
Hardware Watermarking Using Polymorphic
Inverter Designs Based On Reconfigurable

Nanotechnologies
Shubham Rai2, Ansh Rupani2, Pallab Nath1, Akash Kumar2

(1) Indian Institute of Technology, Indore, India
(2) Chair For Processor Design, CfAED, Technische Universität Dresden, Dresden, Germany

Abstract—We present here two watermarking techniques as a
countermeasure to IC overbuilding and IP piracy by employing
an encoding scheme using polymorphic inverter designs based on
reconfigurable nanowire technologies. We employ a fabrication
method unique to nanowire technologies which enables fixing of
a node in the logic network to either 0 or 1. This technique allows
fixing implicit don’t care nodes to drive polymorphic inverters in
a predetermined way, thereby contributing to the watermark. For
a 64-bit signature, an area overhead of 0.72% and 2.14%, and
an extremely low average probability of coincidence of 3.3x10-47

and 3.52x10-53 are obtained for our watermarking techniques for
EPFL and IWLS benchmarks.

Index Terms—reconfigurable RFETs, Schottky FET, tunable
polarity

I. INTRODUCTION

Globalization of IC fabrication has led to frequent copyright
infringements and illegal ownership claims on IP. According
to a report [32], the IC industry, on an average, loses about $4
billion annually due to IP infringement. Proving the ownership
of an IP has gathered more attention today than ever before.
To prove the ownership of an IP in a court of law, the
original designer can show a secretly hidden signature or its
watermark in the falsely claimed ICs. This signature should
be justified in an unambiguous manner. Watermarking is an
effective measure to prevent such false ownership claims.

There have been several works on watermark [42, 17, 40],
but most of them deal with adding algorithmic constraints to
embed the designer’s signature at various stages of logic or
physical synthesis. Further, actual overhead in terms of circuit
parameters has not been discussed in detail. In the present
work, we take a fresh perspective of looking at the problem
of adding watermark to circuits using emerging reconfigurable
nanotechnologies and present an overall flow for insertion and
extraction of watermarks in the electronic circuits.

Recent developments in emerging technologies, especially
runtime-reconfigurable nanowire technologies like silicon or
germanium nanowire reconfigurable FETs [14, 19, 37] have
opened up new avenues for hardware security. Transistors
based on these technologies show electrical symmetry and can
switch between p and n-type behavior. They have two or more
independent gate terminals on a single channel: the control
gate (CG) and the program gate (PG) where the difference in
the potential bias at PG causes the realization of such behavior.

Using the above reconfigurability, we propose two water-
marking techniques. The motivation for our watermarking
techniques lies in the fact that the RFET-based inverters are
intrinsically polymorphic i.e. they function as an inverter
irrespective of the value of the program gate input. Our
definition for “polymorphic” is different as compared to the
previous works in the context of hardware security. While
previous works correlate polymorphism with a single logic
gate carrying out multiple logic functionality, our polymorphic

inverters have different designs but they exhibit the same
functionality.

We demonstrate our first watermarking technique by using
an example of an encoding scheme inspired from Huffman
encoding. This watermarking scheme is meant for attack
models like IC counterfeiting and IC overbuilding. The type
of polymorphic inverters used defines the unique watermark
of the designer. For attacks based on reverse engineering, we
propose a second watermarking technique where we encode
designer’s signature in the form of program gate inputs for
our polymorphic inverter. Further, we employ a special mask
development technique unique to nanowires to induce imper-
fections at implicit don’t care nodes to drive the program
gate inputs for the inverters [41]. Since such imperfections
do not interfere with the actual functionality of the design,
the watermark is extremely stealthy as the layout of the gate
remains the same and this imperfection is hidden well within
the technology.
Contributions: Following are the major contributions of this
work:

• We introduce four polymorphic inverter designs based on
reconfigurable transistors ranging from a static design to
a totally runtime reconfigurable design and use them in
our watermarking techniques.

• For the second watermarking technique, we mark the
implicit don’t care [15] nodes scattered in the logic
network to introduce an imperfection at those nodes so
that it is either short to Vss or Vdd depending upon
designer’s watermark. These nodes then feed the program
gate terminal of runtime-reconfigurable inverters for the
inverting operation.

• An evaluation in terms of area overhead and probability
of coincidence is carried for EPFL [3] and IWLS [2]
benchmark suites. For a 64-bit signature, area overhead
of 0.72% and 2.14% and probability of coincidence
3.3x10−47 and 3.52x10−53 are obtained for watermarking
technique 1 and 2 respectively. This is the lowest as
compared to the existing works. The flow is available
as an open source tool at www.updateafterreview.org.

Further, we discuss various attacks like removal, masking and
forging on our proposed watermarks as mentioned in [7] and
assess the strength of our watermarking techniques in terms
of robustness, unobtrusiveness, universality and unambiguous
nature of the signature as suggested in [31].



II. BACKGROUND AND MOTIVATION

A. Reconfigurable Transistors
In the present work, we focus on silicon nanowire based

reconfigurable technology1. As mentioned earlier, nanowire
RFETs have two or more gate terminals on a single channel
as shown in Fig. 1a where the control gate (CG) receives
the normal input to the transistor and controls the creation
of a carrier channel. The program gate (PG) determines
the carrier type in the channel. The uniqueness lies in the
fully-symmetrical I-V characteristics in either behavior. This
is shown in Fig. 1a. The blue and red lines show the I-V
characteristics for p and n-type behavior respectively.
Feasibility of RFET based electronic circuits: While there
are several apprehensions on the feasibility aspects for emerg-
ing nanotechnologies, there are several reasons which motivate
us to look at security features for circuits based on reconfig-
urable nanotechnology.

• Reconfigurability at the transistor level is a manifestation
of ambipolarity observed in various materials like silicon
and germanium below 45nm which are commonly used
in CMOS manufacturing process [11]. Hence, reconfig-
urable devices made of such materials can readily be
adopted by industries [39]. Works like [20, 35] have
shown that they follow the similar fabrication and man-
ufacturing process as CMOS.

• There is no dearth of reconfigurable nanotechnologies
based on materials like carbon [18], graphene [13], ger-
manium [37] and WSE2 [30] showing that reconfigura-
bility at the technology level has many contenders.

• Various works like [11, 38, 25, 26] have demonstrated
advanced circuit-level designs and implementations using
RFETs followed with detailed evaluation.

• Polymporphism at the transistor level is an important
criteria for hardware security as it can inherently support
both camouflaging and locking [21]. Security applications
using such reconfigurable nanotechnologies have already
been demonstrated in works like [28, 5, 8] owing to
their unique I-V characteristics which are generally not
possible with conventional MOSFETs.

B. Related Works on Hardware Watermarking
One of the earliest work in watermarking was proposed

in [42]. The authors introduced a constrained graph partition-
ing at various stages of CAD synthesis. The constraints are
encoded with designer’s watermark to be embedded within
the hardware system. On similar lines, the authors in [17]
used a set of design and timing constraints which encoded the
designer’s signature during behavioral synthesis. They claimed
low hardware overheads while demonstrating the watermarks
to be robust, universal and unambiguous. However, for hard-
ware overheads they used number of parity bits for error-
correcting as a reference. Similarly, authors in [34] proposed
a watermarking scheme for high level synthesis (HLS). They
proposed embedding the designer’s signature in three phases
of high level synthesis: scheduling, hardware allocation and
register allocation. Additionally, they claim that since the three
phases were independent to each other, it is extremely difficult
to identify which HDL phase and constraints are used for
watermark insertion.

1For this work, we have used silicon nanowire based reconfigurable field
effect transistors (SiNW RFETs) because it is one of the most actively
researched emerging technologies and has been evaluated with a physical
synthesis flow [24]. However, the concepts described here are applicable for
reconfigurable nanotechnologies in general.
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Fig. 1: (a) Symmetrical IV characteristics for SiNW RFET as shown
in [26] (b) Don’t Care node to be used for our polymorphic inverters.
ILN stands for intermediate logic node

While the above works used constraint optimization, there
are certain works in which the authors used functional poly-
morphism to realize dynamic watermarks [23, 7]. In dynamic
watermarks, the circuit delivers correct functionality during
normal operation but in order to detect the watermark, the
circuit is subjected to special conditions like different inputs or
external controls to reveal the embedded watermarks. In [40],
the authors used evolutionary algorithms to generate polymor-
phic gates for watermarking which behave differently based
on external conditions like temperature or pressure. They
proposed replacing standard logic gates with their polymorphic
gates which hide secret information from the designer. The
secret information can be activated using a special mode
with specific control factors. One common aspect in all of
these works is that they propose watermarking techniques by
encoding designer’s signature in a list of constraints which
then govern specific stages in CAD synthesis. This may lead
to sub-optimal circuit parameters in terms of area, power and
delay. Moreover, in works related to watermarks based on
polymorphic gates, most of them require special inputs and
conditions to reveal the designer’s signature. Since technology
level modifications are difficult to detect [4], we propose tech-
niques to introduce static watermarks in the circuit leveraging
unique features of emerging technologies.

C. Implicit Don’t Cares
An essential component in our proposed scheme is using

Implicit Don’t Care (DC) nodes. These refer to the input or
output patterns which are made impossible because of logic
restrictions caused by the structure of the logic network. For
example, as shown in Fig. 1b, the function f = a+ab can be
easily reduced to f = a with b as a don’t care signal. For our
watermarking, we do not optimize out some of the don’t care
nodes intentionally which are present in the network. Then we
introduce the mask defects so as to fix these nodes at Vss or
Vdd. Since these nodes are don’t care, the logic circuit before
and after this defect remains logically equivalent. These nodes
further drive the program gate of our polymorphic inverters for
the watermark.

III. THREAT MODEL

In the present work, we propose our watermarking scheme
to thwart IP piracy, IC counterfeiting and overbuilding attacks.
The attacker does not intend to degrade the design quality. We
assume that the adversary can be at the SoC integration, or at
the foundry or can be an end user, and he/she has access to the
complete specification of the design (this includes logic netlist
and even physical synthesis design GDSII). He/She has access
to reverse engineering techniques where he/she can identify
the components of the circuit as well. He/She can also run
redundancy removal methods to find any use of redundant
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Fig. 2: Different design for inverters (a) Static design. The drain,
source and program gate are hard fixed to Vdd and Vss as proposed
in [25] (b) One of the transistor’s program terminal is connected to
0 (c) One of the transistor’s program terminal is connected to 1 (d)
Fully reconfigurable design

(a) (b)

Fig. 3: (a) Layout for fully polymorphic inverter design as shown
in Fig. 2d (b) Defect introduction into an RFET. (i) Conceptual
layout of a working SiNW RFET (ii) Omitted formation of Schottky
junctions, disabling the transistor (iii) Fully silicided channel turning
the transistor into a metallic wire

nodes. He/She can also make use of SAT based attacks [36] to
either remove or forge the watermarks. He/She also has access
to side-channel attacks where he/she can measure current or
power profiles of the circuits. SEM PVC (Scanning Electron
Microscope in the passive voltage contrast) [9] techniques
can potentially figure out the watermark but these techniques
are extremely costly and time consuming. However, there are
other measures proposed in literature which can prevent SEM
attacks [22], which can be applied in combination with our
technique. In our threat model, we assume that the attacker
does not have this capability.

IV. POLYMORPHIC INVERTER DESIGN USING
RECONFIGURABLE FETS

In this work, we use four designs of inverters for our water-
marking techniques. These designs are presented in Fig. 2. It
shows a SiNW RFET based inverter, as inspired from designs
in [24] and [38]. The design shown in Fig. 2a is a static design.
The P and P terminals are pre-connected to Vdd and Vss
respectively. Fig. 2b shows an inverter which is connected in
a way that this cell only functions as an inverter when the
value of P is 0. This is so because the bottom transistor is
already configured to be an n-type FET. Therefore, for this
logic cell to function as an inverter, the upper transistor has
to be configured as a p-type FET which requires P to be 0.
Similarly, the inverter design shown in Fig. 2c functions as an
inverter only if the program gate input to this design is 1.

Fig. 2d shows the completely invariant SiNW RFET based
inverter. Its layout is shown in Fig. 3a. The layout shows
two inverters where the left inverter is driving the right. The
input to the left inverter comes from the don’t care (explained
in the coming sections). This design functions as an inverter
irrespective of the program input value. This happens because
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Fig. 4: Encoding Scheme For First Watermarking Technique

depending on the value of the P input, the pull-up and pull-
down networks change in compliance with the power and
ground terminals. From now on, we refer to the inverter
designs shown in Fig. 2a, 2b, 2c and 2d as designs a, b,
c and d respectively.

V. PROPOSED WATERMARKING SCHEME

In the present section, we first discuss the steps to introduce
the defects in nanowires and how it can be employed for our
watermarking techniques.

A. Introduction of Defects
Fixing the value of the program gate input ‘P’ for the

polymorphic inverters is an essential step in our watermarking
techniques. We feed the input P of the inverters by fixing
the don’t care nodes to a particular value. Since these special
nodes are don’t care nodes and are basically redundant, they
don’t affect the logic functionality.

The unique function of an RFET is enabled by sharp metal-
to semiconductor heterojunctions. These junctions are con-
trolled by the two individual gates as shown in Fig. 3b(i) [43].
Typically nickel silicide is used as a contact material. A
straight forward and convenient way to build a defect into this
type of device is on-purpose misalignment of those heterojunc-
tions by the layout of the device. If no silicide is formed below
the gates, the transistor will be always “off” (Fig. 3b(ii)).
The other way round, a contact silicidation through the whole
channel will turn the transistor into a metallic wire, which
always conducts a current (Fig. 3b(iii)). This full silicidation
can be enabled by a number of process changes, like a higher
amount of deposited Ni or a smaller Source-Drain distance
in the device layout as proposed in [41, 37]. Alternatively
the ungated area in the centre of the channel can be opened
on purpose during fabrication also leading to a fully silicided
channel.

B. First Watermarking technique
In this scheme, we use various designs of polymorphic

inverters to encode the designer’s watermark. We use an
encoding scheme inspired from Huffman coding2. We divide
the n-bit watermarking signature into two parts: the first n/2
bits determine the number of inverters to be skipped between
the two earmarked inverters which would be modified and the
second n/2 bits determine the type of inverter to be used at
that specific position. The skip here means that for the skipped

2While we use Huffman coding due to its simplicity and ease of under-
standing, the use of polymorphic inverters can be applied to other coding
schemes as well.



inverter locations, we use the design a inverters (Fig. 2a) to
have a lower area overhead.

Our encoding scheme is easily understood with the help of
an example. Suppose the signature to be embedded is “KLM-
NJINC” if the designer is Kilimanjaro Incorporation. The 64-
bit binary equivalent of the ASCII values here is “01001011
01001100 01001101 01001110 01001010 01001001 01001110
01000011”. As shown in Fig. 4. the first 32 bits are divided
into sets of two bits where the numerical value of each set
gives the number of skips. We use inverter design b (Fig. 2b),
c (Fig. 2c) and d (Fig. 2d) and encode them with bit values
‘00’, ‘1’ and ‘01’ respectively for this technique3. The last 32
bits are similarly divided into sets of either two bits (when the
immediate bit start from ‘0’) or 1 bit (when the first accessed
bit is ‘1’). Based on the value of each set, the respective type
of inverter is used. As shown in Fig. 4, the first set of the
first 32 bits is 01 which means there is one skip. So the
first inverter is “skipped” which implies that it is of design
a. The subsequent inverter to be earmarked is determined by
the first set from the second half of the signature, which in this
case is ‘01’, thereby implying the usage of a design d inverter
(Fig. 2d). Similarly, as we continue, the following set in the
first 32 bits is ‘00’, which implies that there are no skips and
the next immediate inverter’s design is decided by the second
set of the last 32 bits. As the value of the second set is ‘00’,
an inverter based on design b is utilized as shown in Fig. 4.
One might notice that the first-level watermark provides the
skipping information for a maximum of 16 earmarked inverters
(where all the last 32 bits are 1), in case of 64-bit (or even
more) signature. In cases where we land up employing more
than 16 inverters in the second level of watermarking, our tool
starts re-using the skipping pattern as decided at the first-level
of watermarking from the beginning.

This simple watermarking scheme is meant for designers
who want to protect their IC from adversaries who are
at the foundries and who intend to use counterfeiting and
overbuilding as attack measures. This watermarking scheme is
ineffective in cases where the attacker uses RE based attacks
as he/she can easily detect the difference in layouts of the
different types of inverters.

C. Second Watermarking Technique

For making the watermark RE resistant, we modify the
above technique by only using the 4th polymorphic inverter
design (Fig. 2d). The 4th inverter design functions as an
inverter irrespective of the value of the program input. While
executing the implementation of the first-level watermark,
instead of using design 1 inverters to implement skips, we
use design 4 inverters which get activated with any value of
the program gate input, i.e. P=DC. This means that P can be
fed from any intermediate logic node. For the last n/2 bits,
the value of each individual bit defines the program gate input
of the 4th inverter. When the value of the signature bit is 0,
the P value of the earmarked inverter is fixed to 0 and vice-
versa. This technique is different from the technique proposed
above because the actual watermark at the second level in this
case lies in the program gate input value rather than the type
of inverter being used. For the attacker, since the inverters
used in the watermark are the same (which means they have
the same layout), such watermarking technique further secures
the circuit from reverse engineering attacks [29]. It is the

3Type b and c inverters have least area overhead and we want to have the
maximum of these inverters in our watermark signature to minimize the total
area. The single bit assignment can be done to either of these designs.
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designer who knows exactly the earmarked inverters and the
exact values of their program gate inputs at runtime.

However, using special RE techniques, the attacker can
identify various components of the circuit. He/She can further
figure out that the inputs to these polymorphic inverters are
coming from don’t cares, and hence he/she can remove these
don’t care nodes as well to create a fresh mask. Therefore
in order to have an additional level of protection and use the
benefits of these defects, we intentionally add nanowire defects
at other locations in the logic circuit. The combination of
these defects along with polymorphic nature of RFETs based
logic gates can be used in user defined ways to implement
watermarks. For example, XOR logic gate as demonstrated in
[27] is a simple example which can be employed to replace
either intermediate wire or inverting logic. In this scenario,
such modification provides an additional security as the new
mask may not carry our intentionally introduced defects at
the don’t care nodes connected to some other functionally
relevant logic gate. This ensures that the new circuit (from the
new mask) will not function correctly. One can argue that the
attacker can use redundancy removal techniques to remove
all don’t care nodes but redundancy removal techniques do
not guarantee removal of all don’t care nodes [15]. Similarly,
recently demonstrated SAT based attacks [36] can also be used
to find these don’t care nodes. We reason that since RFET
based circuits can be potentially made 100% camouflaged
with low hardware overheads [25, 38], SAT based attacks
will consume large amount of time to detect all such points
in the circuit as demonstrated in [21]. Hence, even if the
attacker figures out all the don’t cares, multiple iterations are
required which adversely affect his/her time-to-market for the
final product.

D. Tool Flow

The tool flow to implement the above watermarking tech-
nique is shown in Fig. 5a. The two inputs are the Verilog (or
BLIF) circuit description file along with the n-bit designer’s
signature. We have used an open source tool, QFLOW, for the
implementation [10]. In the first stage, we use the ABC [6]
tool to get the don’t care nodes and the mapped netlist. The
mapped netlist with the information of additional DC nodes
is converted into a .cel file which is used by graywolf [12]
for the floor planning and placement stages. This .cel file is
modified according to the designer’s signature. The skipping
information and the inclusion of modified inverter designs is



carried by making the required changes in this file. These
changes are forwarded to graywolf and all the standard cells
are placed. Special care has to be taken to avoid using DC
gates which lie in the critical path to prevent side channel
attacks [16]. The coordinates of the modified inverters, skipped
inverters and DC nodes are extracted and provided to the
designer as the final output which are useful during extraction
of watermarks.

E. Extraction of Designer’s Signature in IC under test
According to the authors in [7], extraction of watermark

should be easy and practical. For the extraction of the embed-
ded signature in an IC under test, the tool provides the designer
with the coordinates of modified and skipped inverters as well
as the don’t care nodes in the circuit as shown in Fig. 5b. For
the first watermarking technique, after the identification of the
modified inverters in the correct sequence, the designer can
decode the second half of the signature. By identifying the
DC nodes in the layout and tracing the program gate inputs
of the modified inverters up to these DC nodes, the second
half of the signature can be confirmed. Also, by tracing the
connections of the skipped inverters in the correct sequence
starting from the first inverter, the first half of the signature is
decoded, as shown in Fig. 5b.

For the second watermarking technique, by identifying the
don’t care nodes in the layout and tracing the program gate
inputs of the inverters up to these DC nodes, the designer
can confirm the second half of the signature (by noting the
value of the P inputs which is supposedly constant due to
the defects added). After the detection of the second level
watermark in this case, the first level watermark (related to
inverter skips) can be detected by observing the P inputs of
the skipped inverters which have to be traced and proven to be
arriving from random intermediate nodes (and not the nodes
with defects), unlike the modified inverters.

As the introduction of defects have caused these don’t care
nodes to be either at Vss or Vdd, these points in the circuit
will have different side-channel fingerprint [16] as compared
to the case when there are no such defects. Since these nodes
are known to the IP designer, he/she can use the coordinates
and the side-channel measures to prove presence of defects at
don’t care nodes [7] and hence strengthening his/her claim of
ownership.

VI. RESULTS AND DISCUSSION

A. Evaluation on Benchmarks
We evaluate our watermark techniques on EPFL [3] and

IWLS [2] benchmark suites and calculate the probability of
coincidence, Pc [17] and area overhead. The complete analysis
is shown in TABLE I where IWLS benchmarks are shown with
a gray background to differentiate from the EPFL benchmarks.
The technique proposed in this work is targeted at large ICs,
with an adequate number of inverters already present in the
design.
Probability of Coincidence: It is the probability that the same
watermark can be inserted by any other designer. As stated
in [17], Pc does not follow its exact meaning from mathemat-
ics in a rigorous sense, rather it is used as an ”approximation”
for the actual probability. For the first watermarking technique,
in case of a 64-bit signature, the maximum and minimum
number of inverters which can be changed with our encoding
scheme are 32 and 16 respectively. While the calculations
shown here are for 64 and 128 bits, the same procedure
can be followed for a larger signature. We take 24 as the
average number of inverters which are affected. For a total

TABLE I: Area overhead for 64 and 128 bits watermark signature.

Benchmarks DC
Gates Inv.

%Area
Ov. 64

bits
WM1

%Area
Ov. 128

bits
WM1

%Area
Ov. 64

bits
WM2

%Area
Ov. 128

bits
WM2

arbiter 217 512 0.46 0.93 1.38 2.75
div 26919 16063 0.08 0.17 0.25 0.50
hyp 3542 46601 0.02 0.04 0.07 0.13

log2. 1013 4375 0.16 0.33 0.49 0.98
mem ctrl 3851 8176 0.11 0.22 0.32 0.65
multiplier 1407 2906 0.21 0.42 0.62 1.24

sin 323 992 0.92 1.85 2.74 5.47
sqrt 13094 5295 0.17 0.34 0.50 1.00

square 2060 3915 0.27 0.54 0.80 1.60
voter 5814 3974 0.35 0.69 1.02 2.05

des perf 9175 15291 0.07 0.13 0.20 0.40
ethernet 29003 16509 0.07 0.15 0.22 0.43

pci 27413 5284 5045 0.22 0.44 0.66 1.32
usb funct 2353 3181 0.33 0.66 0.97 1.94
ac97 ctrl 4105 2666 0.36 0.71 1.05 2.11
mem ctrl 7049 2384 0.34 0.68 1.01 2.03

systemcaes 3720 2435 0.42 0.83 1.23 2.47
systemcdes 436 653 1.74 3.48 5.16 10.32

pci spoci ctrl 612 285 3.72 7.44 11.03 22.07
i2c 277 238 4.41 8.81 13.06 26.12

Average 0.72 1.44 2.14 4.28

TABLE II: Comparison with Previous Works

Methodology 64-bit
Signature

128-bit
Signature

Avg. Pc
64 bit

Avg. Pc
128 bit

Koushanfar et al. [17] 10.12 20.24 2.34x10−3 5.48x10−6

Sengupta et al. [33] 9.29 18.59 2.34x10−3 5.48x10−6

Wang et al. [40] 4.21 8.42 Not Provided Not Provided
Sengupta et al. [34] 3.37 6.75 9.56x10−18 9.13x10−35

Present Work WM1 0.72 1.44 3.33x10−47 7.62x10−80

Present Work WM2 2.14 4.28 3.72x10−53 1.11x10−87

Fully Camouflaged WM1/2 11.01 12.22 1/2n 1/2n

‘n’ refers to the total number of inverters present in the design

of n number of inverters in a design, Pc is calculated as:
Pc = 1

(n
24)∗324

. Similarly for second watermarking technique,

the Pc is calculated as: Pc = 1

(n
32)∗232

. From TABLE II, we
can see that the probability decreases if more bits are used. As
shown in TABLE II, the values of probability of coincidence
for 64 and 128 bit signatures for our techniques are 3.3x10−47

and 3.72x10−53 which are the least as compared to other
works.
Overhead and Comparison: For area overhead calculations,
we use the standard cell library provided in [25]. We use the
basic logic gates available: XOR, NAND,NOR, INV and BUF
in the library and measure the area in µm2. Area overhead for
the DC Nodes is included with the assumption that one DC
node drives one inverter. For DC area overhead calculation, we
consider the weighted average of the area of all the logic gates
in a particular benchmark. The area overhead for 64 and 128-
bit signatures for both the watermarking techniques is shown
in TABLE I. We calculate the upper bound in terms of area
overhead for both the watermarking techniques. For the first
watermark, we assume that for a 64-bit signature, maximum
area overhead would be incurred when design d inverters are
employed throughout the second level of watermarking. In
those cases, a maximum 16 such inverters would be employed.

For the case of second watermarking technique, more num-
ber of inverters are used and that reflects in TABLE I. This
is because in the first part, for each ‘2 bits’ in the first 32-
bits, the maximum skip is 3-‘design d’ inverters and for each
single bit in the second part, we are again using the design
d inverter. We compare our results with polymorphic gates
based watermarking shown in [40], the behavioral synthesis
watermarking employed in [17], and the high-level synthesis
based watermarking schemes in [33] and [34]. Results for



[17], [33] and [34] have been obtained from the analysis
presented in [34]. The results have been interpolated (or
extrapolated in some cases) to a 64-bit or 128-bit signature
and shown in TABLE II. Our work (shown in light background
in TABLE II) has the least area overhead and probability of
coincidence as compared to previous works for 64 and 128 bit
signatures.

A special scenario arises when all the inverters in a circuit
are design d inverters. This will lead to a fully camouflaged
circuit [25, 38] with our proposed watermarking technique.
Obviously, this has a higher area overhead, as shown in the
last row of TABLE II. In this case, the area overhead differs
in the two columns due to the number of don’t care nodes
employed. The probability of coincidence is also very high in
this case.

B. Attack Analysis
The authors in [7] list three main attacks on watermarks:

removal, masking and forging. Removal is a special type
of masking where the attacker is successful in completely
removing the original watermark. We analyze these attacks
for our watermarking technique.
Removal and Masking of Watermarks: The first watermark
is easy to remove or mask as it caters to simple security threats
of IC counterfeiting and IC overbuilding where the adversary
does not intend to create a new mask. For the RE resistant
watermark, the attacker may use image-processing based tech-
niques to identify the inverters and remove the connected don’t
care nodes and create a new mask thereby either removing or
masking the actual watermarking. As mentioned earlier, the
new mask will not contain the additional security layer caused
due to defects which are driving functionally relevant nodes,
rendering the circuits from the new mask to be non-functional.
Further, if the attacker is successful in either removing or
masking the designer’s watermark, and adding his/her own
watermark, the time at which the watermark was inserted
becomes the deciding factor in proving rightful ownership [7,
1].

Forging of Watermarks: In case of forging attacks, if the
adversary adds his own watermark in the original IP then the
owners can prove their rightful ownership by providing an IP
with their own watermark while the copied IP has both the
watermarks.

C. Evaluating our watermarking techniques
According to the requirements of a good watermarking

technique, as stated in [31], a watermarking technique should
be robust, unobtrusive, unambiguous as well as universal. So
it is imperative to evaluate these properties for our technique.
Robustness: For any watermarking technique to be robust,
it is necessary that it is extremely difficult to remove the
watermark. In case of attacks due to overbuilding, piracy and
counterfeit ICs, our watermark signature will be carried further
to the rogue ICs as well. Only SEM based attacks can truly
figure out the imperfections in the nanowires but as mentioned
before they are very costly and time consuming.

Attackers can also make use of side-channel attacks to
probe and analyze the circuit. Due to the intended defects,
the nanowire channels are connected to Vdd or Vss, thus, they
will have a different current trace. But to distinguish whether
they are a part of the circuit or a part of watermark is difficult
for the attackers considering there is no such gold version of
the unwatermarked circuit to compare the power or current
footprints with [16].
Unobtrusiveness: Thanks to the invariant functionality of the
inverters in RFET based technology, our watermarks are very

unobtrusive. The functionality of the inverter and henceforth
the functionality of the circuit does not get affected by the pro-
gram gate input if the inverter is the one shown in Fig. 2d. The
functionality of other inverter designs is already predecided.
We have taken care of identifying specific don’t care/redundant
nodes which would act as the points to drive a constant 1
or 0. These nodes, being don’t care nodes, would not affect
the functionality of the circuits, while driving our inverters
secretly.
Unambiguity: Our watermarking scheme is unambiguous be-
cause it provides a decisive proof of ownership by deploying a
watermark related to the design house, as shown in Section V.
Since the defects are hidden at the technology level [4], it is
generally very difficult to remove them in fake ICs thereby
making our watermark unambiguous.
Universal Nature: Likewise, our technique is universal as long
as all IC manufacturers keep on using inverters in their designs,
the most common logic cell in logic networks.

VII. CONCLUSIONS AND FUTURE WORK

In the present work, we leverage the unique properties
of reconfigurable emerging nanotechnologies for hardware
security. We propose watermarking techniques which use an
encoding scheme to embed the designer’s signature in his
IC. The techniques exploit the natural presence of inverters
in an RFET based ASIC design as well as its fabrication
technique to introduce below-gate-level defects to embed our
watermark signature. Critical path analysis plays an important
role during optimization of don’t care nodes. However, since
it is orthogonal to the current work, it will be investigated
in our future work. Our proposed techniques show the least
probability of coincidence of 3.3x10−47 and 3.52x10−53 for
64 and 128 bit watermark signatures. Additionally, minimal
area overhead of 0.72% and 2.14% respectively has been
incurred as compared to previous works.
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