ghamarian, M. C. W. Geilen, T. Basten, S. Stuijk, “Parametric
throughput analysis of synchronous data flow graphs,” in Proc. Design
Autom. Test Europe, 2008, pp. 116–121.

[19] MAMPS. (2008). “Multiple applications multiprocessor synthesis”
[Online] Available: http://www.es.ele.tue.nl/mamps

[20] B. D. Theelen, O. Florescu, M. C. W. Geilen, J. Huang, P. H. A. van
der Putten, and J. P. M. Voeten, “Software/hardware engineering with
the parallel object-oriented specification langauge,” in Proc. Int. Conf.
Formal Methods Models Codesign, 2007, pp. 139–148.

[21] R. Hoes, “Predictable dynamic behavior in NoC-based MPSoC” M.S.
thesis, Eindhoven Univ. Technol., Eindhoven, The Netherlands, 2004.

[22] A. Kumar, B. Mesman, H. Corporaal, B. Theelen, and Y. Ha, “A
probabilistic approach to model resource contention for performance
estimation of multifeatured media devices,” in Proc. Design Autom.
Conf., 2007, pp. 726–731.

[23] D. Terr and E. W. Weisstein. (2008). “Symmetric polynomial” [Online].
Available: mathworld.wolfram.com/SymmetricPolynomial.html

[24] E. de Kock, “Multiprocessor mapping of process networks: A JPEG
decoding case-study,” in Proc. 15th Int. Symp. Syst. Synthesis, 2002,
pp. 68–73.

[25] S. Bhattacharyya, P. Murthy, and E. Lee, “Synthesis of Embedded
Software from Synchronous Dataflow Specifications,” J. VLSI Signal
Process., vol. 21, no. 2, pp. 151–166, 1999.

[26] A. Kumar, S. Fernando, Y. Ha, B. Mesman, and H. Corporaal,
“Multiprocessor systems synthesis for multiple use-cases of multiple
applications on FPGA,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 13, no. 3, pp. 1–27, Jul. 2008.

[27] N. Bambha, V. Kianzad, M. Khandelia, and S. S. Bhattacharrya,
“Intermediate representations for design automation of multiprocessor
DSP systems,” Design Automat. Embedded Syst., vol. 7, no. 4, 2002,
pp. 307–323.

[28] A. Dasdan, “Experimental analysis of the fastest optimum cycle ratio
and mean algorithms,” ACM Trans. Design Autom. Electron. Syst.,
vol. 9, no. 4, pp. 385–418, Oct. 2004.

[29] J. Pino and E. Lee, “Hierarchical static scheduling of data flow graphs
onto multiple processors,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process., vol. 4. 1995, pp. 2643–2646.

[30] A. Kumar, B. Mesman, B. Theelen, H. Corporaal, and Y. Ha, “Analyzing
composability of applications on MPSoC platforms,” J. Syst. Archit.,
vol. 54, nos. 3–4, pp. 369–383, Mar.–Apr. 2008.

[31] M. Bekooij, R. Hoes, O. Moreira, P. Poplavko, M. Pastrnak, B.
Mesman, J. D. Mol, S. Stuijk, V. Gheorghita, and J. van Meerbergen,
“Dataflow analysis for real-time embedded multiprocessor system
design,” in Dynamic and Robust Streaming in and between Connected
Consumer-Electronic Devices. Berlin, Germany: Springer, 2005,
pp. 81–108.

[32] K. Richter, M. Jersak, and R. Ernst, “A formal approach to MPSoC per-
formance verification,” Computer, vol. 36, no. 4, pp. 60–67, Apr. 2003.

[33] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in Proc. IEEE Int. Symp. Circuits
Syst., 2000, pp. 101–104.

[34] S. Kiinzli, F. Poletti, L. Benini, and L. Thiele, “Combining simulation
and formal methods for system-level performance analysis,” in Proc.
Design Autom. Test Eur., vol. 1. 2006, pp. 1–6.

[35] L. Abeni and G. Buttazzo, “QoS guarantee using probabilistic
deadlines,” in Proc. 11th Euromicro Conf. Real-Time Syst., 1999, pp.
242–249.

[36] S. Manolache, P. Eles, and Z. Peng, “Schedulability analysis of
applications with stochastic task execution times,” ACM Trans.
Embedded Comput. Syst., vol. 3, no. 4, pp. 706–735, Nov. 2004.

[37] S. Hua, G. Qu, and S. S. Bhattacharyya, “Probabilistic design of
multimedia embedded systems,” ACM Trans. Embedded Comput. Syst.,
vol. 6, no. 3, p. 15, 2007.

[38] L. Takacs, Introduction to the Theory of Queues. New York: Oxford
Univ. Press, 1962 (reprinted by Greenwood Press in 1982).

[39] T. Robertazzi, “Stochastic Petri nets,” in Computer Networks and
Systems: Queueing Theory and Performance Evaluation. Berlin,
Germany: Springer, 2000, pp. 237–275.

[40] J. E. G. Coffman, R. R. Muntz, and H. Trotter, “Waiting time
distributions for processor-sharing systems,” J. ACM, vol. 17, no. 1,
pp. 123–130, 1970.

Akash Kumar (M’09) received the B.Eng. degree
in computer engineering from the National Univer-
sity of Singapore (NUS), Singapore, in 2002. He
received the joint Master of Technological Design
degree in embedded systems from NUS and the
Eindhoven University of Technology (TUe), Eind-
hoven, The Netherlands, in 2004, and received the
joint Ph.D. degree in electrical engineering in the
area of embedded systems from TUe and NUS, in
2009.

In 2004, he was with Philips Research Labs,
Eindhoven, The Netherlands, where he worked on Reed Solomon codes as a
Research Intern. From 2005 to 2009, he was with TUe as a Ph.D. student.
Since 2009, he has been with the Department of Electrical and Computer
Engineering, NUS, currently as a Visiting Fellow. He has published over 25
papers in leading international electronic design automation journals and con-
ferences. His current research interests include analysis, design methodologies,
and resource management of embedded multiprocessor systems.

Bart Mesman received the B.Eng. and M.Eng.
degrees in electrical engineering, and the Ph.D. de-
gree from the Eindhoven University of Technology,
Eindhoven, The Netherlands, in 1993, 1995, and
2001, respectively. His thesis discusses an efficient
constraint-satisfaction method for scheduling oper-
ations on a distributed very long instruction word
processor architecture with highly constrained reg-
ister files with stringent timing requirements.

From 1995 to 2005, he was with Philips Research
Labs, Eindhoven, The Netherlands, as a Research

Engineer where he worked on digital signal processing processor architectures
and compilation. He is currently with the Eindhoven University of Tech-
nology, Eindhoven, as a Researcher. His current research interests include
(multi)processor architectures, compile-time and run-time scheduling, and
resource management in multimedia devices.

Henk Corporaal (M’09) received the B.S. de-
gree in mathematics and natural science, the M.S.
degree in theoretical physics from the University
of Groningen, Groningen, The Netherlands, in 1977
and 1982, respectively, and the Ph.D. degree in
electrical engineering, in the area of computer ar-
chitecture, from the Delft University of Technology,
Delft, The Netherlands, in 1995.

He has been teaching at several schools of higher
education, and has been an Associate Professor with
Delft University of Technology from 1996 to 2001

in the field of computer architecture and code generation, a Joint Professor
appointment with National University of Singapore from 2001 to 2005, the
Scientific Director of the joined NUS–TUE Design Technology Institute from
2003 to 2005, a Research Fellow with NEC CCRL, Princeton, in 1999, and a
Visiting Professor with IISc, Bangalore, India, from 1997 to 1998. Currently,
he is a Professor in embedded system architectures with the Einhoven Univer-
sity of Technology (TUe), Einhoven, and a Member of Netherlands Institute
for Research on Information and Communication Technology (ICT), the Dutch
Institute for Research in ICT, and in the management of PROGRESS, the
Dutch applied research program on embedded systems. He has co-authored
over 200 international journal and conference papers in the multiprocessor
architecture and embedded system design area. His current research interests
include the predictable design of soft and hard real-time embedded systems.

Yajun Ha (SM’09) received the B.S. degree in
electrical engineering from Zhejiang University,
Hangzhou, China, in 1996, the M.Eng. degree in
electrical engineering from the National Univer-
sity of Singapore (NUS), Singapore, in 1999, and
the Ph.D. degree in electrical engineering from
Katholieke Universiteit Leuven, Leuven, Belgium,
in 2004.

He has been an Assistant Professor with the
Department of Electrical and Computer Engineering,
NUS, since 2004. Between 1999 and 2004, he did

his Ph.D. research project at the Interuniversity Microelectronics Center,
Leuven. He has held a U.S. patent and published more than 50 internationally
refereed technical papers in his interested areas. His current research interests
include embedded system architecture and design methodologies, particularly
in the area of reconfigurable computing.

Authorized licensed use limited to: National University of Singapore. Downloaded on April 06,2010 at 01:51:58 EDT from IEEE Xplore. Restrictions apply.

