
CLRFrame: An Analysis Framework for Designing Cross-Layer Reliability in
Embedded Systems

Siva Satyendra Sahoo, Bharadwaj Veeravalli
Department of ECE

National University of Singapore
Singapore

satyendra@u.nus.edu, elebv@nus.edu.sg

Akash Kumar
Center for Advancing Electronics Dresden

Technische Universität Dresden
Dresden, Germany

akash.kumar@tu-dresden.de

Abstract—Continued transistor scaling and increasing power
density have led to considerable increase in fault rates in silicon
nanotechnology-based real-time systems. Instead of fixing ev-
erything at the hardware layer, cross-layer fault tolerance tech-
niques present a more cost-efficient methodology for adapting
to such increased fault rates. The effectiveness (Coverage, Fault-
Masking, and Recovery) and overheads (Execution time, Energy
and Cost) of each fault-tolerance technique vary with the
layer and the frequency at which it is implemented. Therefore,
appropriate modeling of fault-mitigation methods is necessary
for efficient cross-layer design space exploration (DSE). To
this end, we propose a first-order framework for analyzing
the effects of implementing fault-tolerance across multiple
layers. We also propose a Markov-chain based methodology for
analytical modeling of fault-mitigation methods and their inter-
layer interaction. As a case-study, we model some generic fault-
mitigation methods and provide detailed modeling of typical
application execution involving fault-mitigation at different
layers.

Keywords-Cross-layer Resilience, Real-time systems, Fault-
Tolerance

I. INTRODUCTION

Technology scaling and architectural innovations have
been the driving force behind the increasing ubiquity of
embedded systems. However, these approaches have also
led to significant increase in Soft Error Rate (SER) of
logic circuits [1]. While the logical masking effect re-
mains unaltered, electrical masking effect has reduced due
to scaling down transistor size and supply voltage [2].
Similarly, deeper pipelines used for enabling higher clock
speed have resulted in the reduction of latching-window
masking, leading to even higher SER in microprocessors.
Therefore, extracting increasing usable performance out of
embedded systems requires building resilient systems out of
increasingly unreliable hardware [3]. Traditional approaches
to fault-aware design adopted a phenomenon-based approach
that focuses on mitigating all physical faults at the hardware
layer. However, such an approach is becoming increasing
infeasible due to the increasing complexity, higher SER and
tighter cost and energy constraints of embedded systems.

In contrast, cross-layer design approach involves dis-
tributing fault-mitigation activities to several layers of the
system stack [4]. This entails utilizing the information and
capabilities of each layer to provide adequate overall system
resilience. Such an approach can reduce fault-mitigation
effort at hardware layer leading to more cost-effective de-
signs. Designing an effective cross-layer resilience strategy
requires formulating efficient methods for cross-layer design

space exploration (DSE)– both at design-time and run-time
for finding the right selection and configuration of fault-
mitigation methods that should be implemented at each
layer to meet the system-level goals and constraints. Given
the increasing design space due to the choices of fault-
mitigation methods and configurations at each layer, appli-
cation complexity, hardware variations etc., non-traditional
DSE methods such as Evolutionary Computing and Ran-
domized Algorithms are being increasingly used in related
Electronic Design Automation (EDA). The effectiveness of
such methods hinges on the efficient estimation of perfor-
mance metrics and associated overheads for a set of design
decisions. For example, in Genetic Algorithms (GA) the
computation time and accuracy of evaluating the fitness of
each individual of a generation can have a significant effect
on the overall DSE performance. Therefore, efficient evalu-
ation of design decisions from early stages of DSE can lead
to the faster design of cost-effective error-resilient systems.
To this end, we propose a methodology for designing cross-
layer resilience for embedded systems.
Contributions: Our contributions can be listed as below:
• We propose a first-order framework for comparing dif-

ferent cross-layer designs. The framework includes the
effect of implicit fault-masking at different layers along
with explicitly implemented fault-mitigation methods to
estimate system-level performance metrics.

• We propose a Markov-chain based methodology for
analytical modeling of fault-mitigation methods. We
demonstrate the usage of this model by modeling some
application-agnostic fault-mitigation methods.

• We extend our proposed modeling methodology to ac-
count for inter-layer interactions of fault-mitigation im-
plemented at different layers of the system stack.
The rest of the paper is organized as follows: In Section II

we provide a brief background of cross-layer reliability and
survey some state-of-the-art approaches to designing cross-
layer reliability. The proposed framework for cross-layer
reliability analysis is discussed in Section III. In Section
IV we provide details of Markov-chain based analytical
modeling methodology. We conclude the paper in Section
V by providing the scope for future work.

II. BACKGROUND

Traditional single-layer reliability approaches focus on
mitigating all physical faults at the circuit or the hardware
layer. A phenomenon-based approach is usually used, i.e.,
each fault mechanism (NBTI, EM, Single Event Upsets



(SEU) etc.) is mitigated separately to provide an error-
free hardware platform. Although it provides a convenient
abstraction to the software developer, the rising costs –
area and power – for mitigating the effects of increas-
ing fault rates can make such an approach infeasible for
many applications. Therefore, fault-mitigation needs to be
implemented at multiple layers of the system stack. In [5],
the authors provide a brief survey of such techniques at
different abstraction layers. Designing cross-layer reliability
involves finding the right selection and configuration of
fault-mitigation methods that should be implemented at each
layer to meet the system-level goals and constraints.

A. Cross-layer Reliability
In contrast to the single-layer phenomenon-based de-

sign approach, the cross-layer approach provides a more
application-specific and cost-efficient method for reliability-
aware system design. Since the fault-mitigation activities are
not limited the hardware layer, an appropriate combination
of methods that meets the design goals and constraints can
be implemented. As discussed in [6], implementing separate
fault tolerance stages at different layers can result in re-
duced power and area overheads. For example, TMR, which
provides complete protection from single errors, has more
than 200% area and power overheads. However, error/fault
detection by Dual Modular Redundancy (DMR) usually
has less (100%) overhead. Therefore, an implementation
that uses DMR-based hardware error detection and software
recovery methods can reduce overheads. Further, distributing
fault tolerance tasks to higher layers enable the designer to
take advantage of the masking effects of more layers [7].
In [4], the authors outline a methodology for implementing
cross-layer resilience. Additional subsystems Error handler
routine, Resource Map, Hardware Configuration Routine,
and Task Scheduler in the operating system are used
to trigger the appropriate fault-tolerant technique at the
appropriate layer. In [8], the authors proposed new tech-
niques – Error-aware placement and Failure prediction – for
globally-optimized cross-layer resilience. Similarly, in [9],
the authors propose various cross-layer techniques – from
microarchitecture to application level – for both general
purpose processor-based and reconfigurable processor-based
embedded systems. In all methods presented, every layer
takes advantage of the information available at its adjacent
layers. In [6], the authors present a cross-layer approach
providing resilience in multimedia applications. Specifically,
the proposed method uses hardware layer for error detection,
middleware for Drop and Forward recovery and application
layer for error resilient application design. In [10], the au-
thors provide a heuristic-based methodology for combining
several hardware and software techniques – Circuit-level
hardening, logic-level parity checking, microarchitectural
recovery, and ABFT – to provide soft-error tolerance in
processor cores.
Most of the state-of-the-art cross-layer reliability techniques
lack a holistic approach and do not consider all reliability
metrics – Functional, Timing and Lifetime. For instance, the
approach described in [10] involves maximizing the fault-

Run-time 

DSE

Cross-layer fault-

tolerance design

Design-time 

DSE

F
au

lt
-m

it
ig

at
io

n
 m

et
h

o
d

s

Design-time 

Models

Run-time 

Models

Applications, 

Architecture, 

Specifications

M
o

d
el

in
g

 a
n

d
 

ch
ar

ac
te

ri
za

ti
o

n

Requirements,

System state

(run-time)

Select and 

configure 

methods

Dynamic 

adaptation

Figure 1: Cross-layer reliability design methodology

mitigation by software layers. Usually, software mitigation
of hardware faults – based on temporal redundancy – incurs
lesser area/power overheads. However, the increased execu-
tion time can lead to faster aging in the long run. Therefore,
systems that have design constraints of system lifetime
have to use additional processing units. This can offset
some of the area/cost advantages. In [11], the authors show
the adverse effects of increasing checkpoints, a temporal
redundancy-based method, on permanent fault tolerance.
Further, barring a few application areas that require high
reliability in all three measures, most applications, especially
soft real-time systems, can tolerate some degradation in
each or all of the metrics. We envision a more application-
specific and holistic methodology, as depicted in Figure 1,
for incorporating cross-layer reliability into system design.
Fault-mitigation methods need to be modeled for their
characterization. Such models, along with a cross-layer DSE
framework, can be used during design-time to determine the
feasibility of the method for a particular application, estimate
the range of variations in system state that the method
can handle, compare different methods and determine the
appropriate configuration of various methods at different
layers from an early stage in the design phase. Similarly,
run-time models of such mitigation methods can be used to
adapt the methods for changing system state or switch to
other fault-mitigation methods.

III. CROSS-LAYER FAULT-MITIGATION FRAMEWORK

Cross-layer fault-tolerance entails distributing fault miti-
gation activities among different layers, in order to achieve
system-level objectives within the constraints. Fault miti-
gation can be broadly divided into two stages – Detec-
tion/Validation and Tolerance. Detection methods can be
characterized by their latency (TFD), coverage (CovFD) and
the associated power and area overheads (OvFD). Similarly,
a tolerance technique can be characterized by reconfigura-
tion latency (TFT ), and associated overheads (OvFT ). For
instance, Dual Modular Redundancy (DMR) in hardware
usually has a latency equal to that of the comparator, 100%
power and area overheads and a coverage equivalent to 1
- (fraction of faults affecting both modules simultaneously).
Similarly, Triple Modular Redundancy (TMR) in hardware
has a reconfiguration latency equivalent to the latency of the
voter module, and 200% power and area overheads. Each
fault mitigation method, a combination of detection and



D
et

ec
ti

on ���

�����

����
�

�����
��

, ��

To
le

ra
nc

e

���

����

������
�������

�	�	

Fault Mitigation

Figure 2: Characterization of fault-mitigation methods

tolerance methods can be characterized as shown in Figure 2.
Masking factor (MFFM ) is the ratio of error rate with fault
mitigation (λ′) to that without (λ). CDFFM denotes the
cumulative distribution function (CDF) of execution latency
and OvFM denotes overheads in area and power. These three
quantities, as functions of λ and other characteristics shown
inside the Fault Mitigation block in Figure 2, can be used
to estimate the performance metrics of the method and also
form the interface for plugging the method into the overall
cross-layer analysis framework.

With a cross-layer approach, the convenient abstractions
of single-layer design cannot be used. Designing for system-
level fault-tolerance must incorporate effects of fault mit-
igation at all layers. Hence, appropriate resilience inter-
faces are required for effective transfer and usage of inter-
layer information. Figure 3 shows a framework with such
interfaces for cross-layer fault-tolerance design. Functional
reliability, the rate of errors during application execution, can
be determined by considering the masking factor, MFX , of
each layer (X). It consists of implicit fault masking at that
layer, MFX0 and the masking effect due to fault mitigation
methods implemented at that layer. Assuming all detected
errors/faults are mitigated, the product of error rate at X ,
i.e. λX , and the coverage of detection methods at layers
below X , i.e. CovX denotes the masking effect due to
detection at layers below X . Similarly, (1−MF ′X0).CovX
is the masking due to detection methods used at layer X .
MF ′X0 is the net effect of MFX0 and λX .CovX . Please note
that simple proportionality relations have been used among
various quantities only as an illustration. Actual implemen-
tation will involve more complex method-specific relations
among various quantities. Timing reliability of the system,
quantified by the probability of execution completion before
a deadline, can be obtained from the CDF of execution
latency (CDFX ) due to mitigation methods implemented
at each layer X . Similarly, the overhead information is
essential for computing overall system performance and
satisfying the design constraints. The average execution
time, Tavg(X), can be used to quantify metrics such as
throughput, energy consumption, system lifetime etc. Sim-
ilarly, area and power overheads information can be used
to satisfy system constraints. The three interfaces described
here provide methods to collect appropriate information for
cross-layer analysis. The structures necessary for carrying
the information vary with each layer. For instance, while λX
provides a metric to quantify the effect of fault-mitigation at
one layer on all upper layers, the granularity of structures for
capturing the effect of λX depends on the designer and the
intended application. In [12], Instruction Vulnerability Index
and Function Vulnerability Index were used to incorporate

Figure 3: Framework for cross-layer fault-tolerance analysis

the effect of λX and implicit masking effects (MFX0) at
the architecture and software layers. Similarly, structures
suitable for each interface can be used to enable inter-layer
information.

IV. MODELING CROSS-LAYER FAULT-MITIGATION

A. Modeling Fault-Mitigation methods
Designing cross-layer reliability involves implementing

various fault-mitigation methods at different layers of the
system stack. To select appropriate methods and their con-
figurations for each layer, the effect of implementing each
method needs to be estimated. To this end, we use analytical
models for computing the following performance metrics:
• Functional Reliability: It refers to the probability of

getting functionally correct outputs in the presence of
faults. As shown in Figure 2, the functional reliability
is a function of the coverage of the detection method
implemented and the fault/error rate.

• Timing Reliability: It refers to the probability of the
execution completing within the specified deadline.
Timing reliability can be determined from the cumu-
lative distribution function of the execution time.

• Overheads: We limit our analysis to the determine the
following overheads – cost (quantified by the physical
area of implementation), power, energy and average ex-
ecution time Tavg . Lifetime reliability can be estimated
as a function of Tavg .

We model each application-agnostic fault-mitigation method
discussed in this article as an absorbing Markov-chain. This
enables the computation of Tavg and the cumulative distri-
bution function (CDF ) of the execution time analytically.
For an absorbing Markov-chain, the transition matrix P can

be represented as P =

[
I 0
R Q

]
, where I is the identity

sub-matrix, R is the transition sub-matrix from transient to
absorbing states and Q is a n× n transition sub-matrix for
transient states only [13].

The fundamental matrix F can be obtained as F =
(I −Q)−1. Each entry Fi,j represents the expected number
of periods that the chain spends in transient state j given



�������

��: ����	,

�
���	,

�

��

������

(a) Block Diagram

���������		

�����

����� ������

1 1

(b) Markov-chain for base case

1

����
����	 →

�
�
�
	
→

(c) CDF for base case

Figure 4: Base Case: No Fault Mitigation

that the chain began in transient state i. Further, the average
execution time can be computed as Tavg = Texec× (eT1 F),
where e1 = [1, 0, ...0] and Texec is the state-residence time
of the states in the Markov-chain.
Fault/Error Model: We assume the fault/error-mitigation
methods discussed in this article are for mitigating the
effects of operational transient faults and resulting errors
and failures in the datapath, i.e. computational faults/errors.
We assume the occurrence of faults/errors follows a Poisson
distribution, λ being the fault/error-rate per module. Our
analysis assumes that multiple faults/errors can occur during
a module’s execution. In the current article, we provide the
modeling details of 2 methods in comparison to the Base
case of not implementing any fault-mitigation.

1) Base Case (No Fault-Mitigation): We define the
base case as– Processing without implementing any fault-
mitigation method. The block diagram for the base case is
shown in Figure 4a. The base case forms the reference point
for modeling and comparing the various fault-mitigation
methods. Also, the notations used in describing the base
case will be followed for the rest of the methods modeled
in the current article.
Functional Reliability: The probability of a fault-induced
error occurring during processing is shown in Eq. 1. We
assume no implicit masking of errors.

Prob(Error without Fault−Mitigation)

= 1− Prob(No faults during processing)

= (1− e−λTmin )
(1)

Timing Reliability: The Markov-chain for the base case is
shown in Figure 4b. Finish signifies the absorbing state in
the chain. The state-residence time is shown in the state in
parenthesis. The CDF of the execution time is shown in
Figure 4c.
Overheads: Since the base case does not involve any
form of spatial or temporal redundancy, there are no extra
overheads incurred. The resulting costs are shown in Eq. 2

Average Execution time : Tavg = Tmin

Area cost : OvArea

Power cost : OvPow

Energy Consumption : OvEnergy = Tavg ×OvPow

(2)

�: ����	,

������,

��	
�

�: ����	,

������,

��	
�

�: ����	,

������,

��	
�

��	
��
�����	

���	
�


�������

	�
�	
�

(a) Block Diagram

���������		

�����
������
����� ������

1 1

(b) Markov-chain for
TMRV ot

1

���� � ����� ����	 →

�
�
�
	
→

(c) CDF for TMRV ot

Figure 5: TMRV ot: TMR with Voting

2) Triple Modular Redundancy with Voting (TMRVot):
TMR is one of the most commonly used forms of spatial re-
dundancy. TMR can mask a large proportion of faults/errors,
at high area and power overheads. Figure 5a shows the block
diagram for a TMR implementation. We assume the voter
module to compute the majority of the 3 modules’ outputs
as the final output. Tmin is the minimum execution time of
each module. Similarly, OvArea and OvPow are the area and
power costs of implementing each module.
Functional Reliability: In TMR, the fault-masking is
achieved by taking the majority of the outputs. Hence, no
separate fault-detection method needs to be used. So, the
coverage is equivalent to the coverage of the implicit fault-
masking. The output can have a fault-induced errors in the
case – A fault/error occurring in at least 2 of the three
modules. So, the probability of a computational error can
be estimated as shown in Eq. 3.

Prob(Error) = 3× Prob(Error in any 2 modules only)

+ Prob(Error in all three modules)

= 3(1− e−λTmin )2e−λTmin + (1− e−λTmin )3

= 1− 3e
−2λTmin + 2e

−3λTmin

(3)

The probability of computational error in the absence
of any fault-mitigation implementation and the resulting
Masking Factor is shown in Eq. 4.

Prob(Error without Fault−Mitigation)

= Prob(Atleast one error during application execution)

= (1− e−λTmin )
Masking factor : MFTMRV ot

=
Prob(Error without Fault−Mitigation)

Prob(Error with Fault−Mitigation)

= (1− e−λTmin )/(1− 3e
−2λTmin + 2e

−3λTmin )

(4)

Timing Reliability: TMR does not involve any form of
temporal redundancy. The resulting Markov-chain is shown
in Figure 5b. Finish signifies the absorbing state in the
chain. The state-residence time includes the time taken by
the V oter Module. The CDF of the execution time is
shown in Figure 5c.
Overheads: Since TMR involves 3 parallel modules, the



�
����

���

�

�
���

����

�
����

���

�

�
���

����

�
����

���

�

�
���

������

�
����

���

�

����

������		
���
�
�
�� ������
�
� ���	��
��
	����
�
�

(a) Typical execution pattern

�

�����	

�
����

�
	 ����


�

�����	

�
����

�
	 ����

		�	
�


����� �����	
1 � �

� ∶ ���
�
�����	��	��	������	������	���	����	��������� � 	 �
�


����

�

� ∶ ���
�
�����	��	�������	���	�����	������	���	����	��������� � 1 � �
�


����

�

	

�

�

�����	

�
����

�
	 ����

		�	
�


� �

(b) Markov-chain for ChkEV al

Figure 6: Checkpointing and rollback recovery with N ICIs
������ ���	

1

���	
2

�� ���	
�

�� ���	
�


����


���	
1

� � … . 0 �� � 0

���	
2

0 � �� 0 �� � 0

� � � ���� � � �

���	
�

0 0 �� � �� � 0

� � � �� � � � �

���	
�

� � �� � � �


����
 0 0 �� 0 �� � 1

Figure 7: Transition Matrix for Markov-chain of ChkEV al

area and power costs incur around 200% increase over the
base case. The resulting overheads are shown in Figure 5.

Average Execution time : Tavg(TMRV ot) = Tmin + TV ote

Area cost : OvArea(TMRV ot) = 3×OvArea
Power cost : OvPow(TMRV ot) = 3×OvPow

Energy Cost : OvEnergy(TMRV ot)

= Tavg(TMRV ot) ×OvPow(TMRV ot)

(5)

3) Checkpointing and Rollback Recovery with end-
Validation (ChkEV al): Checkpointing with rollback recov-
ery is one of the more prevalent methods used for fault-
mitigation. It involves saving the program state at regular
intervals and restoring the saved state in the event of a
fault/error. The timing overheads associated with checkpoint
creation and validation determine the effectiveness of this
method. The typical execution pattern of processing with
N inter-checkpoint intervals (ICIs) is shown in Figure 6a.
Please note that our model assumes validating the compu-
tation results at the end of each ICI. Further, we assume
fault-free validation and checkpoint creation. TV al and TChk
denote the time spent on performing each validation and
creating each checkpoint respectively.
Functional Reliability: The fault-mitigation coverage is
equal to the coverage of the validation method implemented.
Timing Reliability: The Markov-chain for ChkEV al is
shown in Figure 6b and its corresponding transition matrix
(PChkEV al) is shown in Figure 7. The CDF and Tavg is
a function of the number of ICIs, N . Figure 8a shows the
varying CDF with increasing N for a test-case.
Overheads: The average time to completion can be ob-
tained from the absorbing Markov-chain’s transition matrix.
Eq. 6 shows the overheads associated with ChkEV al.
FChkEVal corresponds to the Fundamental Matrix de-
rived from PChkEV al. Further, Figure 8b shows the variation
of Tavg(ChkEV al) with increasing N .

����

����

����

����

����

����

����

����

����

��� ��� �	� ��� ��� ��� ��� �	� ��� ��� 
��

�������

�������

������	

������


�������

�������

������


�������

�������

���������
�
�
�
�
�
��
��
	
	�
�
	�
�


�
��
��
�
�
	
→ ��� ��� ��	

(a) Variation of CDF

��

���

���

���

���

���

��

���

���

���

���

���

� � � � � � →

���� ������	

�
�� ������	

���� � 100;	���� � 0.5;	���	 � 3; 	
 � 0.004

(b) Variation of Tavg and Tmin

Figure 8: ChkEV al: Variation of performance metrics with
number of ICIs

…

����������	

����
�

����
�

����
�

����
�

……… ………

���
��,��

…���
��,��

���
��,��

���
��,��

����
��,��

…����
��,��

����
��,	�

…����
��,
�

��	
��,��

…��	
��,��

��	
��,��

… ��	
��,��

��������	��	
���	��

���

����/

��
	��
�������	

��������	�����������
	�

Figure 9: Multi-layer view of a typical hierarchy in applica-
tion execution

Average Execution time : Tavg(ChkEV al)

=

(
Tmin

N
+ TV al + TChk

)
× (e

T
1 FChkEVal)− TChk

Area cost : OvArea(ChkEV al) = OvArea

Power cost : OvPow(ChkEV al) = OvPow

Energy Cost : OvEnergy(ChkEV al)

= Tavg(ChkEV al) ×OvPow(ChkEV al)

(6)

B. Modeling Inter-layer interaction of Fault-Mitigation
methods

The typical hierarchy involved in an application’s exe-
cution on a heterogeneous hardware platform can be rep-
resented is shown in Figure 9. Any application can be
represented as a set of tasks – Taskt, where t ε {1, 2..., T}.
Further, each task Taskt can be modeled as com-
posed of a set of modules (or function calls) –
Mod(t,m), where m ε {1, 2...,M} – that is executed on
instruction-set based embedded processors as a sequence of
instructions – Ins(m,i), where i ε {1, 2..., I}. Similarly,
to satisfy the performance requirements of the application,
some portion of the task may need to be processed on accel-
erators – Accl(t,a), where a ε {1, 2..., A} – implemented
on dedicated hardware and/or dynamically reconfigurable
fabric. Please note that, as shown in Figure 9, we model the
application, tasks, and modules as linear sequences of their
constituent tasks, modules and accelerators, and instructions
respectively. For the current article, we have not considered
typically occurring branching and dependencies among the
various tasks, modules, accelerators and instructions. How-
ever, our modeling methodology can be extended to consider
such dependencies and is planned for future research.
Due to the randomness involved in the occurrence of faults



�����	

�����	��������� �����	
1

�����	
�����	����

����� �����	
1 �����	

�����	����

�����	

�����	�	��

�����	
�����	�
��

Figure 10: Modeling a process having sub-processes as an
absorbing Markov-chain

and their mitigation, the execution of each application (task,
module) can be modeled as a stochastic process comprising
of a set of independent sub-processes. As shown in Eq. 7,
each of the processes and sub-processes can be characterized
by the set of parameters discussed in Section IV-A. We
discus each of the parameters below.

X(RelF(X) , Tmin(X), CDF(X), Tavg(X),

OvArea(X), OvPow(X), OvEnergy(X))

Xε{Ins(m,i), Mod(t,m), Accl(t,a), Taskt, Application}
(7)

Functional Reliability: RelF(X) refers to the probability
of a fault-induced computational error occurring during the
process X . It should be noted that the assumption of inde-
pendence, w.r.t. functional reliability, of the sub-processes of
a process holds iff the probability of an error occurring in
one sub-process does not affect the error occurrence in any
other. In the current article, we consider only fault-induced
errors. Hence, RelF(X) can be defined as shown in Eq. 8.

RelF(X) =


if sub− processes exist, max

Y
RelF(y),

where, Y : set of sub− processes of X

else, Probability of error with fault−mitigation
(8)

Timing Reliability: The Markov-chain model used in Sec-
tion IV-A can be extended to a combination of sub-processes
as shown in Figure 10. Further, the estimation methods on
an absorbing Markov-chain discussed earlier can be used
to find the CDF of the overall execution time. However, a
faster method to estimate the CDF is by taking the product
of the CDFs of the sub-processes. Assuming independence
of the sub-processes, the probability distribution function
(pdf ) of the complete process is the convolution of the pdfs
of the sub-processes. Hence, the CDF of the process is the
product of the CDFs of the sub-processes. So, CDF(X) =∏
yεY

CDF(y). Similarly, Tmin(X), the minimum execution

time of process X is the sum of the minimum execution
times of the sub-processes: Tmin(X) =

∑
yεY

Tmin(y)

Overheads: As mentioned before, the Tavg(X) can be
estimated from the expanded Markov-chain based repre-
sentation of the process. However, under the independence
assumption, the overheads can be computed as shown in
Eq. 9. OvArea(X) is a determined by the mapping of
tasks/modules/accelerators. Similarly, OvPow(X) is a func-
tion of the scheduling of the tasks and fault-mitigation
methods implemented.

Tavg(X) =
∑
yεY

Tavg(y); OvEnergy(X) =
∑
yεY

OvEnergy(y) (9)

V. CONCLUSION

With increasing susceptibility of hardware to physical
faults, a comprehensive fault-aware cross-layer design ap-
proach is necessary. To this end, a cross-layer analysis
framework is proposed. The proposed framework consid-
ers the effect of using different fault-detection and fault-
tolerance methods, their coverage and the layer of imple-
mentation to determine the overall system-level effect. While
the proposed framework is used to estimate the effect of
some combination of fault-mitigation methods, each fault-
mitigation method needs to be modeled appropriately to
fit into the framework. To this end, a Markov-chain based
analytical modeling methodology to model methods and
their cross-layer interaction was proposed. Further research
is required towards integrating the effects of dependencies
in tasks and non-linear, non-sequential execution of tasks on
real hardware platforms.

ACKNOWLEDGMENT

This work is supported in part by the German Research Founda-
tion (DFG) within the Cluster of Excellence “Center for Advancing
Electronics Dresden” (cfaed) at the Technische Universität Dres-
den.

REFERENCES
[1] A. Geist, “Supercomputing’s monster in the closet,” IEEE

Spectrum, March 2016.
[2] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and

L. Alvisi, “Modeling the effect of technology trends on the
soft error rate of combinational logic,” in Dependable Systems
and Networks, 2002.

[3] S. Borkar, “Designing reliable systems from unreliable com-
ponents: the challenges of transistor variability and degrada-
tion,” Micro, IEEE, 2005.

[4] N. P. Carter, H. Naeimi, and D. S. Gardner, “Design tech-
niques for cross-layer resilience,” in DATE, 2010.

[5] S. S. Sahoo, B. Veeravalli, and A. Kumar, “Cross-layer fault-
tolerant design of real-time systems,” in DFTS, 2016.

[6] K. Lee, A. Shrivastava, M. Kim, N. Dutt, and N. Venkata-
subramanian, “Mitigating the impact of hardware defects on
multimedia applications: a cross-layer approach,” in Proceed-
ings of the 16th ACM international conference on Multimedia,
2008.

[7] T. Santini, P. Rech, A. Sartor, U. B. Corrêa, L. Carro, and F. R.
Wagner, “Evaluation of failures masking across the software
stack,” MEDIAN, 2015.

[8] L. Leem, H. Cho, H. H. Lee, Y. M. Kim, Y. Li, and S. Mitra,
“Cross-layer error resilience for robust systems,” in ICCAD,
2010.

[9] J. Henkel, L. Bauer, H. Zhang, S. Rehman, and M. Shafique,
“Multi-layer dependability: From microarchitecture to appli-
cation level,” in DAC, 2014.

[10] E. Cheng, S. Mirkhani, L. G. Szafaryn, C.-Y. Cher, H. Cho,
K. Skadron, M. R. Stan, K. Lilja, J. A. Abraham, P. Bose, and
S. Mitra, “CLEAR: Cross-Layer Exploration for Architecting
Resilience - Combining Hardware and Software Techniques
to Tolerate Soft Errors in Processor Cores,” ser. DAC, 2016.

[11] A. Das, A. Kumar, and B. Veeravalli, “Aging-aware hardware-
software task partitioning for reliable reconfigurable multipro-
cessor systems,” in CASES, 2013.

[12] S. Rehman, M. Shafique, F. Kriebel, and J. Henkel, “Reliable
software for unreliable hardware: embedded code generation
aiming at reliability,” in ISSS+CODES, 2011.

[13] J. G. Kemeny, J. L. Snell, and G. L. Thompson, Introduction
to Finite Mathematics. Prentice Hall Inc, 1974.


