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Abstract—Basis pursuit denoising (BPDN) is an optimization
method used in cutting edge computer vision and compressive
sensing research. Although hosting a BPDN solver on an embed-
ded platform is desirable because analysis can be performed in
real-time, existing solvers are generally unsuitable for embedded
implementation due to either poor run-time performance or
high memory usage. To address the aforementioned issues, this
paper proposes an embedded-friendly solver which demonstrates
superior run-time performance, high recovery accuracy and
competitive memory usage compared to existing solvers. For
a problem with 5000 variables and 500 constraints, the solver
occupies a small memory footprint of 29 kB and takes 0.14
seconds to complete on the Xilinx Zynq Z-7020 system-on-chip.
The same problem takes 0.19 seconds on the Intel Core i7-
2620M, which runs at 4 times the clock frequency and 114
times the power budget of the Z-7020. Without sacrificing run-
time performance, the solver has been highly optimized for
power constrained embedded applications. By far this is the first
embedded solver capable of handling large scale problems with
several thousand variables.

Index Terms—�1-optimization; Basis pursuit denoising;
LASSO optimization; Xilinx Zynq Z-7020; Embedded implemen-
tation

I. INTRODUCTION

Sparse recovery has made inroads within several fields of
research such as computer vision [1], compressive sensing [2]
and medical imaging [3]. By relaxing NP-hard sparse recovery
problems into convex �1-optimization programs, problems that
are previously thought to be intractable are now solvable within
reasonable time complexity. Hosting an embedded real-time
solver is desirable because optimization-based decisions can
be made in-situ instead of deferring to off-line processing.
For example, a facial recognition module that performs �1-
optimization can be hosted alongside an image sensor on
an embedded system-on-chip without the assistance of a
workstation, thus allowing such a device to be deployed for
space or power constrained use cases. A subcategory of sparse
recovery, collectively known as basis pursuit denoising (BPDN)
[4], recovers the solution from measurements corrupted by
Gaussian noise. Therefore, this method is highly relevant for
dealing with real world data and shall be the focus of this
paper.

Solving BPDN problems generally require more time
as compared to problems with closed-form linear algebraic

Implementation codes are accessible at http://x.co/fastBPDN

solutions (i.e. least squares regression). This is because
optimized software libraries for matrix computations, most
notably the Basic Linear Algebra Sub-programs (BLAS), can
be used to accelerate problems formulated using linear algebra,
something that cannot be easily applied to BPDN problems.
The main difficulty with �1-optimization is the minimization
of non-smooth functions. Most solvers minimize a smooth
approximation of the objective function, progressively refining
the solution by solving a sequence of sub-problems approaching
that of the original objective. In this aspect, �1-solvers are
often control-flow rather than data-flow intensive, making
acceleration on parallel hardware a nontrivial task. With this
combination of factors, it is rare to find �1-solvers that are
deployed to solve real-time large scale problems in embedded
devices.

This research shall advance a BPDN solver where com-
putationally intensive bottlenecks are formulated as matrix
operations that can be accelerated either by using BLAS
libraries, or by hardware acceleration on programmable logic.
Compared to existing solvers, this algorithm exhibits superior
run-time performance, recovery fidelity, and competitive mem-
ory footprint, making it an attractive candidate for embedded
implementation. The solver is implemented and benchmarked
on the Xilinx Zynq R© Z-7020 system-on-chip. For a problem
instance of 5000 variables and 500 constraints, the solver takes
0.14 seconds to complete using a single ARM Cortex-A9 CPU
and 7% of slice logic on-board the Z-7020. The estimated upper
bound for power usage is 305 mW, where further power savings
can be achieved by clock gating FPGA logic during inactivity.

II. BASIS PURSUIT DENOISING

Basis pursuit denoising recovers a sparse x ∈ R
n with s

underlying non-zero entries, given a wide matrix A ∈ R
m×n

and the observation y ∈ R
m that has been corrupted by

Gaussian noise (Equation 1). The parameter λ trades signal
fidelity (λ→ 0) for solution sparsity (λ→∞).

x∗ = argmin
x

1

2
||y −Ax||22 + λ||x||1 (1)

A. Unsuitability of Targeting Existing Solvers to Embedded
Platforms

Existing solvers are either time-consuming, memory inten-
sive or unsuitable for parallelization because of inappropriate



embedded design methodology.
1) Floating Point Division: Solver designers commonly

assume that all mathematical operations run in constant time
complexity on the CPU, which is inaccurate because different
operations have critical paths of varying lengths. Between
two n-bit operands, addition takes 1 clock cycle because the
critical path has log2 n levels of logic. Multiplication takes
slightly longer as the critical path is log1.5 n-deep based on the
Wallace tree multiplier, whereas division is the hardest because
there is no trivial circuitry which computes the quotient given
the dividend and divisor. Instead, iterative algorithms such as
Goldschmidt division are used to successively approximate
the quotient, requiring several clock cycles to complete. For
example, the Cortex-A9 has an initiation interval of 10 cycles
for floating point division. The prudent designer would be
wise to avoid frivolous use of division that heavily impacts on
run-time performance.

2) Expensive Transcendental Functions: A handful of
solvers liberally use transcendental functions. For example,
�1-MAGIC [5] uses the log-barrier method to solve BPDN,
but it is rare to find hardware support for computing logarithms.
These functions are often implemented as polynomial approxi-
mations in software that typically take hundreds of clock cycles
per evaluation. Hardware support for transcendental functions
is sporadic, and if available, expensive in run-time. The ARM
Cortex-A9 on-board the Z-7020 has support for floating point
square root that takes 13 clock cycles per computation.

3) Large Software Libraries: Several solvers rely on soft-
ware libraries that provide advanced matrix operations (i.e.
LAPACK). An example would be SparseLab [6] which uses
Cholesky and LU factorization. Hosting such a library on
an embedded platform is memory intensive: a pre-compiled
LAPACK library1 for x86 targets consumes 7.4 MB of program
space, possibly greater for a RISC architecture like ARM.

4) Inefficient Memory Usage: A number of solvers achieve
speed up by pre-computing ATA. These solvers are likely to
run out of memory when handling problems with thousands
of variables because memory usage scales quadratically with
n. CGIST [7] and L1-LS [8] caches AT along with A, and
ADMM LASSO [9] saves the LU factorization of A, making
them consume an extra O(mn) memory.

5) Lack of Parallelism: Some solvers are control-flow
intensive, complicating any attempts of pipelined processing
or data-flow acceleration. Examples would be TFOCS [10]
and SPARSA2 [11].

B. Poor Recovery Performance of Orthogonal Matching Pursuit

Because hosting an embedded �1-solver is challenging,
the majority of FPGA systems that require �1-optimization
[12]–[19] use orthogonal matching pursuit (OMP) [20] to
approximately solve the BPDN problem. Since OMP is
basically a greedy heuristic, implementation is straightforward
and the run-time is short provided x is very sparse. Although
OMP has a recovery accuracy that rivals standard �1-solvers

1http://icl.cs.utk.edu/lapack-for-windows/lapack/

for Gaussian A, performance is poor for correlated matrices.
A comparison of the recovery accuracy between BPDN and
OMP for problems with non-random A can be found in [21].

C. Questionable Scalability of OMP

OMP has good run-time performance under the assumption x
is highly sparse, which is unnecessarily pessimistic because an
�1 problem is recoverable as long as x is O(

√
m)-sparse. Since

the run-time of OMP scales quadratically with sparsity, these
solvers are only capable of handling problems with low sparsity.
The timings reported by studies that implement OMP on FPGA
are therefore highly optimistic because the sparsity (defined to
be the fraction s

n ) used are close to 0. The following are some
sparsity parameters: 0.03 (n = 256) [12], 0.04 (n = 128) [13],
0.04 (n = 128) [15], 0.008 (n = 255) [16] and 0.04 (n = 128)
[18]. Given that most of the publications reported timings for
n ≤ 256, it is doubtful whether these solvers will gracefully
scale with problem size, not to mention when problem sparsity
increases.

III. PROPOSED BPDN SOLVER

To address the constraints of implementing a BPDN solver
for real-time embedded applications, the proposed solver is
formulated such that computationally intensive bottlenecks are
amenable towards efficient pipelined processing or data-flow
parallelization. The use of transcendental functions is eschewed
and floating point divisions are kept to a minimum. Economical
memory usage is ensured by in-place manipulation of A and
judicious pre-computation of intermediate results.

A. Overview

At all times the solver maintains a prediction of the set of
non-zero entries, denoted Ω, in the sparse x. At the beginning,
x is initialized to a rough estimate and Ω is updated from
this estimate. After which, the algorithm iterates between two
phases: during the first phase, Equation 1 is solved with the
additional constraint that entries indexed by Ωc are 0. In the
second phase, Ω is intelligently updated based on the current
estimate of x, gradually introducing more correct non-zeros
after each iteration. The algorithm iterates until x converges
(Algorithm 1).

Algorithm 1: Proposed Solver Overview
Input : y ∈ R

m,A ∈ R
m×n, λ ∈ R

+ from Equation 1, number of
sparse entries num nonzeros, convergence parameter η

Output : Optimal x∗ satisfying Equation 1

begin

x← (
ATy

)
./ diag

(
ATA

)
;

[∼,sorted index] ← sort(|x|,1,′descend′);
Ω← sorted index(1:num nonzeros);
idx← sorted index(1);

while x has not converged do
x← EstimateFromNonzeros (y,A,x, λ,Ω, η);
Ω← GuessNonzeros (y,A,x, λ,Ω, idx, num nonzeros);

return x;



B. Initializing x and Ω

An approximate solution to Equation 1 is x =
(
ATA

)†
ATy.

If the problem is designed such that A has mutually in-
coherent columns (as that would have been the case for
compressive sensing applications), ATA would be strongly
diagonal and the pseudoinverse can be approximated as
diag

(
1 ./ diag

(
ATA

))
. The i-th entry of x can be efficiently

computed as aT
i y

aT
i ai

by using vectorization. Ω is populated by
picking the largest entries of x sorted by magnitude.

C. Phase I: Solving for x Given Ω

Given that only entries indexed by Ω are non-zero, x can be
incrementally solved by minimizing Equation 1 one variable
at a time. Equation 1 is differentiated with respect to the
perturbation Δxi (where xi = xi0 + Δxi, i ∈ Ω and y0 =
y −A(:,Ω)xΩ0) to give:

df

dΔxi
= −yT

0 ai + aTi aiΔxi + λ sign(xi0 +Δxi) (2)

The optimal perturbation Δx∗
i is obtained when Equation 2

vanishes, or due to the gradient discontinuity introduced by
the modulus term, when the derivative changes sign at Δxi =
−xi0. Determining x∗

i can be reasoned as follows: Setting
λ = 0 would mean only the quadratic term is minimized,
and Δx∗

i,λ=0 =
yT
0ai

aT
i ai

. Setting λ = ∞ would mean only the
modulus term is minimized, and Δx∗

i,λ=∞ = −xi0. Thus, Δx∗
i

lies between Δx∗
i,λ=0 and Δx∗

i,λ=∞, and can be computed from
Equation 3.

Δx∗
i =

⎧⎨
⎩
min

(
λ+yT

0ai

aT
i ai

,Δx∗
i,λ=∞

)
,Δx∗

i,λ=0 ≤ Δx∗
i,λ=∞

max
(−λ+yT

0ai

aT
i ai

,Δx∗
i,λ=∞

)
, otherwise

(3)
⇒ Δx∗

Ω = Δx∗
Ω,λ=0 + sign(Δx∗

Ω,λ=∞ −Δx∗
Ω,λ=0) .

∗

min
(
λ ./ diag

(
AT

(:,Ω)A(:,Ω)

)
,
∣∣Δx∗

Ω,λ=∞ −Δx∗
Ω,λ=0

∣∣)

(4)

By applying the identities max(a, b) ≡ −min(−a,−b) and
min(a, b) ≡ min(a−x, b−x)+x, Equation 3 can be vectorized
to give Equation 4. If the matrix A remains constant from prob-
lem to problem (commonly the case for compressive sensing
applications), the reciprocal 1

aT
i ai

can be precomputed to avoid
performing expensive divisions. The optimal perturbations of
every variable, Δx∗

Ω, are aggregated to update x and repeated
until convergence. Due to the fact that one variable is perturbed
at a time, applying all changes at once does not yield the
optimal solution, therefore the change is weighted to ensure
convergence, i.e. xΩ ← xΩ + η Δx∗

Ω, 0 < η < 1. Algorithm 2
summarizes what has been mentioned so far. Note that b is loop
invariant and can be pre-computed in the program preamble.

Algorithm 2: EstimateFromNonzeros(y,A,x,λ,Ω,η)
Input : y ∈ R

m,A ∈ R
m×n, current estimate of x ∈ R

n, λ ∈ R
+

from Equation 1, indices of sparse entries Ω, convergence
parameter η

Output : Optimal solution to Equation 1 among the family of x with
non-zero entries in Ω

b← diag
(
ATA

)
;

begin

c← AT
(:,Ω)

y;

while xΩ has not converged do

Δx∗
Ω,λ=0 ← c−

(
AT

(:,Ω)
A(:,Ω)

)
xΩ;

Δx∗
Ω,λ=∞ ← −xΩ .∗ bΩ;

Δx∗
Ω ←

(
Δx∗

Ω,λ=0 + sign
(
Δx∗

Ω,λ=∞ −Δx∗
Ω,λ=0

)
.∗

min
(
λ ./ bΩ,

∣∣∣Δx∗
Ω,λ=∞ −Δx∗

Ω,λ=0

∣∣∣
) )

;
xΩ ← xΩ + η Δx∗

Ω;

xΩc ← 0;
return x;

D. Phase II: Updating Ω Given x

The current Ω may not contain all the non-zero entries of
the underlying true solution, therefore phase two refines Ω
based on the current x. The gist is to optimize Equation 1
with respect to (xi,xj) with the rest held constant. A large
magnitude for xi/xj indicates a higher probability that the
respective variable should be included in Ω. To solve (xi,xj),
consider λ = 0 where Equation 1 simplifies to the �2-penalty
f(xi, xj) = 1

2‖y − Ax‖22. Letting b = −ATy and a0 =

Ax − aixi − ajxj , the global minimum occurs at (x�2
i , x

�2
j )

satisfying Equation 5, a linear system that can be easily solved.

∂f

∂xi
= ‖ai‖2x�2

i + (ai · aj)x�2
j + a0 · ai + bi = 0

∂f

∂xj
= (ai · aj)x�2

i + ‖aj‖2x�2
j + a0 · aj + bj = 0 (5)

When the �1 penalty term is included, the minimum point
shifts from (x�2

i , x�2
j ) to (x�2�1

i , x�2�1
j ) according to Equation 6.

‖ai‖2x�2�1
i + (ai · aj)x�2�1

j + a0 · ai
+ bi + λ sign

(
x�1
i

)
= 0

(ai · aj)x�2�1
i + ‖aj‖2x�2�1

j + a0 · aj
+ bj + λ sign

(
x�1
j

)
= 0 (6)

If x�1
j and x�1�2

j are opposite in signs, xj is not a candidate
for Ω. xi is fixed to be the entry with the largest magnitude
from the initialization in Section III-B, and xj is independently
solved for all variables. Ω is subsequently updated by selecting
the largest magnitudes among x�1�2 . Algorithm 3 outlines what
has been mentioned. Due to loop invariance, b, c, and d can
be pre-computed in the program preamble.

IV. BPDN SOLVER BENCHMARK

The proposed solver is benchmarked against a range of state-
of-the-art solvers for run-time performance, recovery accuracy



Algorithm 3: GuessNonzeros(y,A,x,λ,Ω,idx,num nonzeros)
Input : y ∈ R

m,A ∈ R
m×n, current estimate of x ∈ R

n, λ ∈ R
+

from Equation 1, indices of sparse entries Ω, index of the entry
with the largest initial magnitude idx, number of sparse entries
num nonzeros

Output : Optimal solution to Equation 1 among the family of x with
non-zero entries in Ω

b← ATA(:,idx);
c← ATy;
d← diag

(
ATA

)
;

begin

a← AT
(
A(:,Ω)xΩ

)
;

x�2 ← b .∗ (aidx − (b .∗ x)− cidx)− didx (a− (d .∗ x)− c);
x�2�1 ← x�2 + λ sign (xidx)b− λ didx sign

(
x�2

)
;

xnonsparse ← (
x�2 .∗ x�2�1

)
> 0;

[∼,sorted index] ← sort
(∣∣xnonsparse .∗ x�2�1

∣∣ , 1, ′descend′);
Ω← sorted index(1:num nonzeros);
return Ω;

and peak memory usage. Default settings recommended by
respective authors are used. MEX-files are used if provided
or instructed for compilation. The benchmark runs on an
Intel R© CoreTM i7-2620M (2.7 GHz) machine with 8 GB
memory. MATLAB R2011b (7.13.0.564 64-bit) is used as
the benchmarking environment.

A. List of Solvers

The following solvers are included in the benchmark:
1) ADMM LASSO [9]: Alternating Direction Method of

Multipliers efficiently solves large scale problems by processing
sub-problems across distributed computing resources.

2) CGIST [7]: Conjugate Gradient Iterative
Shrinkage/Thresholding solves by using a forward-backward
splitting method with an acceleration step.

3) FPC-BB [22]: Fixed-Point Continuation is advertised
for large scale image and data processing. The solver uses
Barzilar-Borwein steps to accelerate convergence.

4) GLMNET [23]: Generalized Linear Model for elastic-
net regularization is the the reference algorithm used to
implement the MATLAB lasso function.

5) GPSR-BB6 [24]: Gradient Projection for Sparse
Reconstruction uses special line search and termination tech-
niques to yield faster solutions as compared to SparseLab [6],
�1-MAGIC [5], bound-optimization method [25] and interior-
point methods. Similar to FPC-BB, Barzilar-Borwein steps
are used to accelerate convergence.

6) HOMOTOPY [26]: Homotopy refers to a class of methods
that solves BPDN by solving a sequence of intermediate
problems with varying λ.

7) L1-LS [8]: L1-LS is an interior point method for large-
scale sparse problems, or dense problems where A contains
structure that admits fast transform computations.

8) OMP [20]: Although Orthogonal Matching Pursuit
approximately solves BPDN, the recovered accuracy for
Gaussian A is comparable to �1-solvers and has excellent
run-time performance. It is therefore an attractive candidate
for FPGA implementation.

9) SESOP PACK [27]: Sequential Subspace Optimization
solves large-scale smooth unconstrained optimization.

10) SPAMS [28]: Sparse Modeling Software is a MAT-
LAB toolbox for sparse recovery problems. Its C++ library
makes use of the Intel Math Kernel Library for floating point
computations.

11) SPARSA2 [11]: Sparse Reconstruction by Separable
Approximation is an iterative method where each step is an
optimization sub-problem involving a separable quadratic term
plus the sparsity-inducing term.

12) TFOCS [10]: Templates for First-Order Conic Solvers
provides a set of modules that can be mixed-and-matched to
create customized solvers.

13) TWIST2 [29]: Two-Step Iterative Shrinkage /
Thresholding implements a nonlinear two-step iterative version
over the original iterative shrinkage/thresholding procedure to
provide faster convergence for ill-conditioned problems.

14) YALL1 [30]: Your Algorithms for L1 is a suite of
solvers that uses alternating direction algorithms, with the
option of enforcing joint sparsity among related variables.

B. Test Input

For various m, n and s, the entries of A are drawn from the
standard normal distribution. Positions of the non-zero entries
in x are randomly picked, and the values follow a uniform
distribution in the interval (−1, 1). The ideal measurement
y = Ax is corrupted with scaled Gaussian noise of zero mean
and 0.1 variance.

C. Run-Time Performance

The overall run-time complexity of the proposed solver is
O(k1(mn + k2s)), where k1 is the number of iterations in
Algorithm 1, and k2 is the number of iterations in Algorithm 2.
From Figure 1, it is evident that the proposed solver has superior
run-time performance over state-of-the-art BPDN solvers
due to extensive use of matrix multiplication and vectorized
operations. For large problems, the run-time performance of
the proposed solver is at least ten times that of the next fastest
solver.

D. Accuracy of Recovered Results

For varying problem sparsity, x is recovered and debiased.
Recovery accuracy is expected to decrease as problem sparsity
increases because the problem progressively enters the ill-
conditioned region of the Donoho-Tanner phase transition
diagram [31]. The error measure between the debiased solution
xrecovered and the underlying true solution xactual is given
by ‖xactual−xrecovered‖2

n . From Figure 2, the proposed solver has
superior recovery accuracy compared to all the solvers.

E. Memory Usage

The proposed solver requires O(n+ sm+ s2) memory in
addition to the inputs A and y, making the implementation
memory efficient if the underlying x is sparse. The solver
does not require advanced linear algebraic decomposition, (i.e.
LU, Cholesky or singular value decomposition), hence there
is no hidden memory requirement whatsoever. Because the
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solver caches pre-computed values, its memory footprint is
not the lowest but nevertheless remains as one of the highly
competitive among the benchmarked (Figure 3).

V. IMPLEMENTATION ON THE XILINX ZYNQ Z-7020 SOC

The solver is implemented on the ZedBoard development
board (Rev. C), comprising of a ZynqTM-XC7Z020-CLG484-
1 All Programmable System-on-Chip with 512 MB DDR3
memory. The Z-7020 chip features a dual ARM R© CortexTM-
A9 MPCoreTM that is tightly coupled with the ArtixTM-7 FPGA
fabric. Each core has separate 32 kB L1 instruction and data
caches, and both share a unified 512 kB L2 cache. Matrix and
vector operations are efficiently handled by BLAS libraries
that use the NEONTM SIMD engine on-board each CPU.
Custom hardware data-paths can be instantiated within the
FPGA fabric if hardware acceleration is necessary. The CPU
is clocked at 667 MHz and the FPGA fabric at 125 MHz. All
implementations are benchmarked with respect to the problem
size of m = 500, n = 5000, s = 75. The reference MATLAB
solver takes 0.19 seconds to complete on the i7-2620M.

A. Eigen BLAS Library

Eigen2 is an open-source library providing optimized as-
sembly routines for matrix operations. The library supports
hardware vectorization on ARM targets. Run-time benchmarks
indicate that Eigen outperforms the Intel Kernel Math Library
for operations such as y← αx+βy, y← Ax and Y ← AAT,
therefore this library has been chosen to replace MATLAB’s
BLAS library. The Eigen-compiled executable occupies 29
kB of .text memory, 40 kB of .bss memory and takes 0.30
seconds to complete. The compact .text program size allows
the solver to be fully loaded within the L1 instruction cache,
ensuring fast program execution without expensive memory
fetches. Pre-computed .bss data structures used by the solver
also fits economically within the L2 cache.

B. Accelerating AT
(:,Ω)A(:,Ω) Using Programmable Logic

Table I shows the run-time summary of the solver running
on a single Cortex-A9 CPU without FPGA acceleration. 89%
of the overall run-time is spent on executing Eigen library
code. Further profiling using the SCU3 timer reveals that the
matrix operations AT

(
A(:,Ω)xΩ

)
and AT

(:,Ω)A(:,Ω) occupy
34% and 55% of the run-time respectively. AT

(
A(:,Ω)xΩ

)
cannot be further accelerated because for every entry of
A that is read from memory, one multiply-and-accumulate
(MAC) is performed, making the operation susceptible towards
I/O-boundness. A ballpark estimate illustrates the problem:
The maximum read bandwidth from DDR memory to the
programmable logic over an AXI HP interface is 1.2 GB/s
[32, §22.3]. This means it takes 8.3 ms to deliver A to the
programmable logic. The average number of fetches for A
per run is around 10, giving a paltry speed-up of 1.23×. It is
possible but infeasible to utilize all the four AXI HP buses on
the Z-7020 to achieve a 4.9× speed-up as this would deprive

2http://eigen.tuxfamily.org/
3Snoop control unit

Table I
RUN-TIME PROFILING RESULTS ON THE Z-7020 USING GPROF

% Total Time Function

45.8 Eigen::general_matrix_vector_product
40.9 Eigen::gebp_kernel
10.4 Preamble of fastBPDN
1.47 Eigen::gemm_pack_lhs
0.95 Eigen::gemm_pack_rhs
0.48 Rest of the code

Table II
MAC ENGINE HARDWARE SPECIFICATIONS

Operating Frequency 125 MHz
Power 55 mW

Resource Usage
Slice Logic 13735 (7%)

Block RAM (RAMB36E1) 48 (34%)
DSP Slices (DSP48E1) 46 (21%)

Timing

Speed-Up 7.00×
Initiation Interval 224680 cycles

Latency 224679 cycles
Worst Negative Slack 0.280 ns

Worst Hold Slack 0.052 ns
Worst Pulse Width Slack 2.750 ns

other hardware modules of any routing resources to interface
with the CPU. On the contrary, AT

(:,Ω)A(:,Ω) is compute-bound

because s(s+1)
2 MACs have to be performed for every s entries

read, making it an excellent candidate for FPGA acceleration.
Figure 4 shows a hardware engine capable of parallelizing

AT
(:,Ω)A(:,Ω) by pipelining 9 MACs per clock cycle. The matrix

AT
(:,Ω)A(:,Ω) is partitioned into 3 × 3 sub-matrices, and the

engine computes all elements of a sub-matrix in parallel. Since
AT

(:,Ω)A(:,Ω) is symmetric, sub-matrices lying on and above the
main diagonal are computed on the FPGA, and entries beneath
the diagonal are populated by replicating above-diagonal entries
on the CPU. Inputs from A(:,Ω) are served over the AXI ACP
bus and results are written over the same interface. Transactions
over the AXI ACP are also cache coherent because the bus
has access to the SCU that governs both caches. Prior to
operation, the engine is configured by the CPU over the
AXI GP interface.

Figure 5 shows the post-routed layout consisting of both the
Cortex-A9 CPU and MAC engine, and Table II details the
engine specifications. The MAC engine provides a seven-fold
speed-up over the software implementation of AT

(:,Ω)A(:,Ω),
while utilizing a modest 7% of slice logic available on the Z-
7020. Although it is possible to increase the hardware speed-up
by increasing the sub-matrix size, a larger multiplier mesh has
to be synthesized. By running the accelerator in parallel with
CPU code, the solver takes 0.14 seconds to complete the test
instance, a speed-up of 26% over running on the i7-2620M.
Although the speed-up may seem modest, keep in mind that
the clock frequency of the Cortex-A9 on-board the Z-7020
(667 MHz) is a quarter of i7-2620M (2.7 GHz), and the power
consumption of the i7-2620M (35 W4) is 114 times that of the
Z-7020 (305 mW5). Hence, the solver implementation on the
Z-7020 has been optimized for low power applications without

4http://ark.intel.com/products/52231
5http://www.arm.com/products/processors/cortex-a/cortex-a9.php
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Figure 3. Peak memory usage for various problem sizes, where A ∈ R
m×n and there are s non-zero entries in x
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Figure 4. Hardware engine comprising of 9 floating point MAC units

sacrificing run-time performance. Note that the Z-7020’s power
figure is pessimistic as the hardware logic is only active for
17% of the final run-time; clock gating can be used to power
down FPGA logic during inactivity.

VI. CONCLUSION

With advances in chip technology, parallel computing
structures are increasingly becoming ubiquitous in modern
embedded processors. Examples of embedded architectures
that already feature SIMD instructions include the ARM

Figure 5. Post-routed layout on the Z-7020 using Vivado 2013.2 (Legend:
Yellow – MAC engine, brown – ARM Cortex-A9 and DDR3 memory bus,
green – AXI ACP interconnect logic, blue – AXI GP interconnect logic,
red – reset logic)



(NEON), the Power Architecture (AltiVec) and the Intel Atom
(SSE). Hybrid CPU-FPGA system-on-chips, like the Xilinx
Zynq-7000 Extensible Processing Platform and Altera’s Hard
Processor System, are also becoming the norm. Therefore,
algorithms intended to be executed on an embedded target
should be designed to have as much data-flow parallelism as
possible, so as to exploit these parallel hardware.

In this paper an embedded-friendly BPDN solver is pro-
posed. Compared to state-of-the-art solvers, the proposed
solver exhibits superior run-time performance by formulating
compute-intensive routines as matrix-matrix and matrix-vector
multiplications, both of which are efficiently handled by BLAS
libraries. Since these libraries are tuned to use architectural-
specific SIMD instructions, computations are guaranteed to
execute as efficiently as possible. Program memory running
on the Cortex-A9 CPU is economical enough to fit within
the L1 cache, and data structures within the L2 cache. The
bottleneck of the solver is implemented in programmable
logic which achieves a seven-fold speed-up over software
code running on the embedded processor. Without sacrificing
run-time performance, the embedded implementation on the Z-
7020 is at least 114 times as power efficient as the MATLAB
prototype on the i7-2620M.

APPENDIX

A. Mathematical Notation

1) Operators: .∗ and ./ denote element-wise multiplication
and division respectively. If a scalar operates with a vector,
the scalar value acts on all the vector entries. |x| denotes
element-wise magnitude, and (x > 0) denotes element-wise
comparison that returns a vector where 1 if true, otherwise 0
entry-wise. min (x,y) picks the minimum of the two in an
entry-wise manner, and correspondingly for max.

2) Matrix/vector indexing: Given a matrix A and a set of
indices Ω, A(:,Ω) is analogous to the MATLAB expression
A(:,Ω), which returns a matrix comprising of columns
indexed by Ω. For a vector x, xΩ is another vector which
is a subset of x indexed by Ω. For example, given a vector
v = [3, 1, 4, 1, 5, 9] and Ω = [2, 3, 5], vΩ = [1, 4, 5],vΩc =
[3, 1, 9]. If |Ω| = 1, xΩ is interpreted as a scalar.
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