
1

NvMISC: Towards an FPGA-based Emulation
Platform for RISC-V and Non-volatile Memories

Yuankang Zhao , Salim Ullah , Siva Satyendra Sahoo , and Akash Kumar , Senior Member, IEEE

Abstract—The emerging Non-volatile Memories (NVMs), such
as Spin Transfer Torque Random Access Memory (STT-RAM)
and Racetrack Memory (RTM), offer a promising solution to
satisfy the memory and performance requirements of modern
applications. Compared to the commonly utilized volatile Static
Random-access Memories (SRAMs), the NVMs provide better
capacity and energy efficiency. However, many of these NVMs
are still in the development phases and require proper evaluation
in order to evaluate the impact of their use at the system
level. Therefore, there is a need to design functional- and cycle-
accurate simulators/emulators to evaluate the performance of
these memory technologies. To this end, this work focuses on
implementing a RISC-V-based emulation platform for evaluating
NVMs. The proposed framework provides interfaces to integrate
various types of NVMs, with RTMs and STT-RAMs used as test
cases. The efficacy of the framework is evaluated by executing
benchmark applications.

Index Terms— RISC-V, Non-volatile Memories (NVMs),
RTMs, STT-RAMs, Emulation Platform, FPGAs

I. INTRODUCTION

During the past few decades of technology scaling, the
memory systems could not achieve the performance pace
of Central Processing Units (CPUs). The memory hierar-
chy’s high access latency, resource requirements, and en-
ergy consumption have degraded the overall performance of
computing systems [1]. To this end, emerging Non-volatile
Memories (NVMs), such as Spin Transfer Torque Random
Access Memory (STT-RAM) and Racetrack Memory (RTM),
offer a promising solution to overcome the bottlenecks (ca-
pacity, latency, and energy) of the commonly utilized Dy-
namic Random-access Memory (DRAM)- and Static Random-
access Memory (SRAM)-based solutions [2]–[5]. The NVMs
offer better density and energy efficiency than the SRAM-
and DRAM-based technologies [6]. For instance, compared
to SRAM, RTM technology has a much smaller cell size
(≤ 2 F 2) and lower leakage power. SRAM technology, on
the other hand, has a larger cell size (120 − 200 F 2) and
higher leakage power.

The NVMs, however, have some limitations, such as vari-
able access latency and costly write operations, which result in
limited memory performance improvement. These challenges
of NVMs open a research space for exploring various hardware
and software architectures to overcome these challenges of

This work is supported by the Deutsche Forschungsgemeinschaft (DFG)
under the X-ReAp project (Project number 380524764).

Y. Zhao, S. Ullah and A. Kumar are with the Chair of Proces-
sor Design, CfAED, Technische Universität Dresden, Germany E-mail:
yuzh500b@msx.tu-dresden.de, salim.ullah@tu-dresden.de, akash.kumar@tu-
dresden.de

S. S. Sahoo is with IMEC, Belgium. E-mail: siva.satyendra.sahoo@imec.be

Emulator Focus Latency NVM

Variable

Capacity

[11] Main Memory Crude PCM No

[12] Main Memory Crude PCM No

ERMES [13] Scratchpad Accurate RTM Yes

NvMISC L1 Cache Accurate
SRAM/RTM/

STT-RAM
Yes

8577
3520

1002

45

1

4

16

64

256

1024

4096

16384

gem5 MARSSx86 Sniper ZSimA
v
e
r
a
g
e

s
i
m
u
l
a
t
i
o
n

t
i
m
e

f
o
r

M
i
B
e
n
c
h

(
i
n

s
e
c
s
)

Figure 1: Related simulation and emulation frameworks

NVMs and enable hybrid technologies-based memory hierar-
chies to improve memory systems’ performance. Considering
the relatively contemporary and exploratory phase of NVMs,
limited simulation and emulation frameworks for analyzing
the system-level performance impact of NVMs are available
in the literature. For example, the authors of [7] and [8]
provide open-source frameworks that can be integrated with
system-level simulators to explore the performance of NVMs.
However, as shown in Figure 1, the commonly utilized cycle-
accurate system-level simulators, such as gem5 and Sniper,
have a large execution time to evaluate the impact of a cache
configuration on the overall system performance [9], [10].

Some works have also proposed various field-programmable
gate array (FPGA)-based emulation platforms to provide fast
emulation of NVMs-based memories. The table in Figure 1
compares some of the recently proposed emulation platforms
for NVMs. However, these platforms do not support the em-
ulation of different types of NVMs. The platforms presented
in [11] and [12] assume uniform access latencies for NVMs
and therefore do not provide accurate execution and latency
information for various operations. A more recent work has
proposed an FPGA-based implementation of an RTM-based
scratchpad memory [13]. To execute an application utilizing
the RTM IP, the authors assign a subset of the memory
addresses to the IP, and the corresponding memory requests are
completed using the AXI-Lite protocol. However, as presented
in the article, ERMES features a very large resource usage
while only being able to emulate a very small RTM.

To address these limitations of available emulation
and simulation frameworks, we present the cycle-
accurate NvMISC framework. Figure 2 shows an overview
of the proposed framework. We make the following novel

This article has been accepted for publication in IEEE Embedded Systems Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LES.2023.3299202

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SLUB Dresden. Downloaded on September 27,2023 at 07:56:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0000-9490-1384
https://orcid.org/0000-0002-9774-9522
https://orcid.org/0000-0002-2243-5350
https://orcid.org/0000-0001-7125-1737

2

P
ro

gr
am

m
ab

le
 L

o
gi

c
(P

L
)

P
ro

ce
ss

in
g

Sy
st

em

(P
S)

P
S-

P
L

A
X

I
B

u
s

RISC-V Processor

Main
Memory
(Instruction,

Data)Cache
(SRAM/NVM)

RISC-V Datapath
(Pipelined)

CPU-Cache
Bus Memory

Bus

Figure 2: Proposed NvMISC framework

Data Cache (D-Cache)

RISC-V Datapath
(Pipelined)

D
at

a
M

em
o

ry
 (

B
R

A
M

)

L
o

ad
er

D
at

a
B

u
s

B
u

ff
er

A
X

I4
 F

IF
O

Halt
Manager

ADDR
Cropping

Tag
Array

(SRAM)

ADDR DATA

Ready

D
A

T
A

R
ea

d
y

D
A

T
A

R
ea

d
y

Pipeline
Status

Halt
Signal

DIN_REGADDR_REG

DATA
Array

Latency
Emulation

Figure 3: Cache Emulation Architecture

contributions in this work: wide
1) NvMISC Framework: We provide an FPGA-based cycle-

accurate RISC-V implementation that provides inter-
faces for emulating NVMs-based L1 data caches (D-
Caches).

2) NVMs RTL Models: We provide RTL-based D-Cache
models for two of the most widely explored NVM
technologies, i.e., RTM and STT-RAM.

3) To help the research community overcome NVMs-
related exploratory challenges, the proposed frame-
work is open-source at https://cfaed.tu-dresden.de/pd-
downloads.

II. PROPOSED NvMISC DESIGN

A. RISC-V Core Generator

In NvMISC framework, RISC-V core generator implements
the L1 cache data array based on the designer-provided config-
urations. For the RTM-based data cache, we have explored the
number of shifts per clock cycle (shiftPerCycle), the number
of access ports (accessPorts), and the architectural layout of
the track, i.e., horizontal- or ring-shaped. For the STT-RAM-
based cache, we support configurations for specifying the read
and write latencies (readLatency, writeLatency). Similarly, for
the traditional SRAM-based cache, a designer can define the
memory access latency (accessLatency).

1) Cache Data Array: Figure 3 presents an overview of
the proposed architecture for emulating various technologies-
based caches. In this architecture, the address register
(ADDR REG) stores the access address during each cache
access. In case of a cache write operation, the corresponding
data is stored in the data register (DIN REG). The vari-
ous sub-modules in the cache emulation architecture, i.e.,
Latency Emulation, Cache Loader, and the Halt Manger,

are instantiated differently for different architectural config-
urations. The Latency Emulation block is responsible for
introducing extra delays in every cache access to implement
the designer-provided configurations. For example, for the
STT-RAM emulation, a counter value is compared with the
readLatency (or writeLatency) in every cache access to match
the provided configurations. The corresponding data array can
be accessed (for reading or writing) only after the counter
comparison returns true. Similarly, for RTM emulation, the
proposed architecture computes the difference between the
current and the last access addresses. The address difference
value is then utilized to compute the number of required shifts
according to the RTM configuration values, i.e., shiftPerCycle,
accessPorts, and the architectural layout of the track. The
RTM-based cache model then utilizes a counter to generate
a delay according to the computed number of shifts value
and thus models the shift latency between two consecutive
cache accesses. In our proposed implementation, we assume
that each cache line forms a bundle of RTM tracks and will
shift together during each access.

2) Pipeline Management: We propose a Halting Manager
to stall the pipeline during cache accesses to handle the vari-
able (additional) delay of NVMs-based models. The Halting
Manager stalls the Execution and Writeback stages of the
pipeline if a read or write request is issued to the cache and
resumes the operation upon receiving a ready signal from the
data array. Similarly, it is responsible for stalling the Execution
and Writeback stages of the pipeline during a cache refill
process and resumes the operation after an entire cache line
has been refilled.

3) Data Bus Buffer: The data bus between the D-Cache and
the main memory implements the AXI4 protocol and reads a
burst of data from the main memory during a cache miss.
Due to the variable and multi-cycle latency of the data array
(NVMs), a buffer is used to reconcile the faster data flow
incoming from the data bus and the slower operation of the
cache Cache Loader, described in the next section. The buffer
begins storing the content after detecting an incoming burst
from the data bus. After asserting that the entire burst of data
has been stored in the buffer, the buffer notifies the loader to
start the cache line refilling process.

4) Cache Loader: The Cache Loader is responsible for
loading the values from the data bus buffer into the cache
data array during a cache miss. While writing a cache line, the
Cache Loader ensures to follow the additional write latencies
of STT-RAMs and RTMs as defined by the designer-provided
configurations. After an entire cache line is refilled, it notifies
the Halting Manager to resume the pipeline.

B. Peripheral Components

The RISC-V processor’s instruction and data buses are
routed through an X-BAR and connected to the instruction
and data memories. To better emulate the longer latency
imposed by main memories (DRAMs), we have included
buffers between the memory busses and the X-BAR. The data
and instruction memories (DRAM) are also accessible to the

This article has been accepted for publication in IEEE Embedded Systems Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LES.2023.3299202

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SLUB Dresden. Downloaded on September 27,2023 at 07:56:06 UTC from IEEE Xplore. Restrictions apply.

3

Subprogram
Generation

(Python)

Benchmark
Applications

(in C)

Input Data for Processing

Compilation
(RISC-V gcc)

Data Loading
Subprogram

Instruction
Loading

Subprogram

M
ai

n
 P

ro
gr

am

Call

pl_reset

Data

Instruction
QueueInstruction Machine Codes

ZYNQ PS ZYNQ PL

Data & Code preparation Execution

Figure 4: Software setup of NvMISC

Table I: Emulation System Specifications

Component Description
ARM Processor Arm Cortex-A53@1.5GHz
RISC-V Processor VexRiscv Softcore
PL frequency 187.5MHz
L1 I-Cache 4kiB, directly-mapped
L1 D-Cache up to 128kiB, directly-mapped
Instruction Memory 64kiB (BRAMs)
Data Memory 512kiB (BRAMs)

ZYNQ processing system (PS) to allow the control of these
memories from the ZYNQ PS.

C. Software Setup

Figure 4 shows the different processes in the software setup
of NvMISC. Benchmark applications are compiled into RISC-
V instructions, with the last instruction writing a debug value
to a specific memory location (DEBUG LOC) in DRAM data
memory. After loading the benchmark application’s binaries
and data in the instruction and data memory, the main program,
executed on the PS, performs a programmable logic (PL)
reset function to allow the RISC-V core to jump to the
start of the instruction queue. Along with the reset function,
the PS also executes a local timer and continuously polls
the DEBUG LOC to identify the completion of the RISC-
V execution and compute the total execution time of the
benchmark application.

III. EXPERIMENTS AND RESULTS

A. Experiment Setup

We have utilized the VexRISC, an open-source RISC-V core
generator written in SpinalHDL [14], for implementing our
proposed NvMISC framework. For this work, we have used
Xilinx Vitis 2022.1 design suite to implement NvMISC on an
Ultra96v2 single-board computer equipped with the ZYNQ
ZU3EGA484 MPSoC. In this implementation, we have used
a default clock frequency of 187.5MHz. All benchmark ap-
plications are written in C and initially executed using test
datasets on a standard x86-based general-purpose computer.
These results are used to assess the functional correctness of
NvMISC. Afterward, the benchmark applications are cross-
compiled using the RISC-V GCC compiler, and the RISC-
V-based application execution results are obtained using the
UART connection to compare with the golden answers.
Table I and Table II provide the detailed specifications of the
emulated system.

Table II: Cache Test Configurations for Emulation

D-Cache Type Description
SRAM Dual-cycle latency SRAM

STT-RAM Mid-retention STT-RAM [15]
RTM 1 16-bit long RTM, single shift per cycle

RTM 2
16-bit long ring shaped RTM, single
shift per cycle with 4 access ports

RTM 3 16-bit long RTM, 4 shifts per cycle

3
7
7
3

3
7
8
2 4
9
6
0

3
8
2
5

3
7
9
3

6
2
5
1

3
8
3
6

3
8
4
6

7
0
2
5

3
8
3
8

3
8
4
8

1
0
6
9
3

1
5
3

1
5
3

1
5
3

1
5
6
.
5

1
5
6
.
5

1
5
6
.
5

SRAM STT-RAM RTM_1 SRAM STT-RAM RTM_1

#
B
R
A
M
s

#
L
U
T
s
,

#
R
E
G
s

LUT REG BRAM

D-Cache

Size
16 KiB 32 KiB

Figure 5: Comparison of Resource Utilization

B. Resource Utilization

Figure 5 compares the resource utilization of SRAM-, STT-
RAM-, and RTM-based D-Cache models for two different
cache sizes. Compared to the SRAM-based model, the NVMs-
based models utilize more Look-up Tables (LUTs) and Regis-
ters. For the STT-RAM-based implementation, more logic is
needed to compare the counter value against the configured
reading and writing latencies. The extra logic results in an
increase of up to 0.2% in the total utilized LUTs and registers.
Similarly, for RTM-based cache implementations, additional
registers are required to hold the last access address informa-
tion, and extra logic is instantiated to compute the required
access delay. Compared to the SRAM-based implementation,
the RTM-based model results in an increase of up to 83% and
31% in utilized registers and LUTs, respectively.

The maximum possible delay (number of shifts) plays a
more significant role in determining the resource utilization
of an RTM configuration. For example, Equation 1 and
Equation 2 show the estimation of the maximum number of
shifts (Lmax) and the bit width (Nwidth) of the register to
hold the address difference in RTM emulation. In Equation 1,
Nlength and Nports identify the length of the track and the
number of access ports per track, respectively. The kring is
the ring coefficient, and for a ring-shaped track, its value is
2, and for horizontal tracks, the value of kring is one. In
general, the reduced number of shifts results in a notable
reduction in register and LUT usage. Table III compares the
resource utilization of NvMISC with ERMES [13], which is
an emulator for exploring RTMs only. Compared to ERMES,
NvMISC features a much simpler design with larger memory
capacity and significantly reduced resource usage. The results
in Table III show that NvMISC provides better host platform
adaptability and improved performance.

This article has been accepted for publication in IEEE Embedded Systems Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LES.2023.3299202

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SLUB Dresden. Downloaded on September 27,2023 at 07:56:06 UTC from IEEE Xplore. Restrictions apply.

4

Table III: Comparing NvMISC with State-of-the-art Emulator

Platform ERMES [13] NvMISC
Resource LUT REG LUT REG

32kiB 216k 261k 6.3k 10.7k
64kiB X 8.9k 18.5k

128kiB 14.5k 35.1k

Table IV: Benchmark Applications

Application Description

Matmul
Matrix multiplication between a 170× 166 array
of integers and a 3× 3 kernel

Bubblesort Bubble sorting algorithm on an array of 28K integers

Bitcount
Count number of bits in an array of 28K integers
using the Brian Kernighan algorithm

Table V: Comparing Xsim (behavioral) and NvMISC timings

Execution Type Simulation(Xsim) NvMISC
D-Cache Type Matmul Bitcount Matmul Bitcount

SRAM 2460s 880s 11.80s 9.10s
STT-RAM 3030s 893s 13.07s 8.10s

RTM 2305s 840s 9.47s 10.89s

Lmax =
Nlength

Nportskring

(1)

Nwidth = log2(Lmax) (2)

C. Benchmark Evaluation

Table IV summarizes the details of the evaluated benchmark
applications. Figure 6 shows the execution time results of
these applications for various cache configurations. It can
be observed that caches emulating STT-RAM cells featuring
medium data retention perform notably worse with up to 95%
increased processing time than other caches. The increase
in the overall execution time of STT-RAM-based cache is
due to their long writing latency. Our results also show
that by allowing more access ports and implementing ring-
shaped RTM tracks, the performance of very large RTM-based
caches can be remarkably increased. Furthermore, in such a
configuration, the performance of RTM-based cache can reach
a point where it noticeably exceeds the performance provided
by dual cycle latency SRAMs with an up to 26% reduced
execution time. Here, we also demonstrated the ability to
emulate and benchmark RTMs operating at higher frequencies,
i.e., multiple shifts per cycle RTMs. It can be observed that
RTMs having such an architecture offers reduced shifting
latency resulting in an up to 16% reduced execution time.

D. Platform Performance

To evaluate the performance of our proposed
NvMISC framework, we compare the execution time
(wall clock time) of executing the Matmul and Bitcount
benchmarks on the FPGA-based NvMISC and Xilinx XSim,
an HDL-based cycle-level simulator on an x86 server with
1TB RAM and 6 AMD EPYC 7513 processor enabled.
For our current experiment, we have considered dual cycle
SRAMs, STT-RAMs, and RTMs featuring a single shift per

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
6
k
i
B

3
2
k
i
B

1
6
k
i
B

3
2
k
i
B

6
4
k
i
B

1
2
8
k
i
B

1
6
k
i
B

3
2
k
i
B

6
4
k
i
B

1
2
8
k
i
B

1
6
k
i
B

3
2
k
i
B

6
4
k
i
B

1
2
8
k
i
B

1
6
k
i
B

3
2
k
i
B

6
4
k
i
B

1
2
8
k
i
B

SRAM STT-RAM RTM_1 RTM_2 RTM_3

N
o
r
m
a
l
i
z
e
d

s
i
m
u
l
a
t
i
o
n

t
i
m
e

Matmult Bubblesort Bitcount

Maximum 70800 usecs 162753500 usecs 20100 usecs

Figure 6: Benchmark Evaluation

cycle in 16kiB D-Cache on Xilinx XSim. The comparison
results are shown in Table V. Our proposed emulation
platform provides an up to 243× speedup thanks to its
purposefully built FPGA setup. Furthermore, the emulation
time also includes the time consumed by other processes,
such as loading the bitstream and configuring the FPGA. The
programmability and fast execution provided by NvMISC
can be utilized to run more complex benchmark applications
for exploring NVMs-based caches.

IV. CONCLUSION

This work provides a cycle-accurate framework for eval-
uating the impact of NVMs-based caches on the overall
performance of a system. In the future, we aim to extend the
framework with hybrid technology-based multi-level caches
and various cache placement policies such as set associativity.
We also plan to compare the performance results of our
framework with other simulation frameworks, such as the
RTSim [8], for various benchmark applications.

REFERENCES

[1] W. A. Wulf et al. Hitting the memory wall: Implications of the obvious.
ACM SIGARCH computer architecture news, 1995.

[2] T. M. O. Mutlu. Memory performance attacks: Denial of memory service
in multi-core systems. In USENIX security, 2007.

[3] C. Escuı́n Blasco, et al. Stt-ram memory hierarchy designs aimed to
performance, reliability and energy consumption. In ACACES, 2019.

[4] B. C. Lee, et al. Architecting phase change memory as a scalable dram
alternative. In ISCA, 2009.

[5] S. Parkin et al. Memory on the racetrack. Nature nanotechnology, 2015.
[6] R. Bläsing, et al. Magnetic racetrack memory: From physics to the cusp

of applications within a decade. Proceedings of the IEEE, 2020.
[7] M. Poremba, et al. Nvmain 2.0: A user-friendly memory simulator to

model (non-) volatile memory systems. IEEE CAL, 2015.
[8] A. A. Khan, et al. Rtsim: A cycle-accurate simulator for racetrack

memories. IEEE CAL, 2019.
[9] N. Binkert, et al. The gem5 simulator. ACM SIGARCH computer

architecture news, 2011.
[10] T. E. Carlson, et al. Sniper: Exploring the level of abstraction for scalable

and accurate parallel multi-core simulation. In SC, 2011.
[11] F. Wen, et al. An FPGA-based Hybrid Memory Emulation System. In

IEEE FPL, 2021.
[12] T. Lee, et al. FPGA-based prototyping systems for emerging memory

technologies. In IEEE ISRSP, 2014.
[13] F. Spagnolo, et al. Ermes: Efficient racetrack memory emulation system

based on fpga. In FPL, Sep 2022.
[14] SpinlHDL. VexRISC-V. https://github.com/SpinalHDL/VexRiscv, 2020.
[15] Z. Sun, et al. Multi retention level STT-RAM cache designs with a

dynamic refresh scheme. In MICRO, 2011.

This article has been accepted for publication in IEEE Embedded Systems Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LES.2023.3299202

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SLUB Dresden. Downloaded on September 27,2023 at 07:56:06 UTC from IEEE Xplore. Restrictions apply.

