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Abstract—Efficient low-power accelerators for Convolutional
Neural Networks (CNNs) largely benefit from quantization and
approximation, which are typically applied layer-wise for efficient
hardware implementation. In this work, we present a novel
strategy for efficient combination of these concepts at a deeper
level, which is at each channel or kernel. We first apply layer-
wise, low bit-width, linear quantization and truncation-based
approximate multipliers to the CNN computation. Then, based on
a state-of-the-art resiliency analysis, we are able to apply a kernel-
wise approximation and quantization scheme with negligible
accuracy losses, without further retraining. Our proposed strategy
is implemented in a specialized framework for fast design space
exploration. This optimization leads to a boost in estimated power
savings of up to 34% in residual CNN architectures for image
classification, compared to the base quantized architecture.

Index Terms—Resiliency, Kernel-wise optimization, Approxi-
mate Computing, CNN inference, AI Accelerator.

I. INTRODUCTION

CNNs are currently the key building blocks in several
emerging applications which require fast inference execution,
ultra-low power and high reliability. Two main approaches have
been proposed in the literature to meet these requirements:
CNN quantization and hardware approximation [1]–[3].

In this work, we combine the concepts of mapping quan-
tization error to approximation, and using resiliency metrics
to perform kernel-wise optimization. Resiliency analysis for
CNN safety optimization has been explored in [4]–[6], where
resiliency metrics were computed using Taylor expansion [7] to
identify more sensitive kernels and propose a more reliable de-
sign architecture. A similar approach is presented in [8] where
the more relevant kernels, identified by layer-wise Relevance
Propagation [9], are computed in more resilient hardware cores.
The use of resiliency for CNN approximation has also been
explored in [10]–[12], where authors use different resiliency
metrics for neuron-wise approximation. Drawbacks from these
approaches are the challenging implementation in hardware of
the obtained configurations, and their limitation to small CNN
architectures. In this context, we demonstrate a favorable trade-
off between approximation level and hardware complexity.

Methodologies that combine CNN quantization and ap-
proximation have been presented in [13], [14]. While both
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approaches were used for CNN optimization, we extend the
state of the art by exploring the further combination of both
at a kernel-wise level, which leads to improved energy savings
with minor accuracy losses.

For CNN approximation, we select truncated multipliers
without error correction. In [15], a truncation-based approxi-
mate multiply-and-accumulate (MAC) unit architecture with er-
ror compensation was introduced. Our proposed approximation
approach, on the other hand, does not require a compensation
function in hardware, as the introduced truncation error is
leveraged at algorithmic level. This results in no area and power
overhead from introducing the truncated multiplier.

In summary, our contributions are:
• A novel approach to efficiently combine CNN quantization

and approximation at layer and kernel level.
• A methodology for design space exploration to effectively

select and approximate kernels based on their relevancy
metric, with negligible accuracy loss.

• Hardware realizations on both single MAC unit level as
well as system level.

Our approach yields energy efficient CNNs with minimum
accuracy loss. To our best knowledge, this is the first work
to explore kernel-wise CNN approximation and quantization.
Our experimental results show that our proposed optimization
can achieve up to 34% further power savings in three different
Residual architectures [16] trained with CIFAR10 [17].

II. PRELIMINARIES

A. Convolutional Neural Networks

CNN architectures are primarily built of convolutional layers.
Their function is to extract relevant features by convolving a
weight tensor W , parameterized by a height Hw, width Ww,
depth Chin and channels or kernels Chout with an input tensor
X of shape Hin,Win, Cin and adding kernel bias bk. The
output of a convolutional layer is computed by:

Yk,l,n =
∑
i,j,p

Wi,j,p,n · Xk+i−1,l+j−1,p + bk , (1)

where i, j, p, n correspond to the dimensions of W . In this
work, we apply different approximation and quantization levels
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Fig. 1: Truncated multiplier with T = 3.

at each kernel, that is, at the dimension Chout, which in this
case corresponds to the last dimension of weights and outputs.

In this work, we quantize 32-bit floating-point (FP) acti-
vations and weights to 8 and 4 bits respectively, following a
linear quantization approach, characterized by a symmetric and
uniform bin distribution. As this quantization results in accu-
racy degradation, the CNN is retrained until the FP accuracy
is reached within a tolerance of 0.1%.

B. Truncated multiplier

Truncated multipliers are characterized by the truncation
of T Least Significant Bits (LSBs) or columns in the partial
product computation. We work with signed, 8×4 multipliers,
affine to the utilized quantization. We denote the inputs as
A (activation) and B (weight). In both operands, the Most
Significant Bit (MSB) corresponds to the sign bit, as we
use Sign-Magnitude (SM) representation. The multiplication
is then performed between a0, ...a6 and b0, ..., b2 and finally
we determine the resulting sign bit c10 through a7XORb3. The
truncation scheme is presented in Fig. 1.

III. HARDWARE-AWARE CNN OPTIMIZATION

Our proposed methodology for hardware-aware CNN op-
timization is presented in Fig. 2. It consists of two stages:
In the first stage, uniform CNN approximation is performed
by iterative approximation and fine-tuning, and in the second
stage, a further resiliency-based kernel-wise approximation is
performed. Both stages are thoroughly described in the follow-
ing sub-sections.

1st Stage

2nd Stage

FP pre-trained CNN model

CNN Quantization

Approximate CNN with T

CNN Acc. Loss< τ T = T + 1

Retrain CNN with hyperparameters H

CNN Acc. Loss < τ

Uniform CNN approximation with T − 1

Kernel-wise resiliency
analysis

Kernel-wise approximation
With threshold ε

Kernel-wise optimized CNN model

yes

yes

Fig. 2: Methodology for hardware-aware CNN optimization

A. Full approximation and fine-tuning

In the first stage of our optimization approach, we quantize
and then approximate all CNN layers using the truncated

multiplier with T = 1. If the accuracy after approximation
is within our proposed tolerance τ , we approximate the CNN
with T + 1. If there is some accuracy degradation, the CNN
is fine-tuned for few apochs until τ is reached. This process is
repeated until τ cannot be reached after fine-tuning. With this,
we guarantee a minimum approximation level, and thus energy
savings, for the whole CNN.

B. Kernel-wise Optimization

After iterative full CNN approximation and fine-tuning, there
is still room for further approximation at the kernel level,
and therefore further energy savings. To achieve this, we
propose to further approximate the most resilient kernels while
maintaining our accuracy tolerance τ .

To select these resilient kernels, we propose a novel ap-
proach. This solution is based on understandable neural net-
works research [18], [19]. The focus of this research is to
determine the relationships between neural network predictions
and input feature maps. By linking the resulting prediction to
the input stimulus through back-propagation, the most relevant
input features can be identified. In this work, we make use of
the framework presented in [19], where different methods to
identify relevant input features in CNNs are implemented. This
relevance is defined as the contribution of a certain pixel in
the overall prediction of the network [18]. Hereby, we extend
this concept to identify network elements where additional
approximation can be applied with negligible CNN accuracy
degradation. More specifically, we identify the least relevant
kernels in each layer, and then quantize their weights to smaller
bit-widths. This results in no additional approximation error,
while achieving further power savings (see section V).

Note that to identify less resilient kernels, a threshold
ε must be defined. This threshold is based on the aver-
age of the resiliency metric across the j and p dimen-
sions and over the whole training set. To apply the kernel-
wise optimization (KWO), Algorithm 1 is performed. The
V alidationAcc(MKWO,ε) is computed according to the fol-
lowing approximation schemes: increase the value of T , or
decrease the number of bits used to represent the kernel
weights. Both approximations are evaluated in Section V.

The algorithm starts by performing a relevancy analysis
using the whole training dataset. For each layer in the model,
resiliency metrics are calculated through back-propagation be-
tween predictions and inputs. These metrics are then averaged
over dimensions i, j, n (see (1)). These values are then nor-
malized. A threshold ε = 1e−7 is used in our experiments.
We increase ε gradually by a factor α, as long as the test
accuracy for the kernel-wise optimized model remains within
the tolerance τ . Alongside LRP-presentAflat, we also test the
following methods: Deep Taylor [7], LRP-epilson and LRP-
Zplus [9], and GuidedBackprop [20]. Each method delivers dif-
ferent number of relevant kernels, and thus, different accuracy
degradation, which is further analyzed in section V. Note that
kernel relevancy and resiliency are inversely proportional.



IV. HARDWARE IMPLEMENTATION

The goal of the presented approximation techniques is to
yield a more efficient hardware on both MAC unit level as
well as on system level. In this section, we explore possible
hardware realizations for both perspectives with focus on the
first one, as the second is intended for future work.
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Fig. 3: Array Multipliers (A) A full 8*4 Array Multiplier
including the sign computation, (B) A 4-column truncated
8*4 Array Multiplier, (C) A 5-column truncated 8*4 Array
Multiplier, (D) A 4-column truncated 8*3 Multiplier

A. Approximated MAC Unit Level

The column truncation in the partial product of a multiplier
can be translated into a MAC unit with less AND gates and
adder blocks. In a CNN, as explained in section III, for all
layers, and thus for all kernels, there is a minimum number of
truncated columns that can be achieved. The truncated columns
can then be completely discarded from the designed MAC unit,
thereby saving power and area.

The second step is defining the columns that can be truncated
or not depending on the kernel being computed. The hardware
blocks intended for these column computations will exist in
the final MAC unit. However, these blocks can be turned off
completely, reducing the power consumption of the MAC unit.
The main benefit would come from data-gated MAC units [21].

The blocks of truncated columns will be kept at zero.
Therefore, switching activity is reduced. Moreover, as these

Algorithm 1 KWO Algorithm

Input: Model M, Dataset D
Output: Set of Output Kernel Indices Ik Satisfying the accu-

racy tolerance τ
1: Initialization ε = 1e−7, α = 10
2: for all layers l in M do
3: Ri,j,p,n=LRP(M(l),D)
4: Rn =

∑
i

∑
j

∑
pRi,j,p,n {Compute average over data-

sample, j and p.}
5: Rn = Rn/ argmaxn=1,...,N 〈Rn〉
6: while V alidationAcc(MKWO,ε) ≥ τ do
7: Ik = Find kernels such that (Rn ≤ ε)
8: ε = αε
9: end while

10: end for

blocks do not contribute anymore, the critical path of the MAC
unit is drastically shortened. That could lead to either increase
the operating frequency for faster throughput, or decrease the
supply voltage at the same frequency and same throughput. In
our approach we follow the second option which reduces the
final power consumption. We illustrate such multiplier in Fig.
3, where we use an array-multiplier as the base design [22].

B. System-level

The methodology we presented in section III can help to
design more efficient system architectures. First, it can allow
for systems with MAC units of different precision. For example,
if the framework estimates that for all layers in a CNN at
least a certain number of kernels can be approximated to a
lower precision or a higher number of truncated columns,
then the hardware can be built upon such information, con-
sequently benefiting from it. Second, many research works
target precision scalability from the layer perspective. In such
architectures, according to the layer precision, further power
saving and area efficiency can be achieved. This concept can
be further extended to allow scalability within the same layer.
For example, mapping kernels with the same approximation or
truncation together to the same unit. As shown in Figure 3, one
possible realization is having different MAC units with different
approximations as part of the same system, and mapping the
kernels to the appropriate MAC unit.

V. EXPERIMENTAL RESULTS

We present the evaluation results of our proposed approach.
We evaluate our methodology on three Residual Networks
(ResNet) [16] trained for image classification with CIFAR10
[17]. In Table IV, we report the number of parameters and
multiply operations of the evaluated CNNs, as well as the
8x4 quantized accuracies after retraining (see section II-A). All
optimization experiments were performed using a GPU Nvidia
GTX 1080 Ti with 11GB GDDR5X, and ProxSim, a GPU-
accelerated framework for approximate computing [14], based
on Tensorflow [23]. The different MAC units were compiled
using Synopsys Design Compiler at 22nm FDSOI technology
and supply voltage of 0.72v at original MAC and 0.59v at
approximated version with same max frequency supported and
worst operating conditions to model power and area of the
synthesized components. The estimation of the power consump-
tion was based on the number of MAC operations needed per
layer, the power saving in each MAC through truncation, and
the power saving in each MAC through switching from 4-bit
quantized kernels to 3-bit quantized kernels.

A. Iterative approximation and fine-tuning

As a first step, a baseline is proposed in Table I. This
baseline states the power saving for the first optimization stage,
which results in uniform CNN approximation. In this first
stage, performed according to Fig. 2, the following results were
obtained for all ResNets:

• After 1 and 2 column truncation, the accuracy was still
within τ = 1% without fine-tuning.



TABLE I: Results - First Stage of Proposed Optimization Approach

Specs ResNet 20 ResNet 14 ResNet 8
Trained Acc. Power Saving Trained Acc. Power Saving Trained Acc. Power Saving

Baseline(4,4)∗ 88% 28% 88% 28% 83% 28%
Upper Baseline I(5,4)∗ 80% 38% 84% 38% 77% 38%
Upper Baseline II(4,3)∗ 71% 40% 82% 40% 70% 40%
* (m,n) indicates m truncated columns and n bits quantized weights.

TABLE II: Results - Second Stage with Kernel-Wise Truncation T = 5

Resiliency
Method

ResNet 20 ResNet 14 ResNet 8
Kernels Dist Power Saving Kernels Dist Power Saving Kernels Dist Power Saving

LRP-PresentAflat 411/784 34% 201/560 32% 135/336 32%
Deep Taylor 250/784 31% 239/560 31% 120/336 30%
LRP-epislon 407/784 34% 244/560 32% 132/336 32%
LRP-Zplus 304/784 34% 176/560 30% 118/336 30%
Guided-Backpropagation 273/784 32% 172/560 32% 130/336 32%

TABLE III: Results - Second Stage with Kernel-Wise Weight Quantization to 3 bits

Resiliency
Method

ResNet 20 ResNet 14 ResNet 8
Kernels Dist Power Saving Kernels Dist Power Saving Kernels Dist Power Saving

LRP-PresentAflat 358/784 29% 201/560 28% 135/336 28%
Deep Taylor 250/784 26% 156/560 24% 107/336 25%
LRP-epislon 365/784 29% 207/560 28% 132/336 26%
LRP-Zplus 304/784 27% 176/560 25% 105/336 25%
Guided-Backpropagation 273/784 28% 172/560 27% 117/336 27%

TABLE IV: Parameters of ResNets

ResNet
Instance

# conv.
layers

#
mults.

accuracy
(floating-Point)

accuracy
(qint-8)

ResNet-8 9 12.5M 85.68% 86.27%
ResNet-14 15 26.7M 89.41% 89.55%
ResNet-20 21 40.8M 91.04% 90.94%

• When truncating 3 and 4 columns, fine-tuning was per-
formed over 10 epochs with a learning rate of 1e-4 to
reach our accuracy tolerance.

• We find that at least 4 columns can be truncated from
the MAC unit in all CNN layers while maintaining our
proposed tolerance of 1% from the quantized accuracy.

In Table I, we report the accuracy obtained after this first
optimization stage. We achieve 28% power saving in each
network respectively. These values are estimated by using the
saving in one MAC unit with 4 column truncation. in the
whole CNN. For further comparison, we also propose two
upper baselines for power savings: uniform approximation with
T = 5, and uniform weight quantization to 3 bits.

B. Kernel-wise optimization

In Table II, the first results of our proposed kernel-wise
optimization are reported. Here, we apply approximation by
increasing the value of T to 5 in resilient kernels. The column
Kernels Dist denotes the number of optimized kernels / total
kernels. For each CNN, kernel-wise optimization is applied
using all resiliency analysis methods introduced in section III.
LRP-PresentAFlat and LRP-epsilon produce overall the largest
number of resilient kernels to approximate with no additional
error overhead. The results of these experiments highlight the
advantages of optimizing kernel-wise, as even when truncating
4 columns, there is further room for optimization that was not
achievable on the layer level. We achieve 34%, 32%, 32%
energy savings for ResNet 20, 14, 8 respectively, with no

accuracy drop nor further retraining, which is a significant
improvement when compared to the upper baseline I.

In the last experiment, shown in Table III, the weights
of the less relevant kernels are further quantized to 3 bits.
Again, LRP based algorithms achieve better results, hence we
conclude that LRP is the best method to obtain the resiliency
of CNN kernels. Power savings of 29%, 28% and 28% were
achieved respectively. We observe that further quantization of
weights has a more severe effect on the accuracy than truncating
additional columns. Therefore, the number of candidate kernels
to optimize drops significantly, independently of the applied
algorithm for resiliency analysis. This is also observed in the
results reported in Table I, where truncating one additional
column results in an accuracy drop of 8% in ResNet-20, while
quantizing to 3-bit precision drops the accuracy by 17% in
the same CNN. Similar results are reported regarding the other
networks.

VI. CONCLUSION

In this paper, we introduce a novel approach to efficiently
implement quantization and approximation in the computation
of CNNs. By first applying uniform CNN approximation and
then performing a kernel-wise resiliency analysis, we are able
to combine low bit-width quantization and approximate multi-
pliers to optimize computational resources of CNN applications
without accuracy degradation. Additionally, we present possible
hardware realizations of our proposed approach, at MAC unit
and at system level. We validate our proposal through several
experiments and demonstrate additional power savings of up to
34% in three different CNNs for image classification.
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