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Abstract
Cache is designed to exploit locality; however, the role of on-
chip L1 data caches on modern GPUs is often awkward. The
locality among global memory requests from different SMs
(Streaming Multiprocessors) is predominantly harvested by
the commonly-shared L2 with long access latency; while the
in-core locality, which is crucial for performance delivery, is
handled explicitly by user-controlled scratchpad memory. In
this work, we disclose another type of data locality that has
been long ignored but with performance boosting potential
— the inter-CTA locality. Exploiting such locality is rather
challenging due to unclear hardware feasibility, unknown
and inaccessible underlying CTA scheduler, and small in-
core cache capacity. To address these issues, we first conduct
a thorough empirical exploration on various modern GPUs
and demonstrate that inter-CTA locality can be harvested,
both spatially and temporally, on L1 or L1/Tex unified cache.
Through further quantification process, we prove the signif-
icance and commonality of such locality among GPU appli-
cations, and discuss whether such reuse is exploitable. By
leveraging these insights, we propose the concept of CTA-
Clustering and its associated software-based techniques to
reshape the default CTA scheduling in order to group the
CTAs with potential reuse together on the same SM. Our
techniques require no hardware modification and can be di-
rectly deployed on existing GPUs. In addition, we incorpo-
rate these techniques into an integrated framework for auto-
matic inter-CTA locality optimization. We evaluate our tech-
niques using a wide range of popular GPU applications on
all modern generations of NVIDIA GPU architectures. The
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results show that our proposed techniques significantly im-
prove cache performance through reducing L2 cache trans-
actions by 55%, 65%, 29%, 28% on average for Fermi, Ke-
pler, Maxwell and Pascal, respectively, leading to an aver-
age of 1.46x, 1.48x, 1.45x, 1.41x (up to 3.8x, 3.6x, 3.1x,
3.3x) performance speedups for applications with algorithm-
related inter-CTA reuse.

CCS Concepts •Computer systems organization →
Single instruction, multiple data; •Software and its en-
gineering→ Runtime environments

Keywords GPU, CTA, cache locality, performance opti-
mization, runtime tool

1. Introduction
Loop tiling, also known as loop blocking or strip-mine-and-
interchange, has long been proven to be effective on opti-
mizing loop-nests in CPU programs [1–3]. Loop tiling par-
titions the loop iteration space into smaller chunks so that
reusable data referenced within the tile can be kept in the
on-chip cache, avoiding early eviction. Listing 1 shows an
example of matrix-vector multiplication. In the original loop
nest (Loop1), C[i] has reuse across loop j while B[j] has
reuse across loop i. A[i][j] is a streaming access and has
no reuse. After tiling both i and j, Loop2 can be obtained.
The intention of titling is to reduce the data set (from n×n
iteration space to m×m tile space) so that C[x] and B[y]
can be reused within the tile and kept in the on-chip cache,
hence bringing significant performance gain. Nonetheless,
this inner-tile reuse1 is not the whole story — in fact, C[x]
also has inter-tile locality across loop j while B[y] has it
across loop i. When the tile size is small or the cache size
is large, it is also possible to exploit such inter-tile locality
through the on-chip cache. This is especially the case when
the tiled loop-nest is executed on a multithreaded-multicore
processor; if each tile is executed by a single CPU thread, the
inter-tile locality can be exploited when threads with such lo-

1 In this paper, we use locality and reuse interchangeably.



cality are grouped together and mapped onto the same core
(so that they can share the same on-chip cache). This method
to cluster threads for improved locality is known as thread
clustering [4, 5].

On throughput-oriented processors such as GPU, the sit-
uation is similar but different. As shown in Listing 2, each
GPU thread is responsible for one element in the n×n ker-
nel grid space. Tiles still exist, but rather than mapping the
entire tile to a single thread as in CPU, a tile is mapped to
a Cooperative Thread Array (CTA) with each element in a
tile assigned to a GPU thread of that CTA [6, 7]. An inter-
esting question then arises: is it possible to exploit the inter-
tile locality, or the inter-CTA locality on GPU by applying a
method similar to thread clustering used on CPU?

A significant amount of prior efforts have been focused
on developing performance enhancement techniques to ex-
ploit intra-CTA locality (e.g., intra-warp and inter-warp
schemes) through warp-level scheduling [8–11] and cache
contention/resource management [12–20]. While these works
provide many useful insights on improving warp-level refer-
ence locality, none of them tackle the domain of inter-CTA
locality exploitation on real GPU systems for potential per-
formance benefits. Meanwhile, the latest GPU architecture
design has already shown the trend where CTAs per SM
increases but the number of hardware warp slots per SM re-
mains the same. This further suggests the importance of ex-
ploiting such locality opportunity on GPU. However, there
are three major obstacles hindering the research advance-
ment in this domain:

• Unclear Hardware Feasibility. Existing GPU documen-
tation and programming guides suffer from significant
omissions and ambiguities on the subject of inter-CTA
locality. No existing works have demonstrated if inter-
CTA locality is exploitable on L1 or L1/Tex unified cache
on real hardware, forcing performance optimization to
be guided by folklore assumptions or research simula-
tors [21]. For instance, common belief suggests that the
lifetime and accessibility of data in L1 are restricted
within the CTA boundary, similar to shared memory us-
age; while inter-CTA locality, if exists, is to be exploited
at L2 level [11, 22].

• Unknown CTA-Scheduler. The default CTA scheduler,
known as GigaThread Engine [23], is hardware imple-
mented [24]. It is unknown and inaccessible [25]. Since
no software approaches can tune or influence it directly
[26], inter-CTA locality has been largely ignored by ap-
plication developers due to lack of knowledge on how
CTAs are assigned to SMs. It is also why the few existing
CTA scheduling techniques are mostly hardware-based
[8, 27].

• Small Cache Capacity. From performance optimization
perspective, the CTA size (e.g., blockDim in CUDA) is
often hard to change due to user and algorithm specifi-
cation. As a result, the cache capacity should be suffi-

// Loop1 : Matr ix−Vector−M u l t i p l y
f o r ( i =0; i<n ; i ++)

f o r ( j =0; j<n ; j ++)
C [ i ] += A[ i ] [ j ] ∗ B[ j ] ;

// Loop2 : T i l i n g both i and j by m
f o r ( i =0; i<n ; i+=m)

f o r ( j =0; j<n ; j+=m)
//The m∗m T i l e s

f o r ( x=i ; x<i+m; x++)
f o r ( y=j ; y<j+m; y++)

C [ x ] += A[ x ] [ y ]∗B[ y ] ;

Listing 1: CPU Loop Tiling

g l o b a l v o i d MVM(A , B , C){
//CTA c o o r d i n a t e i n g r i d

bx = b l o c k I d x . x ; by = b l o c k I d x . y ;
// Thread c o o r d i n a t e i n CTA

t x = t h r e a d I d x . x ; t y = t h r e a d I d x . y ;
// Thread c o o r d i n a t e i n g r i d

i d x = bx ∗ blockDim . x + t x ;
i d y = by ∗ blockDim . y + t y ;
P=A[ i d y ] [ i d x ]∗B[ i d x ] ;

// atomic update o r p a r a l l e l r e d u c t i o n
atomicAdd(&C [ i d y ] , P) ;}
MVM<<<(n/m, n/m) , (m,m)>>>(A , B , C ) ;

Listing 2: GPU Kernel and CTA

ciently large to cover the data set of an entire CTA. How-
ever, GPUs have extremely small L1 and L1/Tex unified
caches. For instance, while a Kepler’s SM can accommo-
date 2k threads, by default it only has 16KB L1, leaving
each thread with just 8 bytes cache space, too small for
inter-CTA reuse.

To overcome these challenges and tap into the performance
potential of inter-CTA reuse, we propose the concept of
CTA-Clustering which aims to cluster CTAs with potential
inter-CTA locality together and execute them concurrently
or consecutively on the same SM. We develop its theory and
explore design choices for its three internal steps — Parti-
tioning, Inverting and Binding. Based on our empirical ob-
servation that inter-CTA locality can be harvested at L1 or
L1/Tex unified cache, we propose an agent-based clustering
scheme along with its complementary optimizations to en-
able efficient CTA-Clustering on real GPU hardware through
circumventing the default hardware CTA scheduler. To the
best of our knowledge, this is the first work that provides ef-
fective software-based schemes to exploit inter-CTA locality
on real GPU systems for immediate performance enhance-
ment. Specifically, this paper makes the following contribu-
tions:

• We empirically demonstrate that modern GPUs have the
capability to exploit spatial and temporal inter-CTA lo-
cality on L1 or L1/Tex unified cache. (Section 3.1).

• We discover that inter-CTA reuse accounts for a signifi-
cant portion of the global data reuse. We discuss if such
reuse is exploitable based on its source of origin (Sec-
tion 3.2).

• We propose the concept, methodology and design of
CTA-Clustering (Section 4.2-4.3).

• We present an orchestrated CTA-Clustering framework
to automatically exploit inter-CTA locality for general
applications. The framework can be integrated as part of
the compiler and immediately deployed on commodity
GPUs (Section 4.4).

• We validate our designs on all modern generations of
NVIDIA GPU architectures. Experiment results demon-
strate that our proposed techniques can lead to significant
performance speedup by substantially improving L1 hit
rate and reducing L2 transactions (Section 5).
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Figure 1: Architecture diagram for modern NVIDIA GPU architectures:
Fermi, Kepler, Maxwell and Pascal. The arrows represent different global
memory read datapaths for L1 and L2 data caches.

2. Background
Overall Architecture: A GPU processor consists of several
SIMD cores, known as Streaming Multiprocessors (SMs) in
CUDA terminology and Compute Units (CUs) in OpenCL2.
Figure 1 shows the general architecture diagram for modern
NVIDIA GPUs. In general, an SM contains scalar proces-
sors, register files, special function units, load-store units,
shared memory and different types of caches. Table 1 shows
the basic architectural specifications of four product exam-
ples. Each SM on Fermi and Kepler GPUs has a 48KB con-
figurable, 128B cache-line, write-evict L1 data cache for
general off-chip DRAM access [7]. It shares the same chip
storage with the shared memory. However, recent Maxwell
and Pascal GPUs devote such storage completely for shared
memory, while relying on the texture cache (32B cache-
line, non-coherent) to offer L1 caching capability, known as
L1/Tex unified cache [28]. Meanwhile, all SMs in a GPU are
connected via a NoC to a shared L2 cache. The L2 cache is
banked and is writable (write-back and write-allocate [29]),
having a cache-line size of 32B. Hardware cache prefetching
is traditionally not enabled for GPUs [30]. However, one can
choose to enable/disable the L1 cache via specific compiler
options [7]. Note that the L1 cache line size is larger than or
equal to that of L2. This is important for later discussion.
Execution Model: GPU SMs follow the Single-Instruction-
Multiple-Threads (SIMT) execution model [6]. A group of
32 threads forms an execution vector, called warp. Warp is
the basic unit for SM instruction fetching and decoding, with
all threads inside a warp proceeding in a lock-step man-
ner. Warps are registered in the warp-slots of an SM (Ta-
ble 1). Several warps constitute a block called thread block,
or Cooperative-Thread-Array (CTA), which encapsulates all
the thread synchronization and barrier operations. CTA is the
basic unit for delivering jobs to SMs. From the hardware per-
spective, there should be no dependency among CTAs — a
kernel should always obtain correct result in arbitrary dis-
patching/execution order of CTAs. This feature ensures that
applications remain unchanged when the CTA scheduling

2 We use NVIDIA terminology in this paper as our validation platforms
are NVIDIA products. However, the proposed techniques are general and
applicable to other types of GPUs.

1 __global__ void kernel(float *input,int *smids,int *ticks){
2 int bid=blockIdx.x; int tid=threadIdx.x;
3 __shared__ float s_tmp=0; float tmp=0; unsigned t1,t2,smid;
4 asm("mov.u32 %0, %%smid;":"=r"(sm_id));//get SM id
5 unsigned idx=32*sm_id;//avoid reuse across SMs
6 if(tid==0){ //only use the primary thread
7 #ifdef STAGGERED
8 t0=clock(); while(clock()-t0<DELAY*bid);//stagger
9 #endif

10 t1=clock(); //start timer
11 __syncthreads(); //avoid multi-issuing for Line 10 & 12
12 tmp=input[idx]+RANDOM_NUMBER; //global memory access through cache
13 __syncthreads(); //avoid multi-issuing for Line 12 & 14
14 t2=clock(); //stop timer
15 s_tmp=tmp; //avoid nvcc opt-off
16 smids[bid]=smid; ticks[bid]=t2-t1; //save access cycles
17 }}
18 //Fermi: CTAS=SM(15)*CTA_slots( 8)*Turnarounds(4)=480
19 //Kepler: CTAS=SM(15)*CTA_slots(16)*Turnarounds(4)=960
20 //Maxwell:CTAS=SM(16)*CTA_slots(32)*Turnarounds(2)=1024
21 //Pascal: CTAS=SM(20)*CTA_slots(32)*Turnarounds(2)=1280
22 kernel<<<CTAS,32>>>(input,smids,ticks);

Listing 3: Microbenchmark for verifying spatial and temporal inter-CTA
locality.

policy and/or the SM architecture is modified. Such an “or-
derless” property is also critical for this paper: CTA schedul-
ing can be manipulated without jeopardizing consistency.
CTA Scheduling: The default CTA scheduling policy on
GPU has been assumed as round-robin (RR) [11, 27, 31–
33]: First, the CTA-scheduler (i.e., GigaThread Engine) as-
signs each SM with at least one CTA. If an SM still has
sufficient resources (e.g., registers, shared memory, warp-
slots, etc) to sustain extra CTAs, a second round of assign-
ment will be conducted. This rounding-assignment process
repeats until all SMs are saturated, either bounded by re-
sources or hardware limitation [32]. After that, a new CTA
will be assigned to an SM whenever an existing CTA re-
tires. Note that the CTA scheduling is purely managed by
the hardware-implemented GigaThread Engine and there is
no explicit software strategy that can impact the default CTA
scheduling, nor can modify how CTAs are dispatched to
SMs. Additionally, once a CTA is assigned to an SM, it can-
not be preempted or reassigned to another SM [7]. Such lack
of control over the CTA scheduler causes major obstacles for
leveraging scheduling to boost GPU performance [25, 26].
Finally, the RR scheduling is ultimately an assumption, since
the actual scheduling algorithm in the GigaThread Engine
has never been disclosed [25].

3. Understanding Inter-CTA Reuse on GPU
3.1 Feasibility to Exploit Inter-CTA Reuse On L1
We designed a microbenchmark (shown in Listing 3) to ver-
ify if the GPU L1 cache is capable of exploiting data reuse
among CTAs that are dispatched onto the same SM, either
simultaneously (spatial locality) or subsequently (temporal
locality). The configurations of the evaluated GPU platforms
are listed in Table 1, including Fermi, Kepler, Maxwell and
Pascal. As described in Line 18-21, we initiate 480, 960,
1024, 1280 CTAs for the four platforms respectively, corre-
sponding to 4, 4, 2, 2 turnarounds per SM. Each CTA con-
tains one warp and only the primary thread is essentially
utilized to avoid intra-warp coalescing and inter-warp con-
flicting effects within the CTA boundary. Since there is only
one warp per CTA, all the hardware CTA slots of an SM



Table 1: Experiment Platforms. “CC.” is the compute capability. “Dri/Rtm” is the CUDA Driver & Runtime version.“Warp slots” and “CTA slots” are the
maximum number of warps and CTAs per SM. “Regs” is the number of registers per SM. “SMem” is the size of the shared memory per SM. For Fermi and
Kepler GPUs, the L1 cache and shared memory are configurable.

GPUs Architecture CC. SMs Dri/Rtm Warp slots CTA slots L1(KB) L1 cache-line L2(KB) L2 cache-line Regs(KB) SMem(KB)
GTX570 Fermi 2.0 15 6.5/6.5 48 8 16/48 128B 1536 32B 32 48/16

Tesla K40 Kepler 3.5 15 6.0/6.0 64 16 16/32/48 128B 1536 32B 64 48/32/16
GTX980 Maxwell 5.2 16 7.5/7.5 64 32 48 32B 2048 32B 64 96

GTX1080 Pascal 6.1 20 8.0/8.0 64 32 48 32B 2048 32B 64 64
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Figure 2: Exploiting inter-CTA reuse on the SM that holds CTA-0: (A) Default Scenario (temporal inter-CTA locality on L1); (B) Staggered Scenario (spatial
inter-CTA locality on L1).

(Table 1) are essentially occupied. Thus, in each turnaround,
an SM can simultaneously execute 8, 16, 32, 32 CTAs on
the four platforms respectively. To measure the memory
access latency more accurately, we also add two synchro-
nization instructions before and after Line 12 when running
on Maxwell and Pascal. This is because after the Maxwell
generation, both the timing (Line 10 & 14) and the mem-
ory access (Line 12) instructions can be issued simultane-
ously, causing the timing results skewed. The CTA barriers
( syncthreads()) are used to disable multi-issuing.

Figure 2 shows the average memory access delay for the
CTAs dispatched to a particular SM that accommodates the
first CTA (i.e., CTA-0) under two setups: (A) default CTA
scheduling, and (B) staggered execution. We denote this SM
as “SM 0”. The x-axis represents the CTA-IDs dispatched
to SM 0. We also use CUDA profiler to profile two extra
cache metrics (i.e., L1 Read Trans and L1 L2 Read Trans).
We summarize the observations as follows:
(1) Temporal Locality: Figure 2-(A)s demonstrate that tem-
poral locality can be exploited by subsequent turnarounds
of CTAs at the L1 level (i.e., after a CTA is retired). This
is proved by the observation that only CTAs in the first
turnaround experience high access latency caused by the

global memory loads (e.g., ∼750 cycles on Pascal). All the
subsequent CTAs benefit from the locality on L1 generated
in the first turnaround, so their access delay is similar to
the L1 access latency (e.g., ∼132 cycles on Pascal). Note
that for the multiple CTAs in the first turnaround, only one
or two of them are essentially fetching data from off-chip
DRAM; other CTAs, despite hit in L1 cache, are in fact hit
reserved [21] (hit but the requested data is still on-the-fly)
and thus exhibit similarly long delay. This is also confirmed
by L1 Read Trans and L1 L2 Read Trans reported by the
profiler: for Fermi and Kepler, one 128B L1 miss is equiva-
lent to four 32B L2 read transactions; while for Maxwell and
Pascal, the L1/Tex unified cache is partitioned into two sec-
tors with each sector generating a 32B L1 miss, leading to
two L2 read transactions. It is speculated that these sectors
are private to particular CTA-slots following certain map-
ping mechanism.
(2) Spatial Locality: To verify whether spatial locality can
be exploited at L1 cache by the CTAs that are dispatched to
the same SM simultaneously (i.e., in the same turnaround),
we enable staggered execution (Line 7-9 in Listing 3) to dis-
align their memory accesses so that the simultaneous mem-
ory requests from the concurrent CTAs cannot be aggre-
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Figure 4: The five application categories based on their sources of inter-CTA locality.

gated in L1 as previously. The DELAY variable in Line 8,
which controls the degree of staggering, is set to be long
enough (e.g., 1200 cycles) so that the data requested by the
previous CTA can arrive in L1 before other CTAs in the
same turnaround fetch. This also keeps all the concurrent
CTAs alive and active. Figure 2-(B)s demonstrate such spa-
tial reuse among the simultaneously launched CTAs. For ex-
ample, only the first CTA in the first turnaround exhibits a
much longer delay than the rest.
(3) Observed Hardware CTA Scheduling Policy: From the
experiments on the four GPUs in Table 1 plus GTX750Ti (a
first generation Maxwell GPU with CC-5.0), we found that
the default underlying CTA scheduler varies across differ-
ent architectures. We observed two general scheduling pat-
terns based on the microbenchmark runs: (1) For the archi-
tectures in Table 1, CTAs in the first turnaround generally
follows round-robin (RR), but not for those in the remaining
turnarounds. They follow a more “demand-driven” policy.
(2) On GTX750Ti, CTAs are randomly assigned to SM 0
within each individual turnaround instead of following any
specific rule. Further investigations on real-world GPU ap-
plications confirm that the default hardware CTA scheduler
is actually close to pattern (2) where the first turnaround
does not necessarily follow RR either. We also find that the
workload distribution is not balanced across SMs, even if
the number of SMs can exactly divide the CTA number. For
instance, on Kepler GPU shown in Figure 2-(A), the SM 0
only executes 60 CTAs rather than the expected 64.

3.2 Inter-CTA Locality Quantification and Sources
We quantify the percentage of the inter-CTA reuse among
the total global data reuse, which is based on the data reuse
of all the memory requests generated from SMs before
they enter L1 cache. Since the current GPU profilers can-
not track the address and source (e.g., CTA-id) of a specific
memory request, for demonstration purposes only, we use
GPGPU-Sim [21] to track the data reuse of all memory
access requests and estimate the percentage of inter-CTA
reuse among the overall data-reuse. Note that this estimation
is data-driven and is independent of cache design or CTA-
scheduling policy. The results are consistent from run to run.

Figure 3 quantifies the inter-CTA reuse for 33 common GPU
applications. It clearly demonstrates that the inter-CTA reuse
in these applications accounts for a very significant portion
of the overall data-reuse (on average 45%). This indicates
that strategies aiming to improve inter-CTA reuse may lead
to dramatic overall performance benefit, which goes beyond
the conventional approaches that only attempt to promote
intra- and inter-warp data reuse [16, 34–36].

However, are these significant portions of inter-CTA lo-
cality exploitable on GPU hardware for enhancing perfor-
mance? To answer this, we need to understand where the
inter-CTA locality originates from. Based on the characteri-
zation of a wide spectrum of GPU applications (see Table 2
for details), we classify the sources of GPU inter-CTA lo-
cality into the following five categories. Their patterns are
depicted in Figure 4.
(A) Algorithm Related: Their inter-CTA locality is sourced
from specific algorithm designs, in which certain data is uti-
lized more than once by threads from different CTAs (Fig-
ure 4-(A)). For these applications, hints from algorithm de-
signers are important for performance optimization. Besides,
these applications often present promising opportunities for
inter-CTA reuse. Typical examples include MM, KMN, DCT.
(B) Cache-line Related: Their inter-CTA locality is intro-
duced by GPU cache design, or more specifically, the long
cache-line sizes [17, 27]. As shown in Table 1, for Fermi
and Kepler, a single cache miss from an integer access (4B)
of a thread has to fetch an entire cache line of 128B into L1.
As a result, the other 31 integers in this cache-line can be
potentially accessed by threads from a different CTA (Fig-
ure 4-(B)). This scenario occurs when the memory access
behavior is not perfectly coalesced or fully aligned with the
cache-line boundary (e.g., threads accessing halo region or
user-defined object array) and is especially prevalent in ar-
chitectures having large L1 cache-line sizes (e.g., Fermi and
Kepler). Typical examples include SYK, NBO, ATX.
(C) Data Related: Applications in this category are mostly
dealing with irregular data structures, e.g., graphs, trees,
hashes, pointer lists, etc. Inter-CTA locality comes from
data organization in storage, or how data is accessed in



memory (Figure 4-(C)). Due to the irregularity nature of data
organization, such locality is often achieved by accident.
Typical data-related applications include BFS, HST, BTR.
(D) Write Related: Applications in this category may have
inter-CTA locality. However, as the GPU L1 cache adopts
a write-evict policy [7, 29], the data that can be potentially
reused could be evicted earlier by irrelevant writing from an-
other CTA to the same cache-line (Figure 4-(D)). It happens
when a kernel reads and writes to the same array, but hav-
ing the access distance less than the cache-line size (e.g., the
cache-line containing a[i + 1] is evicted when another CTA
writes to a[i]). NW is a typical write-related application.
(E) Streaming: Memory accesses of streaming applications
are mostly coalesced and aligned (Figure 4-(E)), while data
is utilized only once or reused only within a CTA scope (e.g.,
via shared memory). These applications rarely have inter-
CTA reuse. Typical streaming applications include BS, SAD,
DXT.

By leveraging these application signatures, we propose
software-based strategies to effectively exploit applications’
inter-CTA locality at L1 level on commercial GPUs. We
describe the methodology of our design next.

4. Design Methodology
4.1 Overall Strategy Outline
As discussed previously, some applications have ample
inter-CTA locality (e.g., algorithm related) while others do
not (e.g., streaming). Based on whether an application has
exploitable inter-CTA locality, we propose a software ap-
proach for manipulating CTA scheduling on GPU, namely
CTA-Clustering. Here we define whether an application has
“exploitable ” inter-CTA locality as follows:

• Locality from algorithm related (program defined) and
cache-line related (architecture defined) applications can
be identified before runtime thus is exploitable.

• Locality from data related (data defined), write related
(has locality but cannot be utilized) and streaming (no
locality) is either insignificant or can only be determined
at runtime. Thus it is either impossible or very little benefit
to exploit. We consider them having no exploitable inter-
CTA locality.

Note that for some data-related applications with very spe-
cific runtime access patterns, their data organization in mem-
ory may be predicted before runtime [37], making their
inter-CTA locality exploitable. For example, previous works
[38, 39] have suggested to use a lightweight inspector kernel
before runtime to profile local data access of certain graph-
processing applications (e.g., first few layers of BFS), in or-
der to predict global data organization for optimizing run-
time access.

Figure 5 outlines the overall flow for exploiting inter-CTA
locality on GPU. For applications having exploitable inter-
CTA locality, we apply CTA-Clustering to maximize their

Exploitable 
inter-CTA 
locality?

Yes

No
O

CTA Reshaping PrefetchingReshape the CTA
scheduling order

(1) Reduce latency
(2) Improve throughput N

CTA Clustering Exploit the
inter-CTA locality Optimizations

(1) Avoid conflicts
(2) More cache capacity N

Figure 5: Optimization Strategy. O stands for original kernel. N stands for
new kernel.

inter-CTA data reuse on L1 (Section 4.2 and 4.3-(I)(II)).
For applications having no exploitable inter-CTA locality,
we first apply CTA-Clustering to reshape the default CTA
scheduling pattern (not for exploiting inter-CTA locality but
to impose a certain CTA execution order), and then use CTA-
Prefetching to preload data that is required by the upcoming
CTAs before the current one expires (Section 4.3-(III)).

4.2 CTA Clustering
The basic idea of CTA-Clustering is to initiate a new kernel
to replace the original one so that a predefined clustering rule
can be established. The objective is to cluster CTAs with
inter-CTA locality together and execute them concurrently
or consecutively on the same SM. We use OOO, NNN, CCC to denote
the Original kernel, the New kernel and the Clusters. CTA-
Clustering is essentially to find a mapping: NNN→OOO subjects
to CCC, shown in Figure 6. The process comprises three steps:
Step-1. Partitioning: Partition the CTAs of OOO into M bal-
anced clustersCCC, with the most inter-CTA locality conserved
within each cluster. It is defined by fff in Figure 6.
Step-2. Inverting: Reconstruct OOO from CCC. In other words,
given a CTA in a certain cluster, we can retrieve its CTA
id in the original kernel OOO. Inverting is defined by f−1f−1f−1 in
Figure 6.
Step-3. Binding: Bind the CTAs of the new kernel NNN to
the clusters CCC. Assume the size of CCC is equal to the number
of SMs, the mapping from CCC to SMs is a 1-to-1 mapping.
Binding is defined by ggg in Figure 6.

In short, finding the mapping N→ ON→ ON→ O follows:

OOO
Step-1: Partitioning−−−−−−−−−−⇀↽−−−−−−−−−−
Step-2: Inverting

CCC
Step-3: Binding←−−−−−−−−NNN (1)

To clearly demonstrate the theory, we showcase the clus-
tering process using a well-known application —Matrix
Multiplication (MM) from CUDA SDK [40]. Based on the
source code of MM, its intra-CTA data reuse is completely
handled by shared memory (i.e., local buffers for matrix A
and B are declared in the shared memory for intra-CTA data
sharing between threads)— inter-CTA locality is not ex-
plicitly explored. However, as depicted in Figure 8-(A), MM
inherently has algorithm-related inter-CTA locality, which
could be potentially exploited for performance enhance-
ment. Due to space limitation, we do not show MM’s source
code here. We will refer it as MM Kernel Body throughout
this section.

4.2.1 Step 1. CTA-Partitioning: f = O→C.f = O→C.f = O→C.

The formal definition of the partitioning problem is:
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Problem 1 Given an undirected graph G(V,Eµ) with each
uniform vertex represents a CTA and each weighted edge
represents the inter-CTA reuse with degree µ , partition the
graph into M balanced clusters so that the weight summa-
tion of the inner-cluster edges are maximized.

We define yv,i = 1 if vertex v is assigned to cluster i
(i ∈ [M]); otherwise yv,i = 0. Consequently, we can define
cluster i as: CCCi = [(v,e)|v ∈ V,yv,i = 1]. The partitioning
problem then can be formulated as:

max (
M

∑
i=1

∑
eu∈Ci

µ) sub jects to

∀v∈V |
M

∑
i=1

yv,i = 1 //one vertex assigned to one cluster

∀i ∈ [M] | ∑
v∈V

yv,i = |V |/M //clusters are balanced

The general balanced-graph partitioning is NP-complete
[41]. However, it is possible for the application developers to
generate a desired partition function based on their knowl-
edge of the algorithm. In this work, we provide a heuristic
solution that ensures clustering balance as part of an auto-
matic framework (Section 4.4). We define the partition func-
tion as:

f (v) = v→ (w, i)f (v) = v→ (w, i)f (v) = v→ (w, i) | v ∈V, i ∈ [M], w ∈ [|CCCi|] (2)
where vvv is the CTA id in OOO, www is the id in CiCiCi. For instance,
if a cluster contains 3 CTAs, w ∈ [0,1,2]. As V defines the
order of CTA in OOO and |V | is the quantity of CTAs in OOO, our
solution is to separate |V | into M chunks via:

f (v) = (w, i) = (v%(|V |/M), v/(|V |/M)) (3)
However, |V | is not necessarily the multiples of M. In order
to distribute the chunks as balanced as possible, we extend
Eq. 3 into a conditional equation: if v%M ≤ |V |%M,

f (v) = (w, i) = (v%(|V |/M +1), v/(|V |/M +1)) (4)
Otherwise,

f (v) = (w, i) = (v%(|V |/M),(v−|V |%M)/(|V |/M)) (5)
Different from the conventional wisdom [27, 36], our par-
tition approach does not simply separate CTAs into con-
secutive chunks because vertex v’s order is completely dic-
tated by how CTAs are indexed in OOO. Figure 7 shows four
major CTA indexing methods for a 2D grid. For the de-
fault row-majored indexing, if using CUDA terminology, v =
blockIdx.y * gridDim.x + blockIdx.x, it clusters
consecutive or row-adjacent CTAs. In other words, it parti-
tions CTAs along the Y -dimension (i.e., Y -partitioning). If
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Figure 7: Four major CTA indexing methods for a 2D grid.

the column-major indexing is adopted (i.e., v = blockIdx
.x * gridDim.y + blockIdx.y), CTAs will be parti-
tioned along the X-dimension (i.e., X-partitioning). More-
over, the Tile-based 2D indexing can partition CTAs along
both X- and Y -dimensions. However, tile-based indexing
may also incur higher overhead due to complex index cal-
culation (Section 5.2). Finally, it is also possible to cluster
arbitrary CTAs by choosing a customized indexing method.
Now recall Section 4.1, we describe the partition methods
for the two types of applications that have exploitable inter-
CTA locality as follows:
(A) Algorithm-Related: To make the partition process gen-
eral and automatic, we propose a solution based on depen-
dency analysis for the array references over the coordinates
of different grid-dimensions, which is similar to the depen-
dency analysis for a loop-nest [2]. If a kernel grid (gridDim)
is 1D, we simply perform X-partitioning. If a kernel grid
is 2D and the CTA X-direction based variable (e.g., block-
Idx.x) is the last or the only dimension of an array refer-
ence (e.g., A[α(by)+ bx + ε(tx, ty)] or A[β (bx)]), which in-
dicates it may have inter-CTA locality across X , we then per-
form Y -partition using row-majored indexing. Otherwise, if
the Y -based variable (e.g., blockIdx.y) remains the last or
the only dimension of an array reference (e.g., A[α(bx) +
by + ε(tx, ty)] or A[β (by)]), we perform X-partition using
column-majored indexing. The partition process for 3D ker-
nels is similar to 2D but with more options. However, most
of the common GPU applications only contain 2D kernel
grids.
(B) Cache-line Related: Since CUDA and C/C++ com-
monly adopt row-major policy to organize and store multi-
dimensional arrays, the cache-line related inter-CTA locality
often exists between row-adjacent CTAs. Thus we use row-
-major CTA indexing (Y -partition) to count the CTA order
from OOO.

As discussed in Section 4.1, some data-related applica-
tions can also exploit inter-CTA locality if a detailed cus-
tomized partition is provided by users. But this is beyond of
the scope of this work. Using MM as an example shown in
Figure 8-(A), A and B have inter-CTA reuse in S and T re-
gion, respectively. But whether to partition the CTAs along
Y (for locality in A) or along X (for locality in B) depends
on if A.height is larger than B.width (i.e., directional locality
intensity). In this case, we target on A using Y -partitioning
(i.e., row-major indexing). Through the known parameters:
M = 2, grid width = 3, grid height = 2 in Figure 8-(A),
we have |V | = 6 and |V |%M = 0, which is always ≤ v%M.
Therefore, we can use Eq. 5 to obtain the partition function
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Figure 8: CTA-Clustering Process using MM as an example. (A): CTA(1,1) has inter-CTA reuse with CTA(0,1) and CTA(2,1) in matrix-A since they all
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f (v)f (v)f (v) and use it to locate which cluster an arbitrary CTA v in
OOO should be dispatched to. For instance, CTA-(0,1) can be
located as the 0th element in cluster C1 via:

f (CTA-(0,1)) = f (CTA-id=1*3+0) = f (v = 3)

= (3%(6/2),(3−6%2)/(6/2)) = (0,1) = (w, i)

4.2.2 Step 2. CTA-Inverting: f−1 = C→ O.f−1 = C→ O.f−1 = C→ O.

Since Eq. 3 is a one-to-one mapping function, we can obtain
its inverse function as

v = f−1( (w, i) )v = f−1( (w, i) )v = f−1( (w, i) ) = i∗ (|V |/M)+w (6)
Similarly, the inverse functions of Eq. 4 and 5 are{
∀ i≤ |V |%M : v = i∗ (|V |/M +1)+w
∀ i > |V |%M : v = i∗ (|V |/M +1)+w+ |V |%M− i

The two equations can be unified as
v = i∗ (|V |/M +1)+w+min(|V |%M− i, 0) (7)

Given a pair of (w, i) (a cluster i and a position in this
cluster w), its corresponding CTA id v can be located in OOO
through Eq. 7. If the indexing method is also known, we can
further obtain its coordinate in OOO. For MM, a CTA labeled
(w = 2, i = 1) in C1C1C1 can find its corresponding v in OOO via:

v = f−1( (2,1) ) = 1∗ (6/2+1)+2+min(0−1,0) = 5

4.2.3 Step 3. CTA-Binding: g = N→C.g = N→C.g = N→C.

The formal definition of the binding problem is:
Problem 2 Given the new kernel NNN, how to associate the
CTAs in NNN to the clusters CCC so that all the items in CCC can be
completely and precisely executed?

The objective of this step is to find the mapping from
NNN →CCC, or essentially NNN → (w, i). In other words, given an
arbitrary CTA u in the new kernel NNN, how to learn the job
target (w, i) it is responsible for. Since the GigaThread En-
gine is unknown and inaccessible, depending on how (w, i)
is obtained in the context of NNN, we propose two methods to
trick or circumvent the hardware CTA scheduler:

(A) RR-based Binding: This simple approach is to obtain
(w, i) in NNN based on the assumption that the GigaThread
Engine follows a strict-RR policy in the new kernel. With
this assumption, we can calculate the mapping of NNN → CCC
via:

(w, i) = (u/M,u%M) | u ∈NNN, (w, i) ∈CCC (8)
In MM, the associated (w, i) for a CTA in NNN with its id= 4 can
be calculated via Eq. 8: (w,i)=(4/2, 4%2)=(2,0)
(B) SM-based Binding: Unlike RR-based binding, this ap-
proach has no preassumption on the default CTA schedul-
ing policy. Assuming Cluster i is binded to SM i, we need
to learn how the CTAs allocated by the default scheduler
on SM i are mapped to Cluster i, by obtaining their corre-
sponding (w, i). To identify the corresponding Cluster i at
runtime, a CTA can fetch the physical id of the SM it cur-
rently locates on from a special register [25]:
asm ( ”mov . u32 %0, %%smid ; ” : ”=r ” ( s m i d ) ) ; // o b t a i n i

To identify its position w in a cluster, a CTA has to syn-
chronize with the other CTAs on the same SM to avoid con-
flicts (i.e., two CTAs obtaining the same w). We discovered
that on Fermi and Kepler the way CTAs are binded to hard-
ware warp-slots is essentially consecutive and fixed. Thus
a CTA can decide its position w in the cluster relying on
its hardware warp-slot id divided by WARPS PER CTA, as
shown in Line 5-6 in Listing 5. However, on Maxwell and
Pascal, warps from different CTAs are dynamically binded
to hardware warp-slots [42]. Thus we rely on a global atomic
operation and shared memory broadcasting (Line 16-19 in
Listing 5).

4.2.4 Putting It All Together.
Combining all the three steps, we propose two CTA-Clustering
approaches based on the two binding schemes:
(1) Redirection-based Clustering: Shown in Figure 8-(C),
this design is built on RR-based binding. The number of
CTAs in the new kernel is identical to the old kernel (i.e.,
|NNN| = |OOO|, 1-to-1 mapping from NNN to OOO). “Redirection”
means that each CTA u in NNN is redirected to a CTA v in
OOO. We implement the idea (Eq. 7 and 8) into a header file



1 //======================== Redirection_Clustering.cuh =========================
2 #define REDIRECTION const int _ctas=gridDim.x*gridDim.y;\ //CTA num of O and N
3 const int u=blockIdx.y*gridDim.x+blockIdx.x;\ //row-major indexing in N
4 const int v=(u%SM)*(_ctas/SM+1)+u/SM+min(0,(_ctas%SM)-(u%SM));//binding+inverting
5 #define COL_INDEXING int bx = v/gridDim.y; int by = v%gridDim.y;
6 #define ROW_INDEXING int by = v/gridDim.x; int bx = v%gridDim.x;

Listing 4: Redirection-based Clustering Header File

g l o b a l v o i d MM(A)
{

MM Kernel Body ;
}
k e r n e l<<<g r i d , b l o c k>>>(A ) ;

⇒
#i n c l u d e <R e d i r e c t i o n C l u s t e r i n g . cuh>

g l o b a l v o i d MM(A){
REDIRECTION ; //N=>C=>O ( b i n d i n g+i n v e r t i n g )
ROW INDEXING ; // v=>(o b i d . x , o b i d . y )
// use bx , by to r e p l a c e b l o c k I d x . x & y
MM Kernel Body ;

} k e r n e l<<<g r i d , b l o c k>>>(A ) ;

Figure 9: Kernel Transformation by Redirection-based Clustering

(Listing 4), based on which Figure 9 shows the simple code
transformation using MM. Although this scheme is easy to
implement and low-cost, it is built upon the assumption
of strict-RR for the hardware CTA scheduler, which has
been proven incorrect on real GPU hardware (Section 3.1-
(3)). Several previous works have also assumed RR for CTA
scheduling [11, 27, 31–33].
(2) Agent-based Clustering: This design (Figure 8-(D))
is built on SM-based binding scheme, and the volume of
CTAs in NNN is not identical to OOO. Different from tricking the
GigaThread Engine in Redirection-based Clustering, Agent-
based Clustering completely circumvents the hardware CTA
scheduler. As illustrated in Figure 8-(D), we allocate a few
CTAs that persistently reside on each SM during the kernel
execution (similar to the concept of persistent threads [26,
43]), named “agents”, serving all the (w, i) (or tasks) in the
cluster belong to that SM via a task loop. For instance, agents
A0 and A1 on SM-0 will executes all the CTAs in OOO that
were clustered to C0C0C0 in the partitioning step. Note that the
number of agents on a SM is normally way less than the
size of the cluster, e.g., 16 agents vs. 2K CTAs. The inter-
CTA locality is exploited when the agents of an SM are
working in parallel (spatial locality), and among consecutive
tasks (temporal locality). We also implement a header file
for this design, shown in Listing 5, based on which a very
simple code transformation using MM is shown in Figure 10.
Although this design works regardless of the default CTA
scheduler, it does associate with additional cost in the SM-
based binding (i.e., SM id fetching, agent id calculation and
synchronization). We will discuss the performance impact of
these overheads in Section 5.

4.3 Complementary Optimizations to CTA-Clustering
(I) CTA Throttling. CTA throttling limits the number of
concurrent CTAs on an SM to reduce the contention for
execution resources (e.g., caches and bandwidth). Previous
works [27, 31] have observed that using maximum number
of CTAs per SM is not always optimal. We enable software-
based CTA throttling by controlling the number of the ac-
tive agents per SM. It is achieved by directly retiring a CTA
when its agent id is larger than specified (line 7 in List-
ing 5). However, naively decreasing the total number of
agents in kernel grid configuration to adjust throttling de-

1 //=========================== Agent_Clustering.cuh =============================
2 #if __CUDA_ARCH__ < 500 //Fermi and Kepler GPU
3 #define CLUSTERING \
4 int sm_id;asm("mov.u32 %0,%%smid;":"=r"(sm_id));\//fetch sm-id
5 int warp_id;asm("mov.u32 %0,%%warpid";:"=r"(warpid));\//fetch hardware warp id
6 const int agent_id=warp_id/WARPS_PER_CTA;\//only appicable to Fermi and Kepler
7 if (agent_id >= ACTIVE_AGENTS) return;\ //for CTA throttling
8 const int _jobs = _cd + ((sm_id<_ck)?1:0);\//workload per SM
9 const int _base = _cn*sm_id + (((_ck-sm_id)<0)?(_ck-sm_id):0);\//start position

10 for(int v=_base+agent_id;v<_base+_jobs;v+=ACTIVE_AGENTS)//traverse the cluster
11 #else //Maxwell and Pascal GPU
12 #define CLUSTERING \
13 int sm_id; asm("mov.u32 %0,%%smid;":"=r"(sm_id));\//fetch sm-id
14 const int _jobs = _cd + ((sm_id<_ck)?1:0);\ //workload per SM
15 const int _base = _cn*sm_id + (((_ck-sm_id)<0)?(_ck-sm_id):0);\//start position
16 __shared__ int agent_id;\ //on shared memory for broadcasting
17 if (threadIdx.x==0 && threadIdx.y==0)\ //only 1st thd to bid agent id
18 agent_id = atomicAdd(&global_counters[sm_id],1);\
19 __syncthreads();\ //other thds in the CTA wait for gaents_id
20 if (agent_id >= ACTIVE_AGENTS) return;\ //for CTA throttling
21 for(int v=_base+agent_id;v<_base+_jobs;v+= ACTIVE_AGENTS)//traverse the cluster
22 #endif
23 #define COL_INDEXING int bx=_v/_oy; int by=v%_oy; //partition along X dimension
24 #define ROW_INDEXING int by=_v/_ox; int bx=v%_ox; //partition along Y dimension
25 #ifdef WARPS_PER_CTA //for CTA throttling
26 #define BOUNDS __launch_bounds__ (32*WARPS_PER_CTA,WORKERS)//opt for reg usage
27 #else
28 #define BOUNDS //if CTA size is unknown, ignore this optimization
29 #endif
30 #define PARAM const int ctas, const int _cd, const int _ck, const int _cn, \
31 const int _ox, const int _oy
32 #define PARAM_CALL(X) ((X).x*(X).y*(X).z), ((X).x*(X).y*(X).z)/SM, \
33 ((X).x*(X).y*(X).z)%SM, (((X).x*(X).y*(X).z)+SM-1)/SM+1, (X).x, (X).y
34 //Prefetching for Fermi & Kepler L1 cache
35 #define PREFETCH_L1(X) asm("prefetch.global.L1 [%0];"::"l"(&X));
36 //Prefetching for Maxwell & Pascal L1/Tex unified cache
37 #define PREFETCH_L1T(X) __ldg((int*)&x);

Listing 5: Agent-based Clustering Header File

g l o b a l v o i d
MM( i n t∗ A)
{

MM Kernel Body ;
}
k e r n e l<<<g r i d , b l o c k>>>(d A ) ;

⇒

#d e f i n e ACTIVE AGENTS 2 // a c t i v e a g e n t s p e r SM
#d e f i n e MAX AGENTS 2 //max a l l o w e d a g e n t s p e r SM
#d e f i n e WARPS PER CTA 32 //CTA s i z e i f known
#i n c l u d e <A g e n t C l u s t e r i n g . cuh>

g l o b a l v o i d BOUNDS k e r n e l ( i n t∗ A ,PARAM){
CLUSTERING{//N=>C=>O ( b i n d i n g+i n v e r t i n g )

ROW INDEXING ; // v=>(o b i d . x , o b i d . y )
// use bx , by to r e p l a c e b l o c k I d x . x & y
// and ox , o y to r e p l a c e gr idDim . x & y
MM Kernel Body ;

} }
k e r n e l<<< SM∗MAX AGENTS, b l o c k>>>( dA ,

PARAM CALL( g r i d ) ) ;

Figure 10: Kernel Transformation by Agent-based Clustering

gree can cause incorrect execution due to the imbalanced
agent dispatching among SMs from the hardware scheduler
(Section 3.1-(3)). Thus we always allocate the maximum al-
lowable agents per SM for an application (e.g., bounded by
register usage and shared memory) at kernel grid configura-
tion to occupy the CTA slots (MAX AGENTS in Figure 10)
so as to force balanced agent distribution, but only activate
some of them at runtime (ACTIVE AGENTS in Figure 10)
depending on its agent id (Line 7 and 20 in Listing 5). In this
way, we can control the throttling degree while guarantee-
ing agents are evenly distributed to SMs. Additionally, we
leverage ‘ launch bounds ’ [7] to increase register usage
during compilation when there are less CTAs than permit-
ted. It exploits register reuse and hides instruction latency.
Note that throttling is not a necessity for all applications. It
is applied when the performance is not improved or even de-
graded after clustering (i.e., reducing capacity misses). To
decide active agents at runtime, we refer to a dynamic CTA
voting scheme similar to that used in [12].
(II) Cache Bypassing. A large body of work [12–16, 19, 20]
has proposed cache bypassing techniques for GPU, aiming
to avoid unnecessary cache pollution (e.g. severe thrash-
ing), reduce capacity and conflict misses due to very lim-
ited cache capacity and resources (e.g., MSHRs and miss
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Figure 11: Inter-CTA Locality-aware Optimization Framework

queue slots). As a complementary technique to further en-
hance CTA-Clustering, we bypass the streaming accesses to
L1 or L1/Tex unified cache to prevent them from contending
resources with the accesses that have inter-CTA reuse.

// B y p a s s i n g f o r L1 and L1/Tex u n i f i e d cache
asm ( ” l d . g l o b a l . cg . f 3 2 %0, [%1] ; ” : ”=f ” (X ) : ” l ”(&Y ) ) ;

(III) CTA Prefetching using Reshaped Order. As dis-
cussed in Section 4.1, CTA prefetching is for applications
without exploitable inter-CTA locality (i.e., data-related,
writing-related or streaming). For them, our core technique
— CTA clustering is not expected to directly benefit per-
formance from inter-CTA locality perspective. But CTA-
Clustering (e.g., Y -partitioning) can impose a specific CTA
scheduling order (i.e., reshaping the default order), which
enables the current CTA to be able to preload the required
data for its successor(s) in advance, thus hiding long mem-
ory access delay to L2 or DRAM. This is feasible because
GPU L1 cache preserves data after a CTA is retired. Without
this reshaped order, prefetching can only be limited within a
CTA scope [32, 36, 44, 45] due to the “orderless” property of
CTA dispatching. The macros for GPU software prefetching
are listed in Line 34-37 in Listing 5.

4.4 Inter-CTA-Aware Optimization Framework
Figure 11 illustrates our software-based optimization frame-
work for exploiting inter-CTA locality. The previous subsec-
tions have explained how to conduct the corresponding op-
timizations once we have certain knowledge about the target
kernel (e.g., whether it has exploitable inter-CTA locality or
not). In this section, we primarily discuss how the framework
estimates an application’s source of inter-CTA locality. This
process is highlighted in blue in Figure 11.

The framework applies several simple coarse-grained
techniques to estimate an application’s source of inter-CTA
locality before it is further analyzed for optimizations. Since
intra-CTA locality is generally captured within the CTA
scope (e.g., via shared memory), altering CTA scheduling
will only impact inter-CTA locality. Thus we first apply
the simple Redirection-base Clustering (Figure 9) to im-
pose a new CTA execution order (either X- or Y-clustering)
and check whether the performance and/or L1 hit rate have
changed (an indicator for inter-CTA locality potential). The
kernels with higher potential (e.g., significant change in L1
hit rate) may belong to algorithm-related or cache-line re-
lated. Note that it is better to reduce the problem size (to-
tal CTA number) for this verification because large CTA
number per SM can trigger severe trashing, often leaving
L1 hit rate close to zero. Furthermore, we can turn on/off

L1 cache to see if there is any performance change. If L2
cache access is significantly reduced after turning off L1, it
is likely caused by large L1 cache-line which hints cache-
line related. If there is no change in L2 transactions but the
coalescing degree reported by the CUDA profiler is high,
this kernel is probably streaming. However, if the coalescing
degree is low, the memory access behavior is likely to be
more random, suggesting data-related. Finally, the frame-
work evaluates the references to array inside the kernel. If
the kernel reads and writes to the same array but with shifted
or skewed references, it is likely that the written results can
be reused later for other CTAs, suggesting write related.

5. Evaluation
5.1 Overall Result Summary
We evaluate the proposed CTA-Clustering techniques along
with the three complementary optimizations on the four
GPU architectures in Table 1. Shown in Table 2, we select
twenty-three representative applications from popular GPU
benchmark suits, covering the five application categories in
terms of inter-CTA locality sources (Section 3.2). Figure 12
shows the overall performance results of these applications
using our proposed schemes. The results are demonstrated
based on architecture and application type. Each GPU ar-
chitecture (each row) contains three sub-figures: (1) the left
one represents algorithm related applications (marked in Ta-
ble 2); the middle one represents cache-line related appli-
cations; and the right one consists of data related, write re-
lated and streaming applications that do not have exploitable
inter-CTA locality. Additionally, we include the change of
Achieved Occupancy [49] (AC OCP) in the figure to better
demonstrate the execution status. To understand the impact
of our techniques on cache performance, we plot the L2
cache transactions and L1 hit rates in Figure 13. Compared
to L1 hit rate, L2 cache transaction is a better performance
indicator for GPUs [50].

Figure 12 shows that our proposed CTA-Clustering tech-
nique and its associated optimizations achieve an average
performance speedup of 1.46x, 1.48x, 1.45x, 1.42x (up to
3.83x, 3.63x, 3.1x, 3.32x) for algorithm-related applications
on Fermi, Kepler, Maxwell and Pascal GPUs, respectively.
Meanwhile, they also achieve an average speedup of 1.47x
and 1.29x (up to 2.57x and 1.75x) for cache-line related ap-
plications on Fermi and Kepler GPUs, which have a larger
L1 cache-line size. Regarding the cache performance (Fig-
ure 13), our techniques reduce the L2 transactions by 55%,
65%, 29%, 28% for the algorithm related applications on
the four architectures, respectively. For the cache-line re-
lated applications, we achieve 81%, 71% and 34% L2 cache
transaction reduction on Fermi, Kepler and Maxwell, respec-
tively.

5.2 Observations, Analysis and Limitations
Regarding the results in Figure 12 and 13, we have the
following observations and analysis:



Table 2: Benchmark Characteristics. “WP” stands for warps per CTA. “CTAs” means the default number of CTAs per SM in baseline. The four items in
“6/8/8/8” are the values for Fermi/Kepler/Maxwell/Pascal. Similar meaning applies to other columns in this table. “Registers” indicates the register cost
per thread in baseline. “SMem” is the shared memory cost per CTA in baseline. “Partition” is the partition method adopted during CTA clustering. “Opt
Agents” is the number of optimal agents for CTA throttling. “Ref” refers to the sources.

Application Description abbr. Category WP CTAs Registers SMem Partition Opt Agents Ref.
kmeans Clustering algorithm KMN Algorithm 8 6/8/8/8 14/17/16/18 0 X-P 1/1/1/1 [46]

matrixMul Matrix multiplication MM Algorithm 32 1/2/2/2 22/29/32/27 8192B Y-P 1/2/2/2 [40]
nn Convolutional neural network NN Algorithm 1 8/16/32/32 21/35/37/32 0 Y-P 8/16/32/32 [21]

imageDenoising NLM method for image denoising IMD Algorithm 2 8/16/18/18 63/61/49/55 0 Y-P 8/16/14/16 [40]
backprop Perception back propagation BKP Algorithm 8 6/8/8/8 11/11/16/18 1092B X-P 6/8/8/8 [46]

dct8x8 Discrete cosine transform DCT Algorithm 2 8/16/32/32 14/17/22/19 512B X-P 8/16/32/24 [40]
sgemm dense matrix-matrix multiplication SGM Algorithm 4 7/9/12/8 33/53/41/46 512B X-P 7/9/8/8 [47]
hotspot Estimate processor temperature HS Algorithm 8 3/5/6/6 35/38/36/38 3072B Y-P 3/5/6/6 [46]

syrk Symmetric rank-k operations SYK Cache-line 8 5/8/8/8 21/26/21/28 0 X-P 3/2/8/8 [48]
syr2k Symmetric rank-2k operations S2K Cache line 8 6/6/8/8 33/38/33/19 0 X-P 1/1/6/6 [48]
atax Matrix transpose and vector multiply ATX Cache line 8 6/8/8/8 13/17/17/22 0 X-P 1/1/1/1 [48]
mvt Matrix vector product and transpose MVT Cache line 8 6/8/8/8 13/17/17/22 0 X-P 1/1/1/1 [48]

nbody All-pairs gravitational n-body simulation NBO Cache line 8 2/4/6/6 24/38/35/46 0 Y-P 2/4/5/2 [40]
3DCONV 3D convention 3CV Cache line 8 6/8/8/8 18/9/18/19 0 Y-P 6/8/8/8 [40]

bicg BiCGStab linear solver BC Cache line 8 6/8/8/8 13/16/17/22 0 X-P 1/1/1/8 [48]
histogram 64-bin histogramming HST Data 8 6/8/8/8 15/19/20/15 1024B X-P 5/5/6/7 [40]

B+tree B+tree operations BTR Data 8 5/8/8/8 22/27/29/30 0 X-P 5/8/8/8 [46]
nw DNA sequence alignment algorithm NW Writing 1 8/16/32/32 28/27/39/40 2180B X-P 8/16/16/8 [46]
bfs Breadth first search BFS Data&Writing 8 6/8/8/8 17/18/19/20 0 X-P 2/6/6/7 [46]

MonteCarlo Option call price via MonteCarlo method MON Streaming 8 4/4/8/8 28/28/28/28 4096B X-P 4/4/8/8 [40]
dxtc High quality DXT compression DXT Streaming 2 8/8/10/10 63/89/89/91 2048B X-P 8/8/10/10 [40]
sad Sum of abs differences in MPEG encoder SAD Streaming 2 8/16/20/20 43/44/46/40 0 X-P 8/16/20/20 [47]

BlackScholes Black-Scholes option pricing BS Streaming 4 8/16/16/16 23/25/21/19 0 X-P 8/16/16/12 [40]
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Figure 12: Normalized performance speedup and Achieved Occupancy (AC OCP) obtained by CTA-Clustering and its associated optimizations on four GPU
architectures. Three subfigures in each row include: (left) algorithm-related, (mid) cache-line related and (right) data, write and streaming related. “BSL”
is the baseline. “RD” represents redirection-based clustering. “CLU” represents agent-based clustering with maximum allowable agents per SM as active
agents. “TOT” stands for CTA throttling. “CLU+TOT” uses the optimal number of active agents per SM through throttling. “BPS” is cache bypassing.
“PFH” represents CTA prefetching. Achieved Occupancy is defined as the ratio of the average active warps per active cycle to the maximum number of warps
supported on an SM. It is not the theoretical Occupancy. All the results are normalized to the baseline and measured by the average of multiple runs.

(1) Although being quite effective for some applications
(e.g., NN, IMD), the Redirection-based Clustering (RD) is
not generally beneficial due to preassumed scheduling pol-
icy. Comparatively, the Agent-based techniques (e.g., CLU
and CLU+TOT) are much more effective, especially for their

low-cost SM-based binding (Section 4.2.3-(B)) on Fermi
and Kepler due to their static CTA to warp-slot binding.

(2) Across architectures, CTA-Clustering appears to be
more effective for algorithm-related applications as their
inter-CTA reuse is inherent in algorithm itself. For cache-
line related applications, CTA-Clustering only benefits Fermi
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Figure 13: L2 cache transactions (or L1/Tex-L2 transactions) and L1 cache hit rates for CTA-Clustering and optimizations on Fermi, Kepler, Maxwell and
Pascal GPUs.

and Kepler. This is because their L1 cache-line size is much
larger than that of Maxwell and Pascal (128B vs. 32B). A
larger cache-line implies more data fetching per miss, which
facilitates possible spatial reuse across CTA boundaries. For
Maxwell and Pascal, the 32B cache line is just one fourth of
a load of a warp (4B×8), hence hardly any inter-CTA reuse.
Clustering CTAs on these platforms for cache-line related
applications may only introduce extra overhead.

(3) Regarding the three optimizations, throttling on CTA-
Clustering is quite effective, especially for applications hav-
ing high contention in execution resources (e.g., KMN, SYK,
S2K, ATX, MVT). As a complementary optimization to CTA-
Clustering and throttling, bypassing is in general ineffective
because CTA throttling has already mitigated majority of
the resource contention. For applications with no exploitable
inter-CTA locality, CTA-Prefetching also gains overall in-
significant performance improvement. There are two main
reasons. (a) For cache-friendly GPU applications with large
amount of access to L1 but under very limited cache capac-
ity, prefetching may break the original locality and increase
early evictions. (b) CTA prefetching requires repeated ad-
dress and offset calculation which sometimes is quite com-
plicated, incurring significant overhead. We want to empha-
size that improving the performance for applications without
exploitable inter-CTA locality is not the focus of this work.
Our original goal for this basic scheme was to utilize the fea-
ture of imposed order from CTA-Clustering and provide a
more general approach for addressing all GPU applications.

(4) Most of the algorithm-related cases (except for KMN)
can benefit directly from clustering without CTA throttling

to achieve the optimal performance (max allowable CTAs).
Furthermore, we observed that the throttling-only approaches
through controlling dynamic shared memory usage per CTA
sometimes show far worse performance than our clustering-
centric approach. This indicates that CTA throttling is not
only unnecessary for some applications but also can be detri-
mental to performance sometimes. Thus it is complementary
to CTA-Clustering and used only when capacity-conflict is
constraining performance.

(5) Comparing Figure 13 with Figure 12, we confirm that
L2 cache transaction is a better metric for evaluating overall
GPU performance. In general, when the L2 transactions
decline, the overall performance improves (e.g., NBO on
Kepler), and vice versa (e.g., NBO on Maxwell and Pascal).

(6) Although we use MM as an example to explain the clus-
tering process, its results are not very encouraging. This is
not because MM does not have significant inter-CTA reuse,
but rather due to three reasons: (1) The inter-CTA data reuse
distance (e.g., the S-region in Figure 8-(A)) greatly surpasses
the cache capacity. Several integer data per thread is already
sufficient to saturate the at most 48KB L1 cache. However,
the matrix size is usually larger than 1K by 1K. Thus an
agent can hardly reuse any data temporally when starting a
new task. One promising solution to reduce the reuse dis-
tance is to adopt the Tile-wise CTA indexing method shown
in Figure 7. However, although we observed increase in hit
rate and reduction in L2 transactions, its complex indexing
calculation leads to significant overhead, bring little perfor-
mance benefit. (2) While temporal locality is hard to lever-
age, spatial inter-CTA locality in MM is also difficult to ex-



ploit. In this MM implementation, there are 32 warps per
CTA, severely limiting the number of the max allowable
agents assigned per SM as well as the inter-agent data reuse.
For instance, there is only one agent allocated per SM on
Fermi, while the other three platforms have two. As dis-
cussed in Section 3.1, the L1/Tex unified caches on Maxwell
and Pascal have two sectors and data sharing is not feasible
among agents on two sectors. This is why little reuse and al-
most no performance gain and L2 transaction reduction are
observed on Maxwell and Pascal.

Overall, CTA-Clustering shows slightly better perfor-
mance on Fermi and Kepler than on Maxwell and Pascal
because (i) Fermi and Kepler have a much larger L1 cache
line, which is vital to spatial data reuse; (ii) Maxwell and
Pascal need to endure the atomic and synchronization over-
head for SM-based binding due to their dynamic CTA to
warp-slots mapping; and (iii) Maxwell and Pascal L1/Tex
unified cache is sectored, which can hinder cross-sector data
reuse among agents.

6. Related Work
GPU Cache Performance. Existing proposals for improv-
ing GPU cache efficiency include thread throttling [31, 51,
52], cache bypassing [12–16, 19, 20], cache line utiliza-
tion optimization [17, 18], replacement methods [35, 53]
and prefetching [32, 36, 44]. However, when discussing data
reuse, these existing proposals have neither demonstrated
and quantified the existence of the inter-CTA locality on real
GPU hardware, nor they have answered whether GPU hard-
ware can exploit such reuse at L1. Additionally, majority of
these studies require architecture modification through sim-
ulation which cannot be immediately deployed on existing
GPUs. As for prefetching, current works [32, 36, 44] fo-
cus on providing intra-CTA solutions such as intra-warp and
inter-warp stride prefetching.
CTA Scheduling. Previous works [8, 10, 11] have focused
on designing efficient warp-level schedulers (i.e., intra-CTA
approaches), e.g., achieving better off-chip memory band-
width [8] or DRAM performance [11]. A few hardware ap-
proaches [22, 27, 31, 33, 36] have been proposed to improve
the default CTA scheduler for efficient scheduling and bet-
ter performance. Although these works provide useful in-
sights on CTA scheduler design, they require to modify the
default CTA scheduler and are validated through simulators.
For example, following the common assumption that inter-
CTA locality should be exploited at the shared L2 level, [22]
proposed to redirect CTA index for exploiting inter-CTA lo-
cality on L2. It distributes CTAs among as many SMs as
possible in a short interval to leverage the reuse in L2; while
our approach is to cluster CTAs with inter-CTA locality to
the same SM for on-chip L1 local reuse. Note that their redi-
rection does not need to take care of the exact mapping from
a CTA to an SM as the L2 is uniformly shared among SMs.
To overcome the reality that the hardware CTA scheduler
is unknown and inaccessible on commercial GPUs, our ap-

proach takes efforts to handle such mapping. [27, 36] mod-
ified the CTA scheduler to simply assign consecutive CTAs
to the same SM to explore locality. They assumed the de-
fault CTA scheduler as round-robin and only considered a
simple one-dimensional assignment scenario. More impor-
tantly, they did not demonstrate whether the inter-CTA local-
ity can be harvested, either spatially or temporally, on L1 and
how to bring instant performance benefits. Note that [27, 36]
primarily focus on how many number of CTAs should be
scheduled to an SM instead of inter-CTA locality. LaPerm
[33] improves the parent-child CTA locality in irregular ap-
plications by modifying the hardware CTA-scheduler to en-
able scheduling strategies such as prioritizing the execution
of the child CTAs and binds them to the SMs occupied by
their parents. We propose a practical software-based solution
that is general to both regular and irregular applications with
the focus of exploiting inter-CTA locality on on-chip SM-
private caches. LaPerm can be integrated into our framework
to address data-related applications. Note that our proposed
techniques are also generally orthogonal to the intra-warp
and inter-warp optimization schemes [16, 34–36].

7. Conclusion
In this paper, we proposed a novel clustering technique for
tapping into the performance potential of a largely ignored
type of locality: inter-CTA locality. We first demonstrated
the capability of the existing GPU hardware to exploit such
locality, both spatially and temporally, on L1 or L1/Tex uni-
fied cache. To verify the potential of this locality, we quan-
tified its existence in a broad spectrum of applications and
discussed its sources of origin. Based on these insights, we
proposed the concept of CTA-Clustering and its associated
software techniques. Finally, we evaluated these techniques
on all modern generations of NVIDIA GPU architectures.
The experimental results showed that our proposed cluster-
ing techniques could significantly boost on-chip cache per-
formance, resulting in substantial overall performance im-
provement.
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