
A Design Space Exploration Methodology for
Application Specific MPSoC Design

1Amit Kumar Singh, 2Akash Kumar and 1Thambipillai Srikanthan
1 School of Computer Engineering, Nanyang Technological University, Singapore

2 Department of Electrical and Computer Engineering, National University of Singapore, Singapore
Email: 1{amit0011, astsrikan}@ntu.edu.sg, 2akash@nus.edu.sg

Abstract—System designers need to perform design-space ex-
ploration (DSE) to find appropriate number and type of process-
ing elements (PEs) to be present in a Multiprocessor Systems-on-
Chip (MPSoC) to support a throughput-constrained application.
This paper presents a DSE methodology that provides application
to MPSoC architecture mappings, where different PEs get used.
The methodology starts from a mapping using only one type
of processors and evaluates different mappings by increasing
heterogeneity to improve the performance.

I. INTRODUCTION

Multiprocessor Systems-on-Chip (MPSoCs) contain multi-
ple PEs that are connected through a communication network
to fulfill the communication needs of the PEs. These MPSoCs
may employ different type of PEs and their distinct features
can be exploited to achieve high computation performance and
energy efficiency.

Throughput (compute performance) of an application to be
supported into an MPSoC depends upon how the MPSoC
resources are used by the application components. There is
a large number of possibilities for mapping the individual
components to the MPSoC resources. Finding all of these
possibilities manually is difficult and time consuming, so the
system designers need to use automated DSE methodologies.
This step to evaluate multiple mappings is important because
it gives us an idea of the performance in advance before we
actually go ahead to fabricate the system-on-chip (SoC).

Most of the existing DSE methodologies take an application
and a fixed MPSoC platform as input, and perform DSE in
view of some optimization criteria such as performance/power
to find the best mapping [1], [2]. This mapping is then used
to configure the MPSoC platform, provided it satisfies the
user constraints. However, there are few works that provide
multiple mappings for a fixed platform [3], [4]. Here, any
mapping satisfying the user constraint can be used to design
the MPSoC to support the application. The fixed platform may
contain large number of PEs and some of them might not be
used by the application, unnecessarily occupying the System-
on-Chip resources. Further, exploration time gets increased
with the number of PEs as the DSE methodologies have to
look for more tasks to PEs mapping possibilities.

We propose an iterative DSE methodology that doesn’t take
a fixed MPSoC as input but starts from considering a generic
MPSoC that contains PEs depending upon tasks and their
implementation alternatives provided in the application. For
example, the implementation alternatives could be a type1
and a type2 (more sophisticated) processor. The methodol-

ogy first finds a mapping where each task is mapped on a
separate one type of processor and then evaluates different
mappings by moving tasks to more sophisticated processors
to improve the performance. The exploration time in our
methodology is controlled by limiting the number of PEs.
The methodology selects the best mapping satisfying the
throughput-constraint of the application to design a SoC on a
Xilinx Field Programmable Gate Array (FPGA) by using the
approach presented in [5]. We have targeted Vixtex-5 ML510
FPGA board [6] and have designed MPSoCs for multimedia
applications H.263, JPEG and MP3 decoders after performing
DSE for them.

II. PROPOSED DESIGN SPACE EXPLORATION

METHODOLOGY FOR MPSOC DESIGN

A. Iterative DSE Methodology

The iterative DSE flow to perform DSE for an application
has been presented in Fig. 1, where the application graph
(Appl. Graph) along with its throughput constraint is taken as
input. The application is modeled as Synchronous Dataflow
Graphs (SDFGs) [1]. The flow first finds the number of actors
n and number of actors having their implementation alternative
as type2 processors nrType2Proc, from the application graph.
Next, a platform containing n type1 and nrType2Proc type2
IP-cores (processors, i.e., Procs) is considered and 1 actor-
to-1 Type1-processor mapping is evaluated and stored. Here,
the number of type1 processors used (nrType1ProcUsed) and
the number of type2 processors used (nrType2ProcUsed) are
n and 0, respectively. Next, we evaluate all the possible
mappings for next type1 & type2 Proc combination that is
obtained by decreasing and increasing nrType1ProcUsed and
nrType2ProcUsed, respectively. This incorporates heterogene-
ity and we get improved throughput for the mappings. The
maximum throughput mapping at this resource combination
is selected and stored. The same process is repeated with
the selected mapping to evaluate mappings at next type1 &
type2 Proc combination. The process iterates by increasing the
heterogeneity (decreasing nrType1ProcUsed and increasing
nrType2ProcUsed) until nrType2ProcUsed reaches to its limit
nrType2Proc.

Evaluating Different Type of Processors Combina-
tion Mappings. To evaluate all the possible type1 and
type2 processors combination mappings, the best (maximum
throughput) mapping using nrType1ProcUsed type1 and nr-
Type2ProcUsed type2 processors (Procs) is taken as input and

2011 IEEE Computer Society Annual Symposium on VLSI

978-0-7695-4447-2/11 $26.00 © 2011 IEEE

DOI 10.1109/ISVLSI.2011.44

337

2011 IEEE Computer Society Annual Symposium on VLSI

978-0-7695-4447-2/11 $26.00 © 2011 IEEE

DOI 10.1109/ISVLSI.2011.44

339

Consider a platform containing n Type1 & nrType2Proc Type2 Procs

Appln. Graph Throughput-constraint (Appln.)

Evaluate 1_actor-to-1_Type1-processor mapping

No

nrType2ProcUsed < nrType2Proc

Finish

n = nrActors(Appln. Graph);
nrType2Proc = nrType2ProcActors(Appln. Graph);

Evaluate mappings using nrType1ProcUsed Type1
and nrType2ProcUsed Type2 processors

Select maximum throughput mapping

nrType2ProcUsed = 0; nrType1ProcUsed = n;

nrType2ProcUsed++; nrType1ProcUsed- -;

YES
Mappings

&
Throughput

Select best mapping
satisfying the constraint

to design MPSoC

Fig. 1. Design Space Exploration Flow.

all the possible type1 and type2 processors combination map-
pings using nrType1ProcUsed- type1 and nrType2ProcUsed+
type2 processors are evaluated by moving each actor with its
implementation alternatives as type2 Procs from the type1 to a
type2 Proc having no previous actor. The number of mappings
is limited by the number of actors mapped on type1 Procs
with their implementation alternatives as type2 Procs too in
the input mapping.

The best mapping using maximum number of type1 pro-
cessors (less area) satisfying the throughput constraint is used
to design the MPSoC. The selected mapping uses minimum
number of type2 processors (more area) towards designing
a low area overhead MPSoC. The template of the MPSoC
platform is based on a NoC-based architecture as used in [5].

III. EXPERIMENTS

The proposed DSE methodology has been implemented
by extending the publicly available tool set for SDF graphs
used in [1]. We compared our iterative DSE methodology
with an exhaustive methodology and the one presented in [3].
To evaluate the different methodologies for an application,
the same generic platform graph is considered. Models of
multimedia applications H.263 (4 actors), JPEG (6 actors)
and MP3 (14 actors) decoders are considered for DSE and
MPSoCs are designed for them on Xilinx Virtex-5 ML510
development board using EDK/ISE 12.1. Concerning to the
type1 and type2 processors, we have used microblaze pro-
cessors running at 100 MHz with disabled (low area, less
sophisticated) and enabled (high area, more sophisticated)
integer-multiplier/floating-point unit, respectively. The experi-
ments have been performed on a Core 2 Duo at 3.16 GHz.

The exhaustive DSE has been performed to check if we miss
any potential mapping by our iterative DSE. The exhaustive
DSE considers all the possible one actor to one IP-core
mappings such that each actor is mapped on a different IP-
core and evaluates more number of mappings over the iterative
DSE. A case study has been performed where the number of

TABLE I
H.263 DECODER DSE AT VARYING nrType2Proc

Exhaustive DSE Iterative DSE
Number of Evaluation Number of Evaluation

nrType2Proc Mappings Time (ms) Mappings Time (ms)
0 1 27.99 1 27.99
1 2 80.45 2 80.45
2 4 215.96 4 215.96
3 8 1652.21 7 1606.75
4 16 4832.56 11 2210.66

TABLE II
APPLICATIONS EVALUATION ON GIVEN HOMOGENEOUS MPSOCS

Evaluation Time (ms)
Approach of [3] Iterative DSE

H.263 decoder (on 4 IP-cores) 9177.60 27.99
JPEG decoder (on 6 IP-cores) 14134.30 120.54
MP3 decoder (on 14 IP-cores) 355745.15 754.88

actors having their implementation alternative as type2 Procs,
i.e., nrType2Proc, is varied. At each nrType2Proc, exhaustive
and iterative DSE flow is executed by considering a platform
containing n type1 and nrType2Proc type2 Procs, where, n is
number of actors in the application. Table I shows DSE results
for H.263 decoder at varying nrType2Proc. On an average,
iterative DSE is faster by 39.17% over the exhaustive DSE. It
has been observed that the best mappings at different resource
combinations are the same when exhaustive and iterative DSE
methodologies are employed.

Table II shows evaluation time to find the best mappings by
our and the approach of [3]. It can be observed that evaluation
time increases with the platform size (number of Procs), i.e.,
more mappings need to be evaluated when approach of [3]
is employed. However, our methodology evaluates only one
actor to one processor mapping and thus evaluation time is in
control.

IV. CONCLUSION

Design space exploration (DSE) for MPSoCs is very im-
portant as it gives us an idea of the performance before
we actually go ahead and design the hardware. This paper
describes an iterative DSE methodology that provides multiple
mappings and selects the best mapping satisfying throughput
constraint of the application. The best mapping is used to
design an MPSoC on a Xilinx FPGA.

REFERENCES

[1] S. Stuijk et al., “Multiprocessor resource allocation for throughput-
constrained synchronous dataflow graphs,” in Proceedings of the 44th
annual Design Automation Conference, 2007, pp. 777–782.

[2] A. Schranzhofer et al., “Dynamic power-aware mapping of applica-
tions onto heterogeneous mpsoc platforms,” Industrial Informatics, IEEE
Transactions on, vol. 6, no. 4, pp. 692 –707, 2010.

[3] S. Stuijk et al., “A predictable multiprocessor design flow for stream-
ing applications with dynamic behaviour,” in Proceedings of the 13th
Euromicro Conference on Digital System Design, 2010, pp. 548–555.

[4] G. Mariani et al., “An industrial design space exploration framework
for supporting run-time resource management on multi-core systems,”
in Proceedings of DATE, 2010, pp. 196–201.

[5] A. K. Singh et al., “Mapping real-life applications on run-time recon-
figurable noc-based mpsoc on fpga,” in Proceedings of the International
Conference on Field-programmable Technology, 2010, pp. 365–368.

[6] “Xilinx,” 2008, http://www.xilinx.com/.

338340

