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Abstract: Reed Solomon (RS) codes have been widely used in a variety
of communication systems such as space communication link,
digital subscriber loops, and wireless systems as well as in net-
working communications and magnetic and data storage systems.
Continual demand for ever higher data rates makes it necessary
to devise very high-speed implementations of RS decoders. This
report summarizes the most recent algorithms and architectures
used for implementing high-speed RS decoders. The architecture
which promised to be the best in terms of area, latency, power
consumption and speed was then chosen for VHDL implementa-
tion. The implementation was tested using Cadence SimVision
and optimised for high speed and low area.

Conclusions: A uniform comparison was drawn for various algorithms pro-
posed in the literature. This helped in selecting the appropriate
architecture for the intended application. Modified Berlekamp
Massey algorithm was chosen for the VHDL implementation.
Further, dual line architecture was used which is as fast as serial
and has low latency as that of a parallel approach. The decoder
implemented is capable of running at 200 MHz in ASIC imple-
mentation, which translates to 1.6Gbps and requires only about
12K design cells and an area of 0.22mm2 with CMOS12 technol-
ogy. The system has a latency of only 284 cycles for RS(255,239)
code. The power dissipated in the worst case is 14mW including
the memory block when operating at 1Gbps data rate.
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1 Motivation

Reed Solomon (RS) codes have been widely used in a variety of communication systems
such as space communication links, digital subscriber loops and wireless systems, as well
as in networking communications and magnetic and data storage systems. Continual
demand for ever higher data rates and storage capacity makes it necessary to devise very
high-speed implementations of RS decoders. Newer and faster implementations of the
decoder are being developed and implemented. A number of algorithms for decoding are
available and this often makes it difficult to determine the best choice, due to the number
of variables and trade-offs available. Before making a good choice for the application,
therefore, thorough research is needed into the decoders available.

For the IEEE 802.15-03 standard proposal (commonly known as UWB) in particular, very
high data rates for transmission are needed. According to the current standard, the data
rate for UWB will be as high as 480 Mbps. Since the standard is also meant for portable
devices, power consumption is of prime concern, and at the same time the silicon area
should be kept as low as possible. As such, a low power and high throughput codec is
needed for the UWB standard. Reed Solomon is seen as a promising codec for such a
standard.

2 Introduction to Reed Solomon

Reed Solomon codes are perhaps the most commonly used in all forms of transmission
and data storage for forward error correction (FEC). The basic idea of FEC is to system-
atically add redundancy at the end of the messages so as to enable the correct retrieval of
messages despite errors in the received sequences. This eliminates the need for retrans-
mission of messages over a noisy channel. RS codes are a subset of Bose-Chaudhuri-
Hocquenghem (BCH) codes and are linear block codes. Figure1 shows a general system
employing RS codes for error correction.

RS Decoder
Data Sink

RS Encoder

Data Reader

Data Source

Communication Channel or

Figure 1:A typical system employing RS codes

2.1 Properties of Reed Solomon Codes

A RS(n, k) code implies that the encoder takes ink symbols and addsn−k parity symbols
to make it ann-symbol code word. Each symbol is at least ofm bits, where 2m > n.
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Conversely, the longest length of code word for a given bit-sizem, is 2m−1. For example,
RS(255, 239) code takes in 239 symbols and adds 16 parity symbols to make 255 symbols
overall of 8 bits each. Figure2 shows an example of a systematic RS code word. It is
called systematic code word as the input symbols are left unchanged and only the parity
symbols are appended to it.

ParityData

n

k 2t

Figure 2:A typical RS code word

Reed Solomon codes are best for burst errors. If the code is not meant for erasures, the
code can correct errors in up tot symbols where 2t = n − k. A symbol has an error
if at least one bit is wrong. Thus,RS(255, 239) can correct errors in up to 8 symbols
or 50 continuous bit errors. It is also interesting to see that the hardware required is
proportional to the error correction capability of the system and not the actual code word
length as such.

2.2 Description of the algorithm

This section gives a short description of the algorithm. It is assumed that the reader is
familiar with the Galois Field arithmetic. Further details on Galois arithmetic can be
found in [1]. For readers interested in detailed explanation of Reed Solomon decoders,
they may refer to [1] and [2]. An important property of Galois field arithmetic, however,
is that the result of arithmetic operations (+,−, /,×, etc) is always in the same field.

2.2.1 Systematic Form Encoding

Consider RS codes with symbols fromG F(2m), and letα be a primitive element in
G F(2m). The generator polynomial of a primitivet-error correcting RS code of length
2m − 1 is:

g(x) = (x + α)(x + α2) . . . (x + α2t ) (1)

Let
a(x) = a0+ a1x + . . .+ ak−1xk−1 (2)

be the message to be encoded,k = n − 2t . The remaining 2t parity check symbols are
the co-efficients of the remainder:

b(x) = b0+ b1x + . . .+ b2t−1x2t−1 (3)

c©Koninklijke Philips Electronics N.V. 2004 3
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resulting from dividing the message polynomialx2t a(x) by the generator polynomial
g(x). Thus, we get the following code word overall:

c(x) = b0+ b1x + . . .+ b2t−1x2t−1+ a0x2t + a1x2t+1 . . .+ ak−1x2t+k−1 (4)

and the entire code word satisfies the propertyc(x) modg(x) ≡ 0.

2.2.2 Decoding

When a code word is received at the receiver, it is often not the same as the one transmit-
ted, since noise in the channel introduces errors in the system. Let us say ifr(x) is the
received code word, we have

r(x) = c(x)+ e(x) (5)

wherec(x) is the original codeword ande(x) is the error introduced in the system. The
aim of the decoder is to find the vectore(x) and then subtract it fromr(x) to recover the
original code word transmitted. It should be added that there are two aspects of decoding -
error detection and error correction. As mentioned before, the error can only be corrected
if there are a maximum oft errors. However, the Reed Solomon algorithm still allows
one to detect if there are more thant errors. In such cases, the code word is declared
uncorrectable.

Syndrome Computation
One of the first steps to decoding a code word is the computation of syndrome. 2t syn-
drome coefficients are computed as defined in the following equation.

si =
N−1∑
j=o

r j (α
i+1) j , i = 0, 1, . . .2t − 1 (6)

If there is no error in the code word, all the syndromes computed are zero. Non-zero
syndromes imply an error in the code word and these are then passed to subsequent blocks
for computing the error value and error location.

Key Equation Solver
The syndromes are used to compute the error locator and error evaluator polynomial.
Since we havem-bit symbol, knowing there is an error in a symbol is not enough. We
also need to determine the value of the error occurred in order to determine the transmitted
symbol. If there aree errors in the received code word, we can define theerror locator
polynomial3(x) of degreee and theerror evaluatorpolynomial�(x) of degree at most
e − 1 to be

3(x) = 1+ λ1x + λ2x2+ . . .+ λexe (7)

�(x) = 1+ ω1x + ω2x2+ . . .+ ωe−1xe−1 (8)

which are related to the syndrome polynomialS(x) through thekey equation[3]

3(x)S(x) ≡ �(x) mod x2t (9)

4 c©Koninklijke Philips Electronics N.V. 2004
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where
S(x) = s0+ s1x + . . .+ s2t−1x2t−1 (10)

Solving the above key equation is perhaps the hardest part of the algorithm. Once solved
for�(x) and3(x), we can determine the locations where the error occurred and the value
of the error. The actual code word transmitted can then be easily determined. It is to be
noted however, that it is only possible in the event thate ≤ t . There are many algorithms
to solve the key equation and they shall be covered in the section4.2.

Chien/Forney Algorithm
Chien search involved checking whether3(α− j ) = 0 for eachj, 0 ≤ j ≤ n − 1. If it
is, then an error has occurred atj th location in the received code word. The next step is
to compute the value of error,Yi that has occurred. This is computed by Forney’s error
value formula [1]

Yi = − �(x)|x=α− j

x3′(x)|x=α− j
(11)

where3′(x) denotes the formal derivative of3(x), which is simply (for Galois arith-
metic)

3′(x) = λ1+ λ3x2+ . . . . (12)

Thus, we get
x3′(x) = λ1x + λ3x3+ . . . (13)

which is the summation of the terms of odd degree in the computation of3(x). Thus, it
can be computed during Chien search itself.

Error detection in the case of more thant errors can be done during Chien search. If the
number of roots computed is equal to the degree of3(x), the number of errors,e is less
than or equal tot ; otherwise we know thate > t .

3 Channel Model

Before we proceed to the actual decoder implementation, it is important to look at the
channel model itself. Since UWB (Ultra Wide Band) is not very well explored yet, it is
important to analyse how the channel would behave at the frequency and the data rate un-
der consideration. Most of the error-correcting codes are often concerned with situations
where the channel is assumed to be memory-less, as it allows for easy theoretical analysis.
When the model becomes too complicated, it is often possible to retain only the essen-
tial properties of the channel and use a less complex model. One of the most common
models used for modelling transmission over land mobile channels is the Gilbert-Elliott
model. In this model a channel can be either in a good state or a bad state depending on
the signal-to-noise ratio(SNR)at the receiver. For different state, the probability of error
is different. As expected, in a good state, the probability of error is lower than that of the
channel in the bad state. The dynamics of the channel are modeled as a first order Markov
chain, a model which Wang and Moayeri [19] and Wang and Chang [20] , in spite of

c©Koninklijke Philips Electronics N.V. 2004 5
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its simplicity, showed to be very accurate for a Rayleigh fading channel. In [21] , Ahlin
presented a way to match the parameters of the GE model to the land mobile channel,
an approach that was generalized in [19] to a Markov model with more than two states.
In [22], Wilhelmsson and Laurens evaluated the performance of block error-correcting
codes over the GE Channel. They also provided a good and easy to understand analysis
of obtaining the parameters for a land mobile channel.

3.1 Gilbert Elliott Channel Model

G B

b

g

1−g
1−b

Figure 3:The Gilbert-Elliott Channel Model.

Figure3 shows the GE Channel Model. Two states are shown represented byG and B
representing the good and the bad state respectively. Further, the transition probability
from the good state to the bad state is shown asb and from the bad to the good state as
g. The probability for error in stateG andB is denoted byP(G) andP(B) respectively.
What follows is a concise explanation of the model. A more detailed analysis can be
found in [22] and [23].

To obtain the relation between the physical quantities and the parameters of the model,
Rayleigh fading was considered. The amplitudeα of the received signal is therefore

f (α) = 2α

γ
e−α2/γ , α ≥ 0 (14)

and the SNR is exponentially distributed, given by

f (γ ) = 1

γ
e−γ /γ , γ ≥ 0 (15)

whereγ is the average SNR of the received signal. Since, we have two states in the GE
Channel, letγt be the threshold for the SNR, where the channel changes the state. The
stationary probabilities for the two states are given by

Pstat(B) = 1− e−ρ2
(16)

Pstat(G) = e−ρ2
(17)

6 c©Koninklijke Philips Electronics N.V. 2004
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whereρ2 = −γt/γ . From these we arrive at the channel transition probabilities given by
the following equations,

g = ρ fDTs
√

2π

eρ2 − 1
(18)

b = ρ fDTs

√
2π (19)

where fD = ν fc
c . Hereν is the relative speed of the objects communicating,fc is the

frequency of the carrier andc is the velocity of light. Ts is the symbol duration. fD

indicates the doppler frequency whilefDTs signifies the normalized doppler frequency.
The error probabilities in different states can be computed as follows:

Pe(B) = 1

Pstat (B)

∫ γt

0
f (γ )Pe(γ )dγ. (20)

and

Pe(G) = 1

Pstat(G)

∫ ∞
γt

f (γ )Pe(γ )dγ. (21)

wherePe(γ ) is the symbol error probability given the value ofγ and f (γ ) is as defined
above.Pe(γ ) depends on the type of modulation used, but for BPSK (Binary Phase Shift
Keying) - one of the common modulation schemes, we havePe(γ ) = Q(

√
r2γ ), where

[24]

Q(x) = 1√
2π

∫ ∞
x

e−t2/2dt (22)

3.2 Simulation

Following were the parameters set for the simulation of the Ultra Wide Band channel:

• carrier frequency = 4.0 GHz

• information rate = 480 Mbps

Two sets of simulation were run for different threshold reading, and each for different
velocity. The threshold here signifies the SNR level at which the channel changes states,
and the velocity the relative velocity of the communicating agents. The first set was with
the threshold set to 5dB lower than the average SNR and the other with 10dB less than the
average. As the choice of threshold can affect the accuracy of the model significantly at
times, different values were taken. Two different values of velocity were also considered
- 1 m/s for slow movement and 8 m/s for fast movement. However, due to the very high
data bit rate involved the transition probability is very small. Therefore, these channel
transitions become very rare events and simulations determined the error probabilities for
codewords beginning in a certain state. These were then weighted by the steady state
probability of the corresponding state and added together to obtain the overall probability
rate. Two measures, the bit error rate and the symbol error rate are computed and plotted.
The simulation was run for 10,000 codewords to get a good estimate for each state.

c©Koninklijke Philips Electronics N.V. 2004 7
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5 dB 10 dB
vel = 1 m/s vel = 8 m/s vel = 1 m/s vel = 8 m/s

fDTs 2.78E-08 2.22E-07 2.78E-08 2.22E-07
ρ 0.562341325 0.316227766
g 1.05E-07 8.42E-07 2.09E-07 1.67E-06
b 3.92E-08 3.13E-07 2.20E-08 1.76E-07
Pstat(G) 0.728893414 0.904837418
Pstat(B) 0.271106586 0.095162582

Table 1:The common parameters obtained from Mathematica

5 dB 10 dB
γ γt Pe(B) Pe(G) γt Pe(B) Pe(G)

13 8 0.047379902 1.39392E-05 3 0.123893547 0.001177155
14 9 0.037957829 2.21E-06 4 0.10298993 0.000543123
15 10 0.030346588 2.34E-07 5 0.084368039 0.000219542
16 11 0.024227994 1.50E-08 6 0.068306711 7.53028E-05
17 12 0.019323014 5.08E-10 7 0.054848762 2.10503E-05
18 13 0.015398433 7.81E-12 8 0.043824921 4.56E-06
19 14 0.012262918 4.42E-14 9 0.034928742 7.17E-07
20 15 0.009760765 9.75E-17 10 0.027806509 7.55E-08
21 16 0.007765911 0 11 0.022124086 4.81E-09
22 17 0.006176696 0 12 0.017596651 1.63E-10
23 18 0.004911393 0 13 0.01399196 2.50E-12
24 19 0.003904464 0 14 0.01112334 1.41E-14
25 20 0.003103451 0 15 0.008841354 1.99E-16
26 21 0.002466439 0 16 0.007026583 0

Table 2:The probability parameters obtained from Mathematica

Mathematica software was used to solve the complex mathematical equations and obtain
the channel model parameters for the physical quantities under consideration. As can be
seen from the afore-mentioned equations,ρ depends only on the difference in the average
and threshold SNR. Therefore the steady state probability for the two states remain the
same regardless of the velocity, and so does the probability of error. Table1shows some of
the common parameters obtained from Mathematica, while Table2 shows the probability
data obtained for both 5 dB and 10 dB threshold.

3.2.1 Simulation Results

As can be seen from the Figures4-7, the error probabilities decrease with increase in
SNR as expected. All the figures show the symbol and the bit error probability observed.
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Figure 4: The Error probability for symbol and bits when the bad channel threshold is
kept at 5 dB below the average SNR level. This graph uses normal scale for representation
along Y-axis.

Figure4 shows the error rate when the threshold for the bad state is set at 5dB lower than
the average SNR, while Figure5 shows the same graph but using a logarithmic scale for
the Y-axis. Figures6 and7 show the corresponding graphs when the threshold is set at
10dB below the average SNR. As expected the error rates follow a linear relationship with
the increasing SNR on the logarithmic scale. It can also be noticed that the symbol error
rate is almost 8 times that of the bit error rates, which is expected as each symbol has 8
bits. We see that the bit error rates for the two cases (5dB and 10dB) are almost exactly
same while the symbol error rates becomes equal around 20dB average SNR level. Also,
we notice that around 20dB average SNR, the symbol error rate is about 0.02, which
corresponds to an average of 5 symbol errors in a code word of 255 symbols.

4 Decoder Structure

This section explains the architecture of various blocks in more detail. The conventional
architecture is presented first and later the modifications and improvements suggested are
summarized.

4.1 Syndrome Computation

Figure8 shows how a typical syndrome computation cell looks like. 2t syndrome cells are
connected either in parallel or in series depending on how the output is desired. This in

c©Koninklijke Philips Electronics N.V. 2004 9
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Figure 5:The Error probability for symbol and bits when the bad channel threshold is kept
at 5 dB below the average SNR level. This graph uses logarithmic scale for representation
along Y-axis.
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sentation along Y-axis.

turn depends on the algorithm used for solving the key equation, e.g. Euclidean algorithm
takes the input serially [4], while Berlekamp Massey requires all the syndromes in parallel
[3].

D
Rn

αi+1

si

Figure 8:A typical syndrome computation cell.

As shown in figure8, each cell requires the following resources:

• 1 delay FF

• 1 FFM (constant-variable multiplier)

• 1 adder

c©Koninklijke Philips Electronics N.V. 2004 11
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It is to be noted that each of these resources are meant form-bit symbol and that 2t of
such cells are required for the entire structure. An extra MUX and FF is needed for serial
output of syndromes. The symbols received are input in the orderRn, Rn−1, . . . R1. Thus,
it takesn cycles to compute the syndromes in the serial implementation.

4.2 Key Equation Solver

We now arrive at the most difficult part of the entire flow, theEquation Solver. A num-
ber of algorithms are available for this particular section. Trade-offs occur between the
latency of the algorithm and the silicon area needed for the implementation. Critical time
delay is also an important consideration as it determines the maximum frequency of op-
eration.

4.2.1 Euclidean Algorithm

This is one of the most commonly employed algorithm. The original Euclidean algorithm
was accepted for ITU G.975 recommendation. More details on it can be found in [6].

Original Euclidean
The original Euclidean consists of 2t divider andt multiply blocks. In this architecture
ROM is used for FFI(Finite Field Inversion). The critical path delay as mentioned in [6]
is (ROM + AND + 2× MULT + ADD + 2×MUX). The overall latency for this block is
2t cycles.

A slight variation to the original Euclidean algorithm has been presented in [7]. It is
calledConfigurable Multi-mode Design. The design is very regular and can be adapted
for different RS Codes. Extra hardware is needed in this design, but promises lower
critical delay.

Modified Euclidean
This is a division free algorithm and hence no ROM is needed for this block. 2t blocks
are connected like a systolic array [6]. The critical path delay for the algorithm is (MULT
+ ADD + MUX). The overall latency is 3t + 37, but it can be operated at a frequency
that is 1.8 times faster than the original algorithm. Variants of this algorithm with a fully
pipelined FFM have achieved even higher frequencies with extra hardware [4].

Decomposed inversion-less Euclidean algorithm
This was proposed in [8]. Hardware is reused to reduce the hardware needed. The main
motivation is that the key equation solver has a much lower latency as compared to the
syndrome computation block and as such, most of the time the hardware for key-equation
solver is not used. In this architecture only 3 FFM’s are used, but the latency is very high.
Therefore, a larger FIFO buffer is needed.

12 c©Koninklijke Philips Electronics N.V. 2004
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4.2.2 Berlekamp Massey

This algorithm is believed to have the least hardware complexity. The reason is that the
hardware can be reused to compute the error evaluator polynomial after the error locator
polynomial has been computed [5]. [3] provides a very good description of BM algorithm.

Modified BM
The error evaluator polynomial is computed after the error locator polynomial. It leads
to fewer multiplications and additions i.e. for decoding one code word, fewer multipli-
cations and additions are needed in the algorithm in modified BM as compared to BM
or Euclidean algorithm [5]. A separated approach is used which results in power and
hardware savings.

Decomposed inversion less modified BM
This algorithm does not require the use of inverters and is explained in [9]. Some par-
allelism is introduced in solving the key equation and cleverly schedules only 3 FFM’s.
Latency is higher for this implementation.

Parallel Approach for BM
An example of the parallel approach for BM can be seen in [10]. In this approach, extra
hardware is needed and also the critical time delay is higher due to the presence of two
multipliers and adders in the critical path. The latency however, is very low and hence,
smaller FIFO buffer is needed.

Serial approach for BM
This approach has been demonstrated in [11]. The hardware requirement is low and
as always, the latency is higher for this architecture. Larger FIFO buffer is therefore,
needed for the architecture. The critical path delay is lower, and can therefore support
high frequency rates.

Dual Line approach
The dual line approach was proposed in [10]. The suggested approach has a low latency
like a parallel structure and has a very low critical path delay. Besides, the structure is very
regular and easy to implement. However, it requires more computational elements. An
example of dual-line architecture is shown in Figure9. As can be seen in the figure, there
are two series of registers, namelyC andD. More details on this particular algorithm are
explained in the section on Implementation Details.

Reformulated Inversion-less BM
This algorithm was discussed in [3]. Though, it requires slightly more hardware, there are
tremendous gains in terms of critical time delay. No implementation has however been
proposed as yet.

4.2.3 Peterson Gorenstein Zierler Algorithm

This algorithm is only mentioned for the sake of completeness. It works rather well for
t < 4, but doesn’t scale well [12].

c©Koninklijke Philips Electronics N.V. 2004 13
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Figure 9:Dual-line architecture for modified Berlekamp Massey.

4.3 Chien/Forney Algorithm

Figure10 shows a typical cell used in both Chien search and Forney evaluator [4]. Not
many variations for this block are suggested. It is a common practice, however, to increase
the throughput rate by multiplying hardware. However, syndrome computation block also
needs to be duplicated in that case.

D
Cx

αi+1

Ci

Figure 10:A typical computation cell used in Chien/Forney.

4.4 Finite Field Multiplier

Finite Field Multiplier (FFM) is the most resource intensive computation element in terms
of gates needed. Therefore, various designs have been proposed in the literature for the
same. There are two kinds of multipliers, namely constant-variable and variable-variable.
Constant-variable multiplies are used in the syndrome computation and Chien search
block, while variable-variable multipliers are used in key-equation solver. Constant-
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variable multiplier can be implemented with much fewer gates as it can be optimised
accordingly. It normally requires around 3 to 24 XOR gates depending on the constant
[14] while a variable-variable multiplier requires around 77 XOR and 64 AND gates.
These figures are for a 2-input gate.

4.4.1 Fully Parallel Multiplier

A fully parallel multiplier was proposed in [4]. As with most ideas, there is a trade-off
involved between hardware and speed. This architecture is capable of being operated at a
very high speed as it can be fully pipelined and thus provide a lower critical path delay.
However, it requires more hardware than normal - about 52 XOR and 80 AND gates.

4.4.2 Composite Field Multiplier

Many papers have also suggested use of a Galois multiplier on composite field, e.g. in
[15]. This multiplier often requires about 25% less hardware as compared to a conven-
tional multiplier.

Various other ideas for optimising hardware requirement for a multiplier have been dis-
cussed in [16], [17] and [18].

5 Taxonomy in Design Space

Figure11 shows the various architectures available. Table3 shows the hardware require-
ments of computational elements used in various architectures. Estimates have been made
from the figures drawn in the papers when actual counts could not be obtained for a par-
ticular architecture. It should be noted that this is only the estimate of computational
elements and, therefore, more gates will be needed for control overhead. Total latency of
the various blocks will determine the size of FIFO.

5.1 Design Decisions

In order to choose a good architecture for the application, various things have to be taken
into account.

• Gate count: Determines the silicon area to be used for development. A one time
production cost but can be critical if it is too high.

• Latency: Latency is defined as the delay between the received code word and the
decoded code word. The lower the latency, the smaller is the FIFO buffer size
required and therefore, it also determines the silicon area to a large extent.

• Critical path delay: It determines the minimum clock period, i.e. maximum fre-
quency that the system can be operated at.

c©Koninklijke Philips Electronics N.V. 2004 15
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Architecture Blocks Adders Multipliers Muxes Latches Latency Critical Path Delay

Syndrome Computation [4] 2t 1 1 1 2
Total 2t 2t 2t 4t n Mul + Add + Mux
Look ahead architecture (x units)2t x x 1 2
Total 2xt 2xt 2t 4t n/x Mul + Add + Mux

Original Euclidean [6]
Divider Block 2t 1 1 3 2
Multiply Block t 2 1 3 3
Total (Estimates) 4t 3t 9t 7t
Actual [13] 4t + 1 3t + 1 11t + 4 14t + 6 4t - 3 ROM + 2×Mul + Add + 2×Mux
Modified Euclidean [6]
Degree Computation Block 2t 2 0 7 7
Polynomial Arithmetic Block 2t 2 4 8 19
Total (Estimates) 8t 8t 30t 52t
Actual [13] 8t 8t 40t + 2 78t + 4 10t + 8 Mul + Add + Mux
Decomposed inversion-less [8] 1 3 1 3t + 1 2t×(t+1) Mul + Add + Mux
Modified BerleKamp Massey
Serial 1 3 4 3t + 2 2t×(2t+2) Mul + Add + Mux
Decomposed inversion-less [9] 2 3 2 5 2t×(t+1) Mul + Add + Mux
Parallel t 3t + 2 t 3t + 1 2t 2×Mul + 2×Add + Mux
Dual-line [10] 2t 4t + 1 2t 4t + 1 3t + 1 Mul + Add
Reformulated inversion-less [3] 3t + 1 6t + 2 3t + 1 6t + 2 2t Mul + Add

Chien/Forney 2t 2t + 2 2t + 2 2t + 10 4 max(Mul + Add, ROM)

Table 3:Summary of hardware utilization of various architectures
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Table3 shows a summary of all the above mentioned parameters. For our intended UWB
application, speed is of prime concern, as it has to be able to support data rates as high
as 480 Mbps, and perhaps even 1 Gbps in the near future. At the same time, power has
to be kept low, as it is to be used in portable devices as well. This implies that the active
hardware at any time should be minimised. Also, the overall latency and gate count of
computational elements should be low, since that would determine the total silicon area
of the design.

5.1.1 Key Equation Solver

Reformulated inversion-less and dual line implementation of the modified Berlekamp
Massey have the smallest critical path delay among all the alternatives of the Key Equation
Solver. Astute reader would have noticed that the critical path delay of syndrome compu-
tation block seems to be higher than that of Key Equation Solver. However, the multiplier
used in syndrome computation and Chien blocks is a constant-variable multiplier, which
has lower critical path delay (and also less hardware) than that of Key Equation solver,
which uses a variable-variable multiplier. When comparing inversion-less and dual-line
implementation, dual line is a good compromise in latency and computational elements
needed. The latency is one of the lowest and it has the least critical path delay of all the
architectures summarized above. Thus, dual-line implementation of the BM algorithm
was chosen for the key-equation solver. Another benefit of this architecture is that the
design is very regular and hence easy to implement.

5.1.2 Syndrome and Chien/Forney

These sections are not as critical as the KE solver as mentioned earlier. Hardware could
be duplicated if even higher data rates are desired. Power saving measures can be applied
in addition, regardless of what architecture is chosen for KE solver.

5.1.3 RS Code

As we can see from Table3, the hardware requirement for the entire block is a function
of t , the error correction capability, and the latency is a function of bothn andt . Thus,
while we want to have a code with high error correction capability, we can not have a very
high value oft as the hardware needed is proportional to it. The value ofn determines
the bit-width of the symbol and therefore the hardware needed, but only logarithmically.
However, one would want to have a value ofn = 2m − 1, to derive maximum benefit
out of the hardware.RS(255, 239) is a very common code used, since it works on 8-bit
symbol, and has an error correction capability of 8.

18 c©Koninklijke Philips Electronics N.V. 2004
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5.2 Highlights

Table4shows the various parameters for choosing dual line architecture withn = 255, k =
239 andt = 8. The overall critical path delay is hence Mul + Add. However, it should be
noted that in Table4 different kind of multipliers (constant-variable and variable-variable)
are grouped together for a rough estimate.

Architecture Adders Multipliers Muxes Latches Latency

Syndrome Computation 2t 2t 2t 4t n
Dual-line 2t 4t + 1 2t 4t + 1 3t + 1
Chien/Forney 2t 2t + 2 2t + 2 2t + 10 4

Total 6t 8t + 3 6t + 2 10t + 11 3t + n + 5

For Parameters above 48 67 50 91 284

Table 4:Summary of hardware utilization for Dual-line architecture

6 Implementation Details

6.1 Design Flow

Figure12 shows the design flow for development of the decoder. As shown in the figure,
the first step was to develop a C-model for the decoder. ’Gcc’ compiler was used to
compile the code and to check if the code worked correctly. Output of each intermediate
stage was compared with the expected output according to the algorithm with the aid of
an example. Details of C-code development will be explained in a later section.

Once the algorithm was fully developed and tested in C, VHDL-code development started.
One of the options was to use an automated tool like ART-builder for generating the
VHDL-code from C. However, it was decided to hand write the VHDL, since it gives more
flexibility and it can be often coded more efficiently. The VHDL code was structured such
so it could be completely synthesized with ease. A wrapper class was written around it, in
order to test it. This VHDL code was compiled and tested using Cadence tools. ’Ncsim’
was used to simulate the system and generate the output stream for the same input tests as
were used for testing C code. The output stream from VHDL and C were then compared.

When this output was found to be matched for various input test cases, synthesis experi-
ments were started. Precision RTL by Mentor Graphics was first used to see if the code
was synthesible, and later to optimize the design. Quartus II tool from Altera was also
used to see the usage and frequency of operation for Altera chips. Theedif netlist gen-
erated from Precision RTL was also synthesized on the Quartus tool to see the timing
characteristics of the chip. The results from both the flows are discussed in theResults
section. Ambit from Cadence was later used to analyse the hardware usage and frequency
of operation after various optimisation settings. All the synthesis tools, namely Precision

c©Koninklijke Philips Electronics N.V. 2004 19
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Figure 12:Design flow of development process

RTL, Quartus and Ambit were used to obtain an estimate of timing and area.

6.1.1 Design Flow for Power Estimation

The design flow needed for power estimation has been explained in Figure13. As shown
in the figure, the core VHDL modules are optimised and synthesized usingambit. The
synthesized model is written out into a verilog netlist usingambititself. Once the netlist is
obtained, this is then compiled usingncvloginto the work library together with the tech-
nology library. The library used is for the same technology as the one used for synthesis.
As can be seen, the wrapper modules are actually written in VHDL, while the compiled
core was from the verilog. Thus, to allow interaction between the two, the top interface
of the work library, is extracted into a VHDL file and then compiled into the work library.
This is done usingncshellandncvhdlrespectively. This being done, the wrapper modules
can now be compiled into the work library and the design is now ready for elaboration
and simulation.

From this point onwards, two approaches can be used. Eitherncelabandncsimcan be
used purely for simulating the synthesized design, ordncelabanddncsimcan be invoked
which are essentially the same tools, but also includes theDIESEL routines for estimat-
ing the power dissipated in the design.Dieselis an acronym for DIssipation Estimation
Software Extension for Logic simulation. As the name says, it provides existing logic
simulators with additional functionality. Diesel basically keeps track of the instantaneous
signal transitions that occur during a simulation. By combining this transition information
with a one-time library characterization, it determines the instantaneous supply current,
and derivatives thereof.Dieselis an internal tool developed within Philips and estimates
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Figure 13:Design flow for the estimation of power

the power for the simulated design, and hence the accuracy of the results depend on the
input taken.

6.2 C-Code Development

As mentioned earlier, the syndrome computation and Chien/Forney is very standard. The
key-equation solver, however, can vary to a great extent. Therefore, a very brief descrip-
tion of that block is presented here. As stated earlier the dual-line algorithm presented in
[10] was used for this. However, not all the details are presented in it.

6.2.1 Algorithm for Key Equation Solver

There are essentially two series of registers C and D which are continually updated. As
mentioned earlier, key equation solver needs to compute�(x) and3(x). They are ini-
tialised as

C (0)
k =

{
Sk+1 ,for 0≤ k ≤ 2t − 1
1 ,for k = 2t

(23)

D(0)
k =


Sk ,for 1≤ k ≤ 2t − 1
0 ,for k = 2t
1 ,for k = 2t + 1

(24)
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These are then updated as follows:

C (i)
k =

{
ε(i−1) × C (i−1)

(k+1) ,when1i = 0

ε(i−1) × C (i−1)
(k+1) +1i × D(i−1)

(k+1) ,when1i 6= 0
(25)

D(i)
k =


0 ,whenk = 2t − i

C (i−1)
(k) ,whenk 6= 2t − i ∧ (1i 6= 0∧ 2Li−1 ≤ i − 1)

D(i−1)
(k) ,otherwise

(26)

Wheni becomes 2t , i.e. after 2t iterations, the firstt + 1 registers of C, contain3(x).
(Please refer to [10] for details on how other variables are updated). After that the registers
are re-initialised as follows.

C (2t)
k =

{
unchanged ,for 0≤ k ≤ t
0 ,for t + 1 ≤ k ≤ 2t

(27)

D(2t)
k =

{
0 ,for 1≤ k ≤ t
Sk ,for t + 1< k ≤ 2t + 1

(28)

The same formula is applied for update of C registers, except thatε remains unchanged
now and D registers are not updated at all. Aftert + 1 iterations, the error evaluator
polynomial3(x) is contained in C registers.

6.2.2 Structure of the Code

The basic structure of the code mimics the decoder structure as well. The code has been
made highly modular for easy debugging and understanding of the code. Further, the
code has been commented using JavaDoc format to follow the commenting convention
such that it makes easier to understand. A quick overview is presented in the Algorithm
1. The algorithm was progressively tested for various symbol sizes from 3-bit onwards
all the way to 8-bit symbol. This was to ensure that the code was fully customisable for
any number of bits and to also allow for easy testing. It was easy to debug the code for a
lower bit RS Code.

6.3 VHDL Development

After an intensive test of the code developed in C, VHDL code for the same was devel-
oped. Figure14 shows the block diagram for the VHDL code developed. As can be seen
in the figure, there are five main blocks in the core VHDL module, one for each basic
function in the algorithm. The ’memory block’ is a passive element, providing only a
FIFO buffer. In the actual model some more inputs have been defined in order to account
for global resets and valid signals.

In addition to the five modules, an RS package was defined which contained the lookup
table for Galois Field. The lookup table was needed for Forney evaluator. A C-routine
was written to automatically generate the package body to suit the RS Code specification.
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1: GenerateG F(2m) andG(x)
2: Read the inputa(x)
3: Compute the remainderb(x) whena(x)× x2t is divided byG(x)
4: Generate transmit buffer
5: Introduce errors{Simulate noise}
6: Compute Syndromes
7: if S(x) = 0 then
8: Declare no error
9: else{Error in code word}

10: Compute�(x) and3(x) {Key Equation Solver}
11: for all j such that 0≤ j ≤ n − 1 do
12: if 3(α− j ) = 0 then {Chien Search}
13: ComputeYi {Forney Evaluator}
14: Add Yi to the received symbol.
15: end if
16: end for
17: end if
18: Compare the output with the original code word

Algorithm 1: Pseudo Code for RS Decoder

Compute
Syndromes

(Gen_Syndromes)

Key Equation Solver
(Gen_elp_eep)

Chien Search
(Chien)

Forney Block
(Forney)

Eep_ready

Eep (error evaluator poly)

Elp_ready

Elp (error locator poly)Load_syn

Syndromes

sum Sum_odd

Memory Block
(Fifo)

Fifo_tx

Corr_sym_ready

Valid

Recvd_sym

Corr_sym

Figure 14:Block diagram of the decoder developed in VHDL

The modules and the RS package itself are completely customisable to suit any RS code.
The Galois field multiplier was also defined in RS package body. This is to allow for
modifications in the Galois field multiplier and test the results for different implementa-
tions of the multiplier. When coding the VHDL modules, Philips CoReUSE guidelines
were followed.

A wrapper class was written around this core module for testing. The test bench used for
the testing was the same as the one used in C. The VHDL code listing is also provided
for in the Appendix. Figure15 shows the classes built around the core module to enable
proper testing of the module.
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6.4 Simulation

Simulation was carried using Cadence SimVision. After compilation and elaboration, the
model was continually tested in SimVision to ensure that each module worked correctly.
Besides testing the functionality, it was also important to test for latency in the model.

As shown in Figure15, the test bench for simulation consisted of the file input, file output,
clock generator and two test modules. The test module was written to test the functionality
of reset and valid signals. Various patterns of these were supplied to test the functionality
and the output in the simulator observed. Ahold testblock was also written to test the
functionality of holding the system in the event a hold signal was received. The file input
and output blocks were used to allow easy input from a file and to dump the output in a
file respectively. The output file allowed easy comparison with the output generated from
the C-program.

6.5 Synthesis

Arriving at the synthesizable model from the original VHDL model required some minor
changes. The enclosing ’if’ structure was slightly modified to not test for any event change
on ’reset’. Also, only ’reset’ and ’clock’ was tested in it. Figures17 - 21 show the
respective blocks developed in VHDL. The input ports of the block are on the left side,
while the output ports are on the right side.

Decoder_clk_i

Decoder_reset_ctrl_i

Decoder_hold_ctrl_i

Decoder_valid_ctrl_i

Decoder_inSym_data_i

syndromes

load_syn

clk_i

reset_i

hold_i

valid_i

rcvd_sym_i

syndromes_o

load_syn_o

inst_syn

WORK_LIB:GEN_SYNDROMES(BEHAVE_1)

Figure 17:Block diagram of the syndrome computation block

The first synthesis experiments were carried out with Precision RTL by Mentor Graph-
ics. Minor corrections as mentioned above were made to make the code synthesizable.
The experiments provided an initial idea of the resource consumption of the decoder on
Altera FPGA. Later, Ambit was used to get an idea of the area required for ASIC devel-
opment. Various optimisation options were played around with to see the limitations of
the algorithms. Quartus II from Altera was also used in the end to check for the resource
utilization and the timing analysis report on Altera FPGA.
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Figure 18:Block diagram of the ELP and EEP computation block
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Figure 19:Block diagram of the FIFO buffer

6.6 Power Estimation

Co-simulating the synthesized and the VHDL wrapper as explained earlier was carried out
usingncsim. This however, presented a problem. The synthesized design had a number of
constraints on it. The one which caused the main problem was thesetup-holdconstraint.
Thesetuptime is defined as the time before the clock edge in during which the data should
be stable andhold is the duration during which the data should be stable after the clock
edge. In case of the co-simulation a hold-violation was encountered which was caused
due to immediate availability of the data from the wrapper modules at the clock edge.
This was actually a false alarm as in a real-circuit this would never happen due to wire
delays and slight delay in availability of the data. The problem was solved by adding a
small delay in the availability of the data at the input of the core design.

7 Results

This section covers the results of various synthesis experiments conducted. Resource
utilization, timing analysis and the power consumption were used as benchmarking pa-
rameters for various tools used. The detailed report for the following can be found in the
Appendix. This section only highlights the basic results.
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Figure 20:Block diagram of the Chien search block
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Figure 21:Block diagram of the Forney evaluator

7.1 Decoder

Since the decoder consisted of more than one module, a detailed account for each module
wherever appropriate has been provided.

7.1.1 Precision RTL

In Precision RTL, chip EP2S15F484C from Altera in Stratix II series was selected for
benchmarking. About 3.55% of LUT’s (Look-up Tables) were utilised and about 7% of
the input-output ports were utilized. No DSP elements, however, could be assigned by this
tool. The timing report shows the minimum period as 12.414 ns i.e. a maximum frequency
of 80.554 MHz. In other words it can support the data rate of 80.554× 8 = 644.43
Mbps when no constraints are applied onto it. However, when the frequency constraint
of 100Mhz is applied, the minimum period was found to have increased marginally to
12.886 ns. However, the values obtained by Precision RTL are only an estimate of the
actual timing. The tool does a high level optimisation and generates a netlist. The actually
value of timing can only be obtained oncePlace and Routeis done. This is done using
Quartus II.
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7.1.2 Quartus II

The package was allowed to choose an appropriate chip and incidentally the one chosen
was EP2S15F484C indeed, the same as the one selected for Precision RTL. Quartus II
could also identify blocks in the code that were assigned to the DSP block elements. Two
9-bit DSP blocks out of the available 96 were assigned by the tool.

Various optimisation settings were tried out for time and area trade-off. When optimised
for time, the critical path delay of the FPGA was found to be 10.89 ns. Thus, the FPGA
could be run at a frequency of 91.82 MHz. This translates to the total bit rate of 91.82×
8 = 734.56 Mbps, since we have 8-bit symbols. When it was optimised for area, the
critical path delay was found to be 10.92 ns, i.e. an operating frequency of 91.52 MHz.
Thus, we don’t lose that much in terms of the frequency. However, we do gain a lot in
terms of area. The number of ALUT’s used is 19% for the case in which the design is
optimised for area in contrast to 23% used in the design optimised for time. The number
of FIFO memory elements in both cases is the same which is< 1%. Interestingly, the
balanced option produces the lowest timing delay of 10.272 ns. This would allow the
FPGA to run at 97.35M Hz.

Experiments were also carried out using theedif netlist from Precision RTL. As expected,
the timing obtained after doing optimisation on Precision was better than directly com-
piling and optimising in Quartus. The clock period is found to be 9.153 ns which is 11%
lower than the timing provided in Quartus II directly. Thus, this can be run at a higher
frequency of 109.25 MHz.

7.1.3 Ambit

Ambit was run with the libraryPcCMOS18corelib. The silicon area required was anal-
ysed for various timing constraints. A rough comparison for area of the decoder is shown
in Table5. This table shows the area requirement when the constraint was set to 5 ns. The
tool succeeded in producing the design with the time delay of only 5.554 ns, which trans-
lates to a frequency of 180 MHz or 1.44 Gbps. Interestingly, not much gain was made in
terms of area when the timing constraint was relaxed, even though, the critical path delay
increased to 12 ns. The total number of design cells used, including the memory, for the
library PcCMOS18corelibwas 12,768.

Module Module Area(µm2)

Chien 15675.392
FIFO 148684.807
Forney 52936.705
Key Equation 186404.866
Syndromes 34754.560

Top View 438472.713

Table 5:Resource utilization for the decoder in CMOS18
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Experiments were also carried out with the libraryPcCMOS12corelib. Table6 shows
the area requirement for the same. The timing constraint was set to be the same as for
CMOS18 library and a critical time path of 5.092 ns was achieved, which can support
close to 200 MHz frequency, i.e. 1.6 Gbps. Also, when comparing Tables5 and6, we can
see that the area required for the same chip is almost exactly half of the one needed for
CMOS18. The total number of design cells used for the libraryPcCMOS12corelibwas
12,613, which is almost the same as that forPcCMOS18corelib.

Module Module Area(µm2)

Chien 7663.343
FIFO 83183.278
Forney 21608.247
Key Equation 89602.009
Syndromes 17828.014

Top View 219913.131

Table 6:Resource utilization for the decoder in CMOS12

7.1.4 Diesel

For power estimation,capwire exclusiveoption of Diesel was enabled, and a capacitance
of 2.1fF was used per load for the CMOS12 library and 2.2fF for the CMOS18 library.
Rest of the options were left as default. The analysis was carried out for different time
intervals and then summarized to obtain a precise dissipation of each module. It is to
be noted, however, that the values provided in this section do not include the input drive
power. The input drive power refers to the power needed to drive the input signals like
clock, reset signals and some other control signals transferred between the testbench and
the design. Needless to say, the clock signal dominates all of them. The input drive power
is mentioned separately wherever necessary. Also, the input drive power estimate is only
obtained for the overall block, not individual modules.

Variation With Frequency
As mentioned above the design was optimized for running at 200 MHz. However, the
power estimates were obtained for three different frequencies of operation - 2.5 MHz,
25 MHz and 125 MHz. Table7 shows the variation of power consumed for different
frequencies of operation for bothPcCMOS12corelibandPcCMOS18corelib. The power
figures presented here are for the entire block and for an arbitrary number of errors. The
input data used for these simulations is identical. Another thing to be noted is that the
input drive power is a function of the frequency only and not the input data, whereas the
dissipated power depends on both of them. As can be seen, both the power dissipated and
the input drive power is almost exactly linear with the frequency. The reason for this lies
in the number of transitions that occur in a given time, which is exactly dependent on the
frequency of operation of the design. For a different input data at a given frequency, only
the dissipated power varies, while the input drive power remains same.
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Power(µw)
CMOS12 CMOS18

Frequency (MHz) Diss. Drive Diss. Drive

2.5 117 190 340 611
25 1, 170 1, 900 3, 390 6, 110
125 5, 720 9, 500 16, 650 30, 570

Table 7:Power dissipation for the entire decoder for different frequencies.

Variation With Number of Errors
Figure22shows the variation of power with the number of errors found in the codeword.
The graph is shown forPcCMOS12corelibwith the design operating at 125 MHz. For a
different frequency of operation and library exactly the same trend is observed, and hence
the results are not included here. As can be seen from the graph obtained, the power
dissipated for the FIFO block is independent of the number of errors found, which is
expected and self-explanatory. The power dissipation in the syndrome computation block
is also independent of the number of errors. This can be again explained by the number
of transitions. In syndrome computation, regardless of the number of errors, all the 2× t
syndrome computation units are always active. The only difference is that if indeed the
number of errors is zero, in the final iteration the syndromes become zero; this does not
cause any significant reduction in terms of power.
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Figure 22: Variation of power dissipated with number of errors for different modules.
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For the Key Equation Solver, it is clearly seen that the power dissipated increases linearly
with the number of errors. The degree of the ELP is equal to the number of errors present
in the codeword. Therefore, the number of transitions needed to compute the ELP also
depends on the number of errors present. The degree of EEP is not the same as the
number of errors, but still depends on it. Hence, the linear graph is obtained. The Chien
search block also shows a linear increase in the power dissipated due to the similar reason.
This block as mentioned earlier, checks if a root exists at a particular location, found by
evaluating the ELP at a given location. The power consumed in evaluating the ELP is
directly proportional to its degree, as it determines the number of multiplications needed
to be done.

The behaviour of Forney evaluator is a bit different from the other modules. We see that
the power dissipated for the codeword with an even number of errors is not significantly
larger to the one with the previous number of errors. The reason lies in the fact that the
degree of EEP for codeword with one error is often the same as the one with two errors,
and so on and so forth. However, as a general rule, there is still an increase in the power
dissipation, because of some computation that is done for each error found.

Distribution of Power in Different Modules
Figure23shows a distribution of power when the maximum number of errors correctable
in the code word are found, while Figure24shows the distribution when the code word is
received intact. As can be seen, in the case of no errors, bulk of the power is consumed in
computing syndromes, apart from the memory. In the event of maximum errors detected,
the Forney block consumes the maximum power. As mentioned earlier, this does not
include the power that is dissipated in clocking of the circuit. Another thing to note is that
the Key Equation Solver is not always active. Since these polynomials are only computed
once for the entire codeword, it is active for only 25 cycles, which is only a tenth of the
codeword size. The power figure mentioned here is the averages power estimate. This is
to say that the actual power dissipated by this module when it is active is ten times that of
the average estimate provided here.

Forney:38%

FIFO:31%

Key−Equation:9%

Syndrome:16%

Chien:6%

Figure 23: Power consumed by various
blocks when 8 errors are found

Forney:1%

FIFO:64% Key−Equation:< 1%

Syndrome:33%

Chien:< 1%

Figure 24: Power consumed by various
blocks when no errors are found
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7.2 Encoder

Encoder consisted of only one single module. Also, this module is functionally very
similar to the syndrome computation block of the decoder. Therefore, the results obtained
for this block are very close to it.

7.2.1 Precision RTL

The same chip for the encoder was selected as the one in the decoder i.e. EP2S15F484C
from Altera in Stratix II series. As expected, the same number of Input/Output ports
were utilized as that of the decoder. This is due to the fact that the interface for both the
encoder and decoder is exactly same. The percentage of LUT’s (Look-up Tables) utilized
is however, 5.5% which is about 2% more than the decoder. The timing report obtained
is almost similar to the one obtained for the decoder, and it is expected to run at 78MHz.
However, as mentioned earlier, this is merely an estimate of the actual timing which can
only be obtained after the actualPlace and Routeis done.

7.2.2 Quartus II

With Quartus II, there is only marginal difference from the data obtained from Precision
RTL where the resource utilization is concerned. The timing, however, is vastly different.
Quartus II provides a maximum speed of operation as 207 MHz when the actual VHDL
module was compiled and 219 MHz when theedif netlist from Precision RTL was used.

7.2.3 Ambit

As with the decoder, experiments were carried out with bothPcCMOS12corelibandPc-
CMOS18coreliblibraries. Since, there was only one module in it and the critical path for
this module was not so long, it was possible to optimize the design for higher frequencies.
With PcCMOS12corelibit was even possible to optimize the encoder for a frequency as
high as 400 MHz. WithPcCMOS18corelib, however, the design could be only optimised
to 330MHz. Table8 shows the comparison of area required for the encoder using differ-
ent libraries and optimising for different clock periods. For the period of 5ns, the total
number of design cells was 936 forPcCMOS18coreliband 1126 forPcCMOS12corelib.

Area(µm2)
Period (ns) CMOS12 CMOS18

3.3 17906.685 34504.705

5.0 16746.795 31567.873

Table 8:Resource utilization for the encoder for different libraries.
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7.2.4 Diesel

Encoder has only one core module and is almost always active, unlike decoder which has
some blocks active only for a short while. Table9 shows the power consumption for the
encoder when it is run at different clock frequencies. The table also shows the input drive
power, which formed about 15% of the total power consumption forPcCMOS12corelib
and about 21% forPcCMOS18corelib. As can be seen from the table, the drive power
for this block is much lesser as compared to the decoder. This is because of the low
activity modules in decoder like the Key Equation Solver, which are only active for a
short interval of time. Besides, some modules are only active when the error is indeed
found in the codeword. In contrast to this, the encoder is always active, and hence the
data activity is much higher than the decoder.

Power(µw)
CMOS12 CMOS18

Frequency (MHz) Diss. Drive Diss. Drive

2.5 51 9 110 29
25 510 90 1, 103 287
125 2, 560 450 5, 490 1, 430

Table 9:Power dissipation for encoder for different frequencies.

8 Optimisations to Design

From the results, it was observed that the FIFO and the Forney block consumed most of
the power. These blocks were investigated further and redesigned to improve the perfor-
mance. The original design of FIFO involved a serial arrangement of shift-registers. This
design was the most compact in terms of area but consumed more power since at every
cycle all the elements were shifted by one. The design was hence, modified to have only
one read and write every clock cycle. This increased the design area, but significantly
reduced the power. Area of the new design of FIFO is now 109,000µm2 (with PcC-
MOS12corelib), while the power consumed is only 970µW , 60% lower than the earlier
design.

For the Forney block, design was optimised by combining two table lookups into one for
computing the inverse of elements. This resulted in a better circuit in terms of area and
also decreased the power significantly. The optimised design for Forney now occupies an
area of 13,000µm2, about 38% lower than original design. The power consumption is
lower by atleast 1.5 mW for all cases. Table10 shows the new area distribution of the
decoder.

Power analysis was repeated for the optimised design. Figure25 shows the power distri-
bution in various modules when there are 8 errors in the received codeword, while Figure
26 shows the distribution when the codeword is received intact. As we can see, the FIFO
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Module Module Area(µm2)

Chien 7655.274
FIFO 108906.613
Forney 13408.329
Key Equation 89587.888
Syndromes 17719.085

Top View 237414.359

Table 10:Resource utilization for the decoder in CMOS12 in optimised design

now takes less than half the power in no-error case, as compared to two-thirds in the orig-
inal design. In the case of 8-errors, the power consumption of Forney has now reduced to
about a quarter as compared to one-third in the original design.

Forney:27%

FIFO:21%

Key−Equation:15%

Syndrome:26%

Chien:11%

Figure 25: Power consumed when 8 er-
rors are found in optimised design

Forney:2%

FIFO:43%

Key−Equation:1%

Syndrome:54%

Chien:< 1%

Figure 26: Power consumed when no er-
rors are found in optimised design

Figure 27 shows the variation of power with the number of errors. The trend in the
power consumption of Forney is the same as before the optimisation. The total power
consumption of the design now lies between 12mW to 14mW depending upon the no-
error case to when maximum errors are found. It should be noted that 9.5mW of power is
consumed in driving the input. Thus, only about 2.5mW to 4.5mW is actually consumed
in the transitions in the design.

8.1 Embedded Memory for FIFO

Using embedded memory for FIFO was also analysed, since in the final design embedded
memory shall be used. Table11shows an estimate of the area and power consumption for
various libraries. In the table,x refers to the number of rows,y to the number of rows per
block andz to the number of blocks. The total number of words in memory isx × y × z.
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Figure 27: Variation of power dissipated with number of errors for different modules with
modifications in the design.

As can be seenAMDC C12ESRAMis the only one that provides a lower power than our
simulated design. However, all of them seem to have a better area than the synthesized
design. WhenAMDC C12ESRAMis used for the final design, the area would be reduced
by 0.08mm2, that is 80% lower than the synthesized design. The power consumption,
however, remains the same.

Size Words Area Power
Library (bits) x y z (mm2) (uW/MHz) at 125 MHz

AMDC C12XSRAM 2.2K 36 8 0.02 13.03 1628.75
LTG C12FSRAM 2.2K 72 4 0.03 11.32 1415
LTG C12FSRAM 2.2K 36 8 0.02 11.57 1446.25
AMDC C12ESRAM 2.2K 72 2 2 0.02 7.2 900
LTG C12FDSRAM 2.2K 72 4 0.06 11.86 1482.5
LTG C12FDSRAM 2.2K 36 8 0.05 12.88 1610
AMDC C12EDSRAM 2.2K 72 4 0.04 10.7 1337.5
LTG C12FTSRAM 2.2K 72 4 0.03 13.9 1737.5

Table 11:Memory Estimates for various libraries and designs
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9 Conclusions

A uniform comparison was drawn for various algorithms that have been proposed in lit-
erature. This helped in selecting the appropriate architecture for the intended application.
Besides, some modifications were also suggested. Modified Berlekamp Massey algo-
rithm was chosen for the VHDL implementation. Further, a dual line architecture was
used which is as fast as serial and has low latency as that of a parallel approach.

The decoder developed was well tested and simulated in various tools available. It was
tested for both FPGA and ASIC implementation. The throughput requirement has been
met and the area and power estimates for the chip are also provided.

The decoder implemented is capable of running at 200 MHz in ASIC implementation,
which translates to 1.6Gbps and requires only 0.44mm2 with CMOS18 technology and
only 0.22mm2 with CMOS12 technology. The system has a latency of only 284 cycles
for RS(255,239) code. The power dissipated in the worst case is 14mW for the decoder
including the memory block when operating at 1Gbps data rate.
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A Ambit

A.1 Area Report for CMOS18

+------------------------------------------------------+
| Report | report_area |
|---------+--------------------------------------------|
| Options | -hierarchical -cells > ./top_view.area.log |
+---------+--------------------------------------------+
| Date | 20040729.122531 |
| Tool | bg_shell |
| Release | v5.10-s081 |
| Version | Jul 31 2003 16:13:20 |
+---------+--------------------------------------------+
| Module | top_view |
+------------------------------------------------------+

+-------------------------------------------------------------+
| Block report for module ’top_view’ | Current | Cumulative |
| | Module | |
|--------------------------------------+---------+------------|
| Number of combinational instances | 1 | 10428 |
| Number of noncombinational instances | 0 | 3143 |
| Number of hierarchical instances | 5 | 9 |
| Number of blackbox instances | 0 | 0 |
| Total number of instances | 6 | 13580 |
| Area of combinational cells | 16.384 | 226525.188 |
| Area of non-combinational cells | 0.000 | 211947.525 |
| Total cell area | 16.384 | 438472.713 |
| Number of nets | 313 | 13586 |
| Area of nets | 0.000 | 0.000 |
| Total area | 16.384 | 438472.713 |
+-------------------------------------------------------------+

+--------------------------------------------------------------------------------+
| Cell Usage Table |
|--------------------------------------------------------------------------------|
| Cellref | Library | Number of | Cell Type | Cell Area | Total Area |
| | | Instances | | | |
|---------------+------------+------------+------------+------------+------------|
| bf1tx2 | corelib | 1 | comb | 16.384 | 16.384 |
| Chien | netlist | 1 | hier | 15675.392 | 15675.392 |
| FIFO | netlist | 1 | hier | 148684.807 | 148684.807 |
| Forney | netlist | 1 | hier | 52936.705 | 52936.705 |
| gen_elp_eep | netlist | 1 | hier | 186404.866 | 186404.866 |
| gen_syndromes | netlist | 1 | hier | 34754.560 | 34754.560 |
+--------------------------------------------------------------------------------+

A.2 Area Report for CMOS12
+------------------------------------------------------+
| Report | report_area |
|---------+--------------------------------------------|
| Options | -hierarchical -cells > ./top_view.area.log |
+---------+--------------------------------------------+
| Date | 20040823.162211 |
| Tool | bg_shell |
| Release | v5.10-s081 |
| Version | Jul 31 2003 16:13:20 |
+---------+--------------------------------------------+
| Module | top_view |
+------------------------------------------------------+

+-------------------------------------------------------------+
| Block report for module ’top_view’ | Current | Cumulative |
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| | Module | |
|--------------------------------------+---------+------------|
| Number of combinational instances | 2 | 9714 |
| Number of noncombinational instances | 0 | 3143 |
| Number of hierarchical instances | 5 | 9 |
| Number of blackbox instances | 0 | 0 |
| Total number of instances | 7 | 12866 |
| Area of combinational cells | 26.224 | 102280.110 |
| Area of non-combinational cells | 0.000 | 117094.429 |
| Total cell area | 26.224 | 219374.539 |
| Number of nets | 314 | 12872 |
| Area of nets | 0.000 | 0.000 |
| Total area | 26.224 | 219374.539 |
+-------------------------------------------------------------+

+--------------------------------------------------------------------------------+
| Cell Usage Table |
|--------------------------------------------------------------------------------|
| Cellref | Library | Number of | Cell Type | Cell Area | Total Area |
| | | Instances | | | |
|---------------+------------+------------+------------+------------+------------|
| bfx1 | corelib | 1 | comb | 8.069 | 8.069 |
| bfx4 | corelib | 1 | comb | 18.155 | 18.155 |
| Chien | netlist | 1 | hier | 7631.068 | 7631.068 |
| FIFO | netlist | 1 | hier | 82850.440 | 82850.440 |
| Forney | netlist | 1 | hier | 21630.436 | 21630.436 |
| gen_elp_eep | netlist | 1 | hier | 89472.908 | 89472.908 |
| gen_syndromes | netlist | 1 | hier | 17763.464 | 17763.464 |
+--------------------------------------------------------------------------------+

A.3 Timing Report for CMOS18
+-----------------------------------------------+
| Report | report_timing |
|---------------------+-------------------------|
| Options | > ./top_view.timing.log |
+---------------------+-------------------------+
| Date | 20040729.122529 |
| Tool | bg_shell |
| Release | v5.10-s081 |
| Version | Jul 31 2003 16:13:20 |
+---------------------+-------------------------+
| Module | top_view |
| Timing | LATE |
| Slew Propagation | WORST |
| Operating Condition | CTLF_OP_COND |
| PVT Mode | max |
| Tree Type | worst_case |
| Process | 1.500 |
| Voltage | 1.650 |
| Temperature | 125.000 |
| time unit | 1.000 ns |
| capacitance unit | 1.000 pF |
| resistance unit | 1.000 kOhm |
+-----------------------------------------------+
Path 1: VIOLATED Setup Check with Pin inst_fn/corr_sym_o_reg_5/CP
Endpoint: inst_fn/corr_sym_o_reg_5/D (v) checked with leading edge of ’IDEAL_
CLOCK’
Beginpoint: inst_ch/sum_odd_o_reg_0/Q (v) triggered by leading edge of ’IDEAL_
CLOCK’
Other End Arrival Time 0.000
- Setup 0.210
+ Phase Shift 5.000
= Required Time 4.790
- Arrival Time 5.344
= Slack Time -0.554
Clock Rise Edge 0.000
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= Beginpoint Arrival Time 0.000
+-----------------------------------------------------------------------------------+
| Instance | Arc | Cell | Delay | Arrival | Required |
| | | | | Time | Time |
|--------------------------+-----------------+---------+-------+---------+----------|
| | Decoder_clk_i ˆ | | | 0.000 | -0.554 |
| inst_ch | clk_i ˆ | Chien | | 0.000 | -0.554 |
| inst_ch/sum_odd_o_reg_0 | CP ˆ -> Q v | fd4sqx2 | 0.453 | 0.453 | -0.100 |
| inst_ch | sum_odd_o[0] v | Chien | | 0.453 | -0.100 |
| inst_fn | sum_odd_i[0] v | Forney | | 0.453 | -0.100 |
| inst_fn/i_574 | A v -> Z ˆ | ivx05 | 0.105 | 0.558 | 0.004 |
| inst_fn/i_1270 | B ˆ -> Z ˆ | an2x2 | 0.236 | 0.794 | 0.240 |
| inst_fn/i_1254 | A ˆ -> Z v | nd2x2 | 0.105 | 0.899 | 0.345 |
| inst_fn/i_940 | A v -> Z v | bf2tx7 | 0.198 | 1.097 | 0.544 |
| inst_fn/i_2313 | A v -> Z ˆ | nd2 | 0.082 | 1.179 | 0.626 |
| inst_fn/i_1428 | A ˆ -> Z v | ao7c | 0.103 | 1.282 | 0.729 |
| inst_fn/i_1742 | B v -> Z ˆ | nd2 | 0.106 | 1.388 | 0.835 |
| inst_fn/i_747 | B ˆ -> Z v | nr2 | 0.081 | 1.469 | 0.916 |
| inst_fn/i_1043 | B v -> Z ˆ | nd2 | 0.118 | 1.587 | 1.033 |
| inst_fn/i_262 | B ˆ -> Z v | nr3 | 0.124 | 1.711 | 1.157 |
| inst_fn/i_1907 | A v -> Z ˆ | ivx05 | 0.126 | 1.837 | 1.283 |
| inst_fn/i_2273 | B ˆ -> Z v | nd2x05 | 0.119 | 1.955 | 1.402 |
| inst_fn/i_2247 | A v -> Z ˆ | iv | 0.172 | 2.128 | 1.574 |
| inst_fn/i_1984 | A ˆ -> Z ˆ | bf1tx3 | 0.187 | 2.314 | 1.761 |
| inst_fn/i_2248 | A ˆ -> Z ˆ | bf2tx6 | 0.155 | 2.469 | 1.915 |
| inst_fn/i_1173 | A ˆ -> Z v | nd2 | 0.072 | 2.541 | 1.987 |
| inst_fn/i_1211 | A v -> Z ˆ | nd2 | 0.074 | 2.615 | 2.062 |
| inst_fn/i_036928 | A ˆ -> Z v | nd2 | 0.068 | 2.683 | 2.129 |
| inst_fn/i_663 | A v -> Z ˆ | nd2 | 0.088 | 2.771 | 2.217 |
| inst_fn/i_1924 | B ˆ -> Z v | nr2 | 0.091 | 2.862 | 2.308 |
| inst_fn/i_645 | A v -> Z ˆ | nd4 | 0.119 | 2.980 | 2.427 |
| inst_fn/i_547 | A ˆ -> Z v | nr2 | 0.089 | 3.070 | 2.516 |
| inst_fn/i_913 | B v -> Z ˆ | nd3 | 0.141 | 3.210 | 2.657 |
| inst_fn/i_5 | A ˆ -> Z v | nr2 | 0.103 | 3.314 | 2.760 |
| inst_fn/i_1004 | A v -> Z ˆ | nr2 | 0.120 | 3.434 | 2.880 |
| inst_fn/i_618 | A ˆ -> Z v | ivx05 | 0.119 | 3.553 | 3.000 |
| inst_fn/i_880 | A v -> Z ˆ | nd2 | 0.100 | 3.653 | 3.099 |
| inst_fn/i_794 | B ˆ -> Z v | nd2 | 0.064 | 3.717 | 3.164 |
| inst_fn/i_760 | A v -> Z ˆ | nr2 | 0.113 | 3.830 | 3.276 |
| inst_fn/i_621 | A ˆ -> Z v | iv | 0.083 | 3.913 | 3.359 |
| inst_fn/i_858 | A v -> Z ˆ | nd2 | 0.075 | 3.987 | 3.434 |
| inst_fn/i_822 | B ˆ -> Z v | nd2 | 0.075 | 4.062 | 3.508 |
| inst_fn/i_1245 | B v -> Z ˆ | nd2 | 0.146 | 4.208 | 3.654 |
| inst_fn/i_559 | A ˆ -> Z v | en2x05 | 0.290 | 4.498 | 3.944 |
| inst_fn/i_34 | A v -> Z ˆ | nr2 | 0.159 | 4.657 | 4.103 |
| inst_fn/i_2524735 | C ˆ -> Z v | ao6 | 0.181 | 4.837 | 4.284 |
| inst_fn/i_1723 | B v -> Z ˆ | nd2 | 0.159 | 4.996 | 4.442 |
| inst_fn/i_1726 | C ˆ -> Z v | ao7 | 0.108 | 5.104 | 4.550 |
| inst_fn/i_1734 | A v -> Z ˆ | nd2 | 0.127 | 5.231 | 4.677 |
| inst_fn/i_1740 | A ˆ -> Z v | ao4 | 0.113 | 5.344 | 4.790 |
| inst_fn/corr_sym_o_reg_5 | D v | fd2sqx2 | 0.000 | 5.344 | 4.790 |
+-----------------------------------------------------------------------------------+

A.4 Timing Report for CMOS12
+--------------------------------------------+
| Report | report_timing |
|------------------+-------------------------|
| Options | > ./top_view.timing.log |
+------------------+-------------------------+
| Date | 20040823.155715 |
| Tool | bg_shell |
| Release | v5.10-s081 |
| Version | Jul 31 2003 16:13:20 |
+------------------+-------------------------+
| Module | top_view |
| Timing | LATE |
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| Slew Propagation | WORST |
| PVT Mode | max |
| Tree Type | worst_case |
| Process | 1.500 |
| Voltage | 1.650 |
| Temperature | 125.000 |
| time unit | 1.000 ns |
| capacitance unit | 1.000 pF |
| resistance unit | 1.000 kOhm |
+--------------------------------------------+
Path 1: VIOLATED Setup Check with Pin inst_ee/C_r_reg_11_4/CP
Endpoint: inst_ee/C_r_reg_11_4/D (v) checked with leading edge of ’IDEAL_
CLOCK’
Beginpoint: inst_ee/D_r_reg_12_7/Q (v) triggered by leading edge of ’IDEAL_
CLOCK’
Other End Arrival Time 0.000
- Setup 0.128
+ Phase Shift 5.000
= Required Time 4.872
- Arrival Time 5.092
= Slack Time -0.220
Clock Rise Edge 0.000
= Beginpoint Arrival Time 0.000
+-----------------------------------------------------------------------------------+
| Instance | Arc | Cell | Delay | Arrival | Required |
| | | | | Time | Time |
|----------------------+-----------------+-------------+-------+---------+----------|
| | Decoder_clk_i ˆ | | | 0.000 | -0.220 |
| inst_ee | clk_i ˆ | gen_elp_eep | | 0.000 | -0.220 |
| inst_ee/D_r_reg_12_7 | CP ˆ -> Q v | df2sqx05 | 0.301 | 0.301 | 0.080 |
| inst_ee/i_35529 | A v -> Z v | bfx1 | 0.282 | 0.583 | 0.362 |
| inst_ee/i_17998 | B v -> Z ˆ | nr2ax05 | 0.442 | 1.025 | 0.804 |
| inst_ee/i_613 | D ˆ -> Z v | ao31x05 | 0.358 | 1.382 | 1.162 |
| inst_ee/i_115 | C v -> Z ˆ | ao7abx05 | 0.245 | 1.627 | 1.407 |
| inst_ee/i_626 | D ˆ -> Z v | ao32abx05 | 0.169 | 1.796 | 1.576 |
| inst_ee/i_350 | D v -> Z ˆ | ao32x1 | 0.205 | 2.002 | 1.781 |
| inst_ee/i_639 | D ˆ -> Z v | ao37x05 | 0.164 | 2.165 | 1.945 |
| inst_ee/i_4683 | D v -> Z ˆ | ao37abx05 | 0.353 | 2.518 | 2.298 |
| inst_ee/i_4660 | B ˆ -> Z v | xns2x1 | 0.357 | 2.876 | 2.655 |
| inst_ee/i_1186 | B v -> Z v | xns2x1 | 0.240 | 3.116 | 2.896 |
| inst_ee/i_1649 | C v -> Z ˆ | ao7x05 | 0.198 | 3.314 | 3.093 |
| inst_ee/i_192 | D ˆ -> Z v | ao34x05 | 0.220 | 3.533 | 3.313 |
| inst_ee/i_1011 | B v -> Z v | xns2x05 | 0.319 | 3.852 | 3.632 |
| inst_ee/i_427 | A v -> Z v | xns2x05 | 0.338 | 4.190 | 3.969 |
| inst_ee/i_1665 | D v -> Z ˆ | ao34x05 | 0.244 | 4.434 | 4.214 |
| inst_ee/i_4651 | D ˆ -> Z v | ao37x05 | 0.280 | 4.714 | 4.494 |
| inst_ee/i_1695 | B v -> Z ˆ | nd2x05 | 0.180 | 4.894 | 4.674 |
| inst_ee/i_55217 | C ˆ -> Z v | ao44x1 | 0.198 | 5.092 | 4.872 |
| inst_ee/C_r_reg_11_4 | D v | df2sqx05 | 0.000 | 5.092 | 4.872 |
+-----------------------------------------------------------------------------------+

B Quartus

B.1 Direct Compilation

B.1.1 Fit Summary

Flow Status : Successful - Tue Aug 17 16:44:24 2004
Quartus II Version : 4.1 Build 181 06/29/2004 SJ Web Edition
Revision Name : decoder
Top-level Entity Name : decoder_top
Family : Stratix II
Total ALUTs : 2,749 / 12,480 ( 22 % )
Total registers : 888
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Total pins : 22 / 343 ( 6 % )
Total memory bits : 2,248 / 419,328 ( < 1 % )
DSP block 9-bit elements : 2 / 96 ( 2 % )
Total PLLs : 0 / 6 ( 0 % )
Total DLLs : 0 / 2 ( 0 % )
Device : EP2S15F484C3
Timing Models : Preliminary

B.1.2 Map Summary

Flow Status : Successful - Tue Aug 17 16:42:33 2004
Quartus II Version : 4.1 Build 181 06/29/2004 SJ Web Edition
Revision Name : decoder
Top-level Entity Name : decoder_top
Family : Stratix II
Total combinational functions : 2396
Total registers : 888
Total pins : 22
Total memory bits : 2,248
DSP block 9-bit elements : 2
Total PLLs : 0
Total DLLs : 0

B.1.3 Timing Analyzer Summary

--------------------------------------------------------------------------------------
Timing Analyzer Summary
--------------------------------------------------------------------------------------

Type : Worst-case tsu
Slack : N/A
Required Time : None
Actual Time : 6.785 ns
From : Decoder_hold_ctrl_i
To : gen_syndromes:inst_syn|syndromes_o[6][7]
From Clock :
To Clock : Decoder_clk_i
Failed Paths : 0

Type : Worst-case tco
Slack : N/A
Required Time : None
Actual Time : 5.335 ns
From : forney:inst_fn|corr_sym_o[1]
To : Decoder_outSym_data_o[1]
From Clock : Decoder_clk_i
To Clock :
Failed Paths : 0

Type : Worst-case tpd
Slack : N/A
Required Time : None
Actual Time : 6.507 ns
From : Decoder_hold_ctrl_i
To : Decoder_hold_ctrl_o
From Clock :
To Clock :
Failed Paths : 0

Type : Worst-case th
Slack : N/A
Required Time : None
Actual Time : 0.741 ns
From : Decoder_inSym_data_i[2]
To : gen_syndromes:inst_syn|syn_v[0][2]
From Clock :
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To Clock : Decoder_clk_i
Failed Paths : 0

Type : Worst-case Minimum tco
Slack : N/A
Required Time : None
Actual Time : 5.034 ns
From : forney:inst_fn|corr_sym_ready_o
To : Decoder_valid_ctrl_o
From Clock : Decoder_clk_i
To Clock :
Failed Paths : 0

Type : Worst-case Minimum tpd
Slack : N/A
Required Time : None
Actual Time : 6.507 ns
From : Decoder_hold_ctrl_i
To : Decoder_hold_ctrl_o
From Clock :
To Clock :
Failed Paths : 0

Type : Clock Setup: ’Decoder_clk_i’
Slack : -2.272 ns
Required Time : 125.00 MHz ( period = 8.000 ns )
Actual Time : 97.35 MHz ( period = 10.272 ns )
From : gen_elp_eep:inst_ee|lpm_counter:i_v_rtl_0|cntr_rs8:auto_generated|safe_q[1]
To : gen_elp_eep:inst_ee|l_v[5]
From Clock : Decoder_clk_i
To Clock : Decoder_clk_i
Failed Paths : 294

Type : Total number of failed paths
Slack :
Required Time :
Actual Time :
From :
To :
From Clock :
To Clock :
Failed Paths : 0

--------------------------------------------------------------------------------------

B.2 Compilation from EDIF netlist

B.2.1 Fit Summary

Flow Status : Successful - Wed Aug 25 18:10:54 2004
Quartus II Version : 4.1 Build 181 06/29/2004 SJ Web Edition
Revision Name : EdifCheck
Top-level Entity Name : decoder_top
Family : Stratix II
Total ALUTs : 3,120 / 12,480 ( 25 % )
Total registers : 888
Total pins : 22 / 343 ( 6 % )
Total memory bits : 2,248 / 419,328 ( < 1 % )
DSP block 9-bit elements : 0 / 96 ( 0 % )
Total PLLs : 0 / 6 ( 0 % )
Total DLLs : 0 / 2 ( 0 % )
Device : EP2S15F484C3
Timing Models : Preliminary
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B.2.2 Map Summary

Flow Status : Successful - Wed Aug 25 18:09:21 2004
Quartus II Version : 4.1 Build 181 06/29/2004 SJ Web Edition
Revision Name : EdifCheck
Top-level Entity Name : decoder_top
Family : Stratix II
Total combinational functions : 2720
Total registers : 888
Total pins : 22
Total memory bits : 2,248
DSP block 9-bit elements : 0
Total PLLs : 0
Total DLLs : 0

B.2.3 Timing Analyzer Summary

--------------------------------------------------------------------------------------
Timing Analyzer Summary
--------------------------------------------------------------------------------------

Type : Worst-case tsu
Slack : N/A
Required Time : None
Actual Time : 8.259 ns
From : Decoder_hold_ctrl_i
To : gen_elp_eep:inst_ee|D_r_14_0
From Clock :
To Clock : Decoder_clk_i
Failed Paths : 0

Type : Worst-case tco
Slack : N/A
Required Time : None
Actual Time : 5.615 ns
From : forney:inst_fn|corr_sym_o_7
To : Decoder_outSym_data_o[7]
From Clock : Decoder_clk_i
To Clock :
Failed Paths : 0

Type : Worst-case tpd
Slack : N/A
Required Time : None
Actual Time : 6.069 ns
From : Decoder_hold_ctrl_i
To : Decoder_hold_ctrl_o
From Clock :
To Clock :
Failed Paths : 0

Type : Worst-case th
Slack : N/A
Required Time : None
Actual Time : 0.399 ns
From : Decoder_inSym_data_i[2]
To : gen_syndromes:inst_syn|syn_v_5_2
From Clock :
To Clock : Decoder_clk_i
Failed Paths : 0

Type : Worst-case Minimum tco
Slack : N/A
Required Time : None
Actual Time : 5.088 ns
From : forney:inst_fn|corr_sym_ready_o
To : Decoder_valid_ctrl_o
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From Clock : Decoder_clk_i
To Clock :
Failed Paths : 0

Type : Worst-case Minimum tpd
Slack : N/A
Required Time : None
Actual Time : 6.069 ns
From : Decoder_hold_ctrl_i
To : Decoder_hold_ctrl_o
From Clock :
To Clock :
Failed Paths : 0

Type : Clock Setup: ’Decoder_clk_i’
Slack : N/A
Required Time : None
Actual Time : 109.25 MHz ( period = 9.153 ns )
From : chien:inst_ch|NOT_sum_odd_o_4
To : forney:inst_fn|corr_sym_o_5
From Clock : Decoder_clk_i
To Clock : Decoder_clk_i
Failed Paths : 0

Type : Total number of failed paths
Slack :
Required Time :
Actual Time :
From :
To :
From Clock :
To Clock :
Failed Paths : 0

--------------------------------------------------------------------------------------

C Precision RTL

C.1 Area Report
***********************************************
Device Utilization for EP2S15F484C
***********************************************
Resource Used Avail Utilization
-----------------------------------------------
IOs 22 310 7.10%
LUTs 2673 7800 34.27%
Registers 879 419328 0.21%
Memory Bits 2264 96 2358.33%
DSP block 9-bit elems 2 0 inf%

-----------------------------------------------
WARNING: This design does not fit in the device specified!
This design does not fit into any device in this technology!

*******************************************************

Library: work Cell: decoder_top View: structure_1

*******************************************************

Cell Library References Total Area

INBUF stratixii 12 x
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OUTBUF stratixii 10 x
altshift_taps_8_283_1_3_0 OPERATORS 1 x 2264 2264 Memory Bits
Chien work 1 x 96 96 Registers

0 0 LCs
167 167 LUTs

Forney work 1 x 81 81 Registers
0 0 LCs

525 525 LUTs
gen_elp_eep work 1 x 437 437 Registers

0 0 LCs
2 2 DSP block 9-bit elems

1834 1834 LUTs
gen_syndromes work 1 x 146 146 LUTs

265 265 Registers
stratixii_lcell_comb stratixii 1 x 1 1 LUTs

Number of ports : 22
Number of nets : 343
Number of instances : 28
Number of references to this view : 0

Total accumulated area :
Number of DSP block 9-bit elems : 2
Number of LCs : 0
Number of LUTs : 2673
Number of Memory Bits : 2264
Number of Registers : 879
Number of accumulated instances : 3628

C.2 Timing Report
-- CTE report summary..

CTE Report Summary

Clock Frequency Report

Domain Clock Name Min Period (Freq)
------ ---------- -----------------
ClockDomain1 Decoder_clk_i 12.886 (77.604 MHz)
End CTE Report Summary ..... CPU Time Used: 4 sec.
-- CTE report summary..

CTE Report Summary

Analyzing setup constraint violations 10

Setup Slack Path Summary

Data
Setup Path

Index Slack Delay Source Clock Dest. Clock Data Start Pin Data End Pin
----- ------ ------ ------------- ------------- ------------------------- ---------
---------------- ----

1 -4.886 12.726 Decoder_clk_i Decoder_clk_i inst_ee/reg_i_v(0)/clk inst_ee/reg_l_v(7)/datain
2 -4.428 12.268 Decoder_clk_i Decoder_clk_i inst_ee/reg_i_v(1)/clk inst_ee/reg_l_v(7)/datain
3 -4.392 12.232 Decoder_clk_i Decoder_clk_i inst_ee/reg_i_v(2)/clk inst_ee/reg_l_v(7)/datain
4 -4.356 12.196 Decoder_clk_i Decoder_clk_i inst_ee/reg_i_v(3)/clk inst_ee/reg_l_v(7)/datain
5 -4.320 12.160 Decoder_clk_i Decoder_clk_i inst_ee/reg_i_v(4)/clk inst_ee/reg_l_v(7)/datain
6 -4.284 12.124 Decoder_clk_i Decoder_clk_i inst_ee/reg_i_v(5)/clk inst_ee/reg_l_v(7)/datain
7 -4.230 12.070 Decoder_clk_i Decoder_clk_i inst_ee/reg_i_v(6)/clk inst_ee/reg_l_v(7)/datain
8 -4.176 12.016 Decoder_clk_i Decoder_clk_i inst_ee/reg_i_v(7)/clk inst_ee/reg_l_v(7)/datain
9 -2.841 10.681 Decoder_clk_i Decoder_clk_i inst_ee/reg_C_r(0)(4)/clk inst_ee/reg_l_v(7)/datain

10 -2.817 10.657 Decoder_clk_i Decoder_clk_i inst_ee/reg_C_r(0)(3)/clk inst_ee/reg_l_v(7)/datain

End CTE Report Summary ..... CPU Time Used: 0 sec.
-- CTE report timing..

CTE Critical Path Report
-- CTE get true worst setup path..
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Critical path #1, (path slack = -4.89):

SOURCE CLOCK: name: Decoder_clk_i period: 8.000000
Times are relative to the 1st rising edge

DEST CLOCK: name: Decoder_clk_i period: 8.000000
Times are relative to the 2nd rising edge

NAME GATE DELAY ARRIVAL DIR FANOUT
inst_ee/reg_i_v(0)/clk stratixii_lcell_ff 0.00 up
inst_ee/reg_i_v(0)/regout stratixii_lcell_ff 0.61 0.61 up
inst_ee/i_v(0) (net) 0.00 2
inst_ee/i_v_inc_201/ix23/datac stratixii_lcell_comb 0.61 up
inst_ee/i_v_inc_201/ix23/sumout stratixii_lcell_comb 1.68 2.29 up
inst_ee/i_v_inc_201/nx28 (net) 0.00 20
inst_ee/modgen_dec_203/ix23/datac stratixii_lcell_comb 2.29 up
inst_ee/modgen_dec_203/ix23/cout stratixii_lcell_comb 0.44 2.72 up
inst_ee/modgen_dec_203/nx29 (net) 0.00 1
inst_ee/modgen_dec_203/ix34/cin stratixii_lcell_comb 2.72 up
inst_ee/modgen_dec_203/ix34/cout stratixii_lcell_comb 0.04 2.76 up
inst_ee/modgen_dec_203/nx40 (net) 0.00 1
inst_ee/modgen_dec_203/ix45/cin stratixii_lcell_comb 2.76 up
inst_ee/modgen_dec_203/ix45/cout stratixii_lcell_comb 0.04 2.80 up
inst_ee/modgen_dec_203/nx51 (net) 0.00 1
inst_ee/modgen_dec_203/ix56/cin stratixii_lcell_comb 2.80 up
inst_ee/modgen_dec_203/ix56/cout stratixii_lcell_comb 0.04 2.83 up
inst_ee/modgen_dec_203/nx62 (net) 0.00 1
inst_ee/modgen_dec_203/ix67/cin stratixii_lcell_comb 2.83 up
inst_ee/modgen_dec_203/ix67/cout stratixii_lcell_comb 0.04 2.87 up
inst_ee/modgen_dec_203/nx73 (net) 0.00 1
inst_ee/modgen_dec_203/ix78/cin stratixii_lcell_comb 2.87 up
inst_ee/modgen_dec_203/ix78/cout stratixii_lcell_comb 0.04 2.90 up
inst_ee/modgen_dec_203/nx84 (net) 0.00 1
inst_ee/modgen_dec_203/ix89/cin stratixii_lcell_comb 2.90 up
inst_ee/modgen_dec_203/ix89/cout stratixii_lcell_comb 0.04 2.94 up
inst_ee/modgen_dec_203/nx95 (net) 0.00 1
inst_ee/modgen_dec_203/ix100/cin stratixii_lcell_comb 2.94 up
inst_ee/modgen_dec_203/ix100/sumout stratixii_lcell_comb 0.73 3.67 up
inst_ee/modgen_dec_203/nx105 (net) 0.00 2
inst_ee/modgen_gt_204/ix101/datad stratixii_lcell_comb 3.67 up
inst_ee/modgen_gt_204/ix101/cout stratixii_lcell_comb 0.35 4.02 up
inst_ee/modgen_gt_204/nx107 (net) 0.00 1
inst_ee/modgen_gt_204/ix112/cin stratixii_lcell_comb 4.02 up
inst_ee/modgen_gt_204/ix112/cout stratixii_lcell_comb 0.04 4.06 up
inst_ee/modgen_gt_204/nx118 (net) 0.00 1
inst_ee/i123bx2/datad stratixii_lcell_comb 4.06 up
inst_ee/i123bx2/combout stratixii_lcell_comb 1.39 5.45 up
inst_ee/n123bx2 (net) 0.00 18
inst_ee/l_v_mult_206/ix34/datab(0) lpm_mult_1 5.45 up
inst_ee/l_v_mult_206/ix34/result(0) lpm_mult_1 4.97 10.42 up
inst_ee/l_v_mult_206/nx33 (net) 0.00 1
inst_ee/l_v_add_209/ix31/datac stratixii_lcell_comb 10.42 up
inst_ee/l_v_add_209/ix31/cout stratixii_lcell_comb 0.44 10.85 up
inst_ee/l_v_add_209/nx37 (net) 0.00 1
inst_ee/l_v_add_209/ix42/cin stratixii_lcell_comb 10.85 up
inst_ee/l_v_add_209/ix42/cout stratixii_lcell_comb 0.04 10.89 up
inst_ee/l_v_add_209/nx48 (net) 0.00 1
inst_ee/l_v_add_209/ix53/cin stratixii_lcell_comb 10.89 up
inst_ee/l_v_add_209/ix53/cout stratixii_lcell_comb 0.04 10.92 up
inst_ee/l_v_add_209/nx59 (net) 0.00 1
inst_ee/l_v_add_209/ix64/cin stratixii_lcell_comb 10.92 up
inst_ee/l_v_add_209/ix64/cout stratixii_lcell_comb 0.04 10.96 up
inst_ee/l_v_add_209/nx70 (net) 0.00 1
inst_ee/l_v_add_209/ix75/cin stratixii_lcell_comb 10.96 up
inst_ee/l_v_add_209/ix75/cout stratixii_lcell_comb 0.04 11.00 up
inst_ee/l_v_add_209/nx81 (net) 0.00 1
inst_ee/l_v_add_209/ix86/cin stratixii_lcell_comb 11.00 up
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inst_ee/l_v_add_209/ix86/cout stratixii_lcell_comb 0.04 11.03 up
inst_ee/l_v_add_209/nx92 (net) 0.00 1
inst_ee/l_v_add_209/ix97/cin stratixii_lcell_comb 11.03 up
inst_ee/l_v_add_209/ix97/cout stratixii_lcell_comb 0.04 11.07 up
inst_ee/l_v_add_209/nx103 (net) 0.00 1
inst_ee/l_v_add_209/ix108/cin stratixii_lcell_comb 11.07 up
inst_ee/l_v_add_209/ix108/sumout stratixii_lcell_comb 0.70 11.77 up
inst_ee/l_v_add_209/nx113 (net) 0.00 1
inst_ee/i9f82x1/dataa stratixii_lcell_comb 11.77 up
inst_ee/i9f82x1/combout stratixii_lcell_comb 0.96 12.73 up
inst_ee/n9f82x1 (net) 0.00 1
inst_ee/reg_l_v(7)/datain stratixii_lcell_ff 12.73 up

Initial edge separation: 8.00
Source clock delay: - 1.79
Dest clock delay: + 1.79

-----------
Edge separation: 8.00
Setup constraint: - 0.16

-----------
Data required time: 7.84
Data arrival time: - 12.73

-----------
Slack (VIOLATED): -4.89

-- CPU Time Used: 0 sec.
End CTE Analysis ..... CPU Time Used: 0 sec.
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