
Discerning Limitations of GNN-based Attacks on
Logic Locking

Armin Darjani, Nima Kavand, Shubham Rai, Akash Kumar
Chair of Processor Design, CFAED, Technische Universität Dresden, Dresden, Germany

{armin.darjani, nima.kavand, shubham.rai, akash.kumar@tu-dresden.de}

Abstract—Machine learning (ML)-based attacks have revealed
the possibility of utilizing neural networks to break locked
circuits without needing functional chips (Oracle). Among ML
approaches, GNN (graph neural networks)-based attacks are the
most potent tools that attackers can employ as they exploit graph
structures inherent to a circuit’s netlist. Although promising,
in this paper, we reveal that GNNs have some impediments in
attacking locked circuits. We investigate the limits of the state-of-
the-art GNN-based attacks against logic locking and show that we
can drastically decrease the accuracy of these attacks by utilizing
these limitations in the locking process.

Index Terms—Logic locking, Structural attacks, ML-based
attacks, GNN

I. INTRODUCTION

Logic locking is a design-for-trust technique that offers
protection through various stages of the IC supply chain [1]–
[3]. By locking the design and adding new logic elements, this
technique hides the true functionality of the circuit from an
adversary. The design can only function correctly by feeding
a valid key set to the circuit stored in a tamper-proof memory.

Logic-locking techniques can be categorized into gate and
interconnect obfuscation. Interconnect obfuscation perturbs the
netlist by injecting Multiplexers as new nodes into the design
and connecting these nodes to the correct and arbitrary nodes
from the circuit’s netlist [4].

In gate obfuscation techniques [1], the designer perturbs
the netlist by injecting a Multiplexer and a new logic gate
into the netlist. For example, XOR based logic locking can be
interpreted as a Multiplexer connected to the output of a gate
and an inverter. This new logic gate is connected to the same
input cone of the locked gate.

Although effective, various attacks have questioned the
security of the logic locking technique. The SAT [5] attack was
the first attack that challenged the security of logic locking.
This powerful attack utilizes a functional duplicate of the target
circuit (an oracle) to infer the valid key. This attack works
based on the functionality of the circuit. By changing the
primary inputs and key bits of the extracted target netlist and
comparing the output with the Oracle SAT can infer the valid
key set.

Although the SAT attack has been the standard attack
for many years, its threat model and efficiency have been
questioned. The main assumption in the threat model of the
SAT attack is access to an oracle. This assumption may need to
be revised for two reasons. Firstly, accessing a functional chip

is not always possible; secondly, if such access is provided, it
can lead to more powerful attacks such as probing [6].

Regarding efficiency, the SAT attack cannot break circuits
with SAT-hard functions like multipliers. Moreover, breaking
logic locking in large complex circuits is challenging for the
SAT attack [7].

With regard to these shortcomings, many structural-based
attacks have been proposed by the security community [8]–
[13]. These attacks omit the need for an oracle from the threat
model. They utilize the similarity in the netlist of the circuits
as a basis to trace back the changes introduced into the circuit
by logic locking.

Structural attacks have three main advantages over SAT
attacks. Firstly they omit the need for an oracle leading to
a more realistic threat model. Secondly, they can break logic
locking in circuits with SAT-hard functions. And finally, they
result better in attacking large and complex circuits where SAT
fails to infer the valid key set.

Among the structural attacks, ML-based approaches have
proved to be the most promising attacks [10]. The final
netlist of a circuit is a product of security-agnostic synthesis
tools. These tools only consider the circuit’s area, delay, and
performance when synthesizing an RTL code to a netlist.
As the boolean functions are repeated multiple times inside
a circuit, the final netlist of a circuit will contain repeated
structures and duplicated basic functions [14].

The ML-based attacks revealed that although adding locking
structures and re-synthesizing the design can lead to changes
in a netlist, these changes are confined to the adjacency of the
locked gates [10], [12]. As a result, by learning the small
substructures of a circuit and by training the model based
on the locking scheme, the ML model can infer the original
substructure of the locked gates.

Among ML approaches, GNNs are the most promising one
[12], [13] since the structure of a netlist is a graph with
logic gates as nodes and the wires between them as edges.
This graph contains multiple subgraph localities with the same
network of wires and gates. GNN-based attacks showed the
structure of the extracted subgraph local to the add-on security
gates could leak information about the value of the key bit
inside that subgraph.

In this paper, we first investigate the challenges of pro-
tecting a circuit against GNN-based attacks. Then we show
the limitations of GNN-based attacks and demonstrate how

by harnessing these limitations, the circuits can be protected
against such attacks.

To the best of our knowledge, this is the first work that
presents the limitations of neural network-based attacks on
logic locking and provides the community with insights about
possible measurements to thwart such attacks. The contribu-
tions of this paper are as follows:

• Challenges of protecting circuits against GNNs: We
investigate the challenges of protecting circuits against
GNN-based attacks based on graph perturbations. We
demonstrate that not all perturbations are possible in a
circuit’s graph, making circuit protection more difficult.

• Limitations of GNNs in attacking interconnect obfus-
cation: We show the limits of GNNs in attacking
interconnect-based logic locking techniques. We provide
insights and approaches for customizing gate selection in
the locking process that can decrease the accuracy of the
GNNs by exploiting the graph structure of the circuits.

• Limitations of GNNs in attacking gate obfuscation:
We investigate the limits of GNNs in attacking gate
obfuscation-based logic locking techniques. We provide
insights and approaches for customizing gate selection in
the locking process that can decrease the accuracy of the
GNNs based on the self-referencing model of GNN-based
attacks.

• Analyzing the proposed approach: We analyze the pro-
posed approaches using the ISCAS-85 benchmark and
two of the state-of-the-art attacks and discuss the possible
research directions to find countermeasures against GNN-
based attacks.

II. GNN-BASED ATTACKS ON LOGIC LOCKING

Any synthesized locked circuit is a netlist which is basically
a graph, with edges being a network of wires between the
gates. There is a good fit between the topology of an extracted
netlist locality and the network of wires between gates. The
attack’s aim is to extract the value of the key bits from the
features of the key gates’ locality in the graph. The most
promising ML approach that exploits the graph structure to
infer such information is GNN [12]. In this section, we discuss
two state-of-the-art attacks that harness the GNN to extract the
keys from the structure of the netlists.

A. Threat Model

In GNN-based attacks, the adversary is located in an un-
trusted fab with access to the GDSII file. The attacker can
obtain the netlist by reverse engineering this GDSII file. After
that, distinguishing key inputs is easy as these particular inputs
are connected to a tamper-proof on-chip memory. Moreover,
the foundry has access to the standard cell library. Note that
the attacker has no access to an oracle which makes GNN-
based attack models more challenging than SAT attacks.

B. GNN-based attack against interconnect obfuscation

Fig. 1a shows an interconnect obfuscation scheme where
one of the inputs of the target gate is obfuscated using a

K

i1
i2

i3
i4

i5

i6

i7 o1

o2

F

T

K

i1
i2

i3
i4

i5

i6

i7 o1

o2

T

K

i1
i2

i3
i4

i5

i6

i7 o1

o2

F

?

i2

i3
i4

o

i1
K

i2

i3
i4

o

i1 K

i2

i3
i4

i1

o

(a) Locked netlist

K

i1
i2

i3
i4

i5

i6

i7 o1

o2

F

T

K

i1
i2

i3
i4

i5

i6

i7 o1

o2

T

K

i1
i2

i3
i4

i5

i6

i7 o1

o2

F

?

i2

i3
i4

o

i1
K

i2

i3
i4

o

i1 K

i2

i3
i4

i1

o

(b) Locked netlist K=0

K

i1
i2

i3
i4

i5

i6

i7 o1

o2

F

T

K

i1
i2

i3
i4

i5

i6

i7 o1

o2

T

K

i1
i2

i3
i4

i5

i6

i7 o1

o2

F

?

i2

i3
i4

o

i1
K

i2

i3
i4

o

i1 K

i2

i3
i4

i1

o

(c) Locked netlist K=1

Fig. 1. Interconnect obfuscation. a) Locked netlist, b) Netlist after assigning
the correct value to the key, c) Netlist after assigning an incorrect value to
the key

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3100275, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

7

Algorithm 2 SAAM: Structural Analysis Attack on MUX-
based locking
Input: Locked netlist Net
Output: Extracted key E where ∀e ∈ {0, 1, X}
1: E ← {∅}
2: for i = 0 to |K| do
3: {n1, n2} ← ExtractDirectInputsOfMUX(Net, K[i])
4: if (OutSize(n1) > 1) ∧ (OutSize(n2) > 1) then
5: E[i]← X // Set unknown value
6: else if OutSize(n1) == 1 then
7: E[i]← ValueOfKeyForMUXInput(n1) // Out of n1 is true wire
8: else
9: E[i]← ValueOfKeyForMUXInput(n2) // Out of n2 is true wire

10: end if
11: end for
12: return E

output (line 4 to 10). Note that SAAM fails at uncovering
the key value if both inputs result in connected logic if not
selected. This can also occur in the existing MUX-based LL
if, by chance, a favorable T wire is selected.

Interestingly, previous works showcase MUX-based LL
including similar examples without noticing this vulnerabil-
ity [28]–[30]. The authors in [4] briefly mention that this might
be the reason why SWEEP is effective against MUX-based LL.

V. DESIGNING A DECEPTIVE LOGIC-LOCKING SCHEME

The reason for the vulnerability against learning-based at-
tacks lies in the challenge of inserting additional logic without
leaving key-related, structural traces. A promising LL scheme
that overcomes these issues hides in MUX-based locking.
MUX-based LL has a profound advantage; instead of inserting
additional gates, it reconfigures the existing logic. Thereby,
the scheme always inserts the same structures: multiplexers.
However, we have shown that existing MUX-based LL can be
attacked efficiently with SAAM and SWEEP. Therefore, based
on MUXs, we introduce D-MUX; a deceptive LL scheme that
overcomes both attacks and offers effective learning resilience.
The core functionality of D-MUX is based on specific locking
strategies ensuring that each path through a MUX has the
same probability of being true or false. In the following, we
first provide more details on the concept of locking strategies.
Afterwards, using these strategies, we compose D-MUX.

A. Locking Strategies

To achieve resilience against SAAM, all inputs to a MUX
must be equally likely. To dissolves the possibility of an
educated guess determining the correct (true) wire, the wire
selection and MUX insertion must be steered to avoid selecting
single output gates as candidates. Therefore, we introduce
multiple locking strategies that fulfill this criterion. A single
locking strategy Si is defined by four components:
• Input Node Selection: Selects a set of two input nodes
{fi, fj}. These nodes represent two gates that drive the
inputs of one or multiple MUXs.

• MUX Configuration Selection: Selects a set of maxi-
mum two MUXs to be used in a single locking iteration.

• Key Length Selection: Selects a set of maximum two
one-bit key inputs {ki, kj}.

• Output Node Selection: Selects a set of maximum two
output nodes {gi, gj}. Hereby, gi is the output node of
fi if fi drives one input of gi in the target netlist.

(a) S1 (b) S2 (c) S3 (d) S4

Fig. 7: D-MUX locking strategies.

The node fi can be of the following types:

• Single-output: fi has only one output node gi1.
• Multi-output: fi has multiple output nodes {gi1, gi2, . . . }.

Based on these components, several locking strategies can
be derived: TwoMultiOutTwoBitTwoMux (S1), TwoMultiOu-
tOneBitOneMux (S2), OneMultiOutOneBitOneMux (S3), and
AnyOutOneBitTwoMux (S4). In the following, all strategies are
discussed in detail, following the examples in Fig. 7.

1) S1 - TwoMultiOutTwoBitTwoMux: This strategy selects
two multi-output nodes {fi, fj} (TwoMultiOut), thereby in-
troducing a pairwise lock by using two individual key bits
{ki, kj} (TwoBit). Every key bit acts as selector for one
particular MUX (TwoMux). A visualization is presented in
Fig. 7 (a). One output node is selected for each input node,
i.e., {gi, gj}, to select two initial true paths: fi → gi1 and
fj → gj1. Afterwards, two MUXs are placed between the two
input and two output nodes to generate four valid paths for
all values of {ki, kj}. Since both input nodes initially have
multiple outputs, one cannot determine which path is true or
false, as all are equally valid. Moreover, a path from an input
to an output node does not have to exists at all. For example,
if ki = 0 and kj = 0, input node fj is neither driving gi1 nor
gj1. This is, however, valid, since fj is a multi-output node and
therefore remains connected even if not selected by any MUX.
All allowed configurations of S1 are shown in Table I (a). The
entries are read as follows. For the input keys ki and kj , the
nodes fi and fj are forwarded to the nodes marked in the
table. For example, if ki = 0 and kj = 1, the output of fi is
connected to gi1, whereas fj is connected to gj1.

2) S2 - TwoMultiOutOneBitOneMux: This strategy selects
two multi-output nodes {fi, fj} (TwoMultiOut), but introduces
a locking mechanism based on a single key bit ki (OneBit)
driving a single MUX (OneMux). In the next step, S2 ran-
domly selects one output node of a randomly selected input
node. For instance, in the example in Fig. 7 (b), S2 selects fi
and one of its output nodes gi1. The MUX is placed between
these two nodes, enabling the two configurations presented in
Table I (b). Since both input nodes originally have multiple

TABLE I: Strategy configurations.

(a) S1

ki kj fi fj
0 0 gi1, g

j
1 ∅

0 1 gi1 gj1
1 0 gj1 gi1
1 1 ∅ gi1, g

j
1

(b) S2

ki fi fj
0 gi1 ∅
1 ∅ gi1

(c) S3

ki fi fj
0 gi1 ∅
1 ∅ gi1

(d) S4

ki fi fj
0 gi1 gj1
1 gj1 gi1

Authorized licensed use limited to: SLUB Dresden. Downloaded on December 09,2021 at 15:29:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Various D-MUX strategies [4]

Multiplexer connected to the correct cone and an arbitrary
cone from the circuit. The valid key chooses the correct logic
cone, whereas a wrong key can lead to a wrong connection.
Although this scheme brings a good level of complexity to
the netlist by adding new connections to the circuit’s graph,
it suffers from a fundamental weakness. As shown in Fig. 1c,
setting the key bit to a wrong value leads to circuit reduction
after re-synthesizing where choosing the correct path does not
leave any dangling connections (Fig. 1b) Constant propagation
attacks like SWEEP [8] and SCOPE [9] exploit this weakness
and attack the circuit by hard-coding the value of one key bit
at a time and performing re-synthesis. These attacks gather
design features, including power, area, number of AND gates
in AIG representation, etc., during the re-synthesizing phase
by initializing each key bit separately to constant values one
and zero. Finlay, the attack correlates extracted features to
correct key values.

In [4] authors proposed D-MUX that changes the naive
interconnect obfuscation to stop constant propagation attacks.
This technique is shown in Fig. 2. This technique utilizes
four strategies to select the target gates for locking. Then it
brings Multiplexers into the circuit and obfuscates one of the
outputs of the selected gates. This technique thwarts constant

!!

!"

"!

#!

#"

0
1

0
1

!!

!!

!"

!"

?

?

?

?

Link ""1

Link "!1 Link "!2

Link ""2

!!

!"

1
0.4

0.9

0.8

!!

!"

δ# = 0.2

!!
!"

① MUX-locked
locality

② Conversion to link
prediction

③ Enclosing subgraph
extraction

④ Node information
matrix construction

⑥ Post-processing

Subgraphs
embeddings

Link scores

GNN

⑤GNN learning

!!

!"

0

1

0
1

0
1

Replace MUXes
with a set of possible links

!!

!"

"!1

"!2

""1
"" 2

."!2à 0.8

."!1à1
.""2à 0.4
.""1à 0.9

Selected
links

!

"/$ = 1

/% = 1

!

"
4

1
1

2

2 ^ 1
~^ 0
& 0
~& 0
| 0
0

~ 0
0

|~
!"#

DRNL label

Gate label

2
""

"" ""

"! "!

δ& = 0.5

""

"!

"!
""

""

""

"!

"!
""

"!

⑦ Key recovery

Fig. 5. The methodology work flow. The blue and green triangles represent fan-in cones and fan-out cones, respectively.

1) Deceptive MUX-based LL (D-MUX) [10]: Supporting
both the ANT and RNT concepts remains a challenge for
X(N)OR-based LL. The authors in [10] state that vulnerabil-
ities manifest due to the insertion of additional logic without
leaving key-related, structural traces. Furthermore, the authors
conjecture that MUX-based LL has an important advantage, as
it inserts the same structure (i.e., a MUX), and it reconfigures
the existing logic. A new learning-resilient LL, D-MUX, is
proposed [10], which ensures that each wire feeding to the
MUX has the same probability of being true/false. Multiple
locking strategies (S1–S4 in Fig. 4) are followed by D-MUX.

In the S1 strategy, two multi-output nodes {fi, fj} are se-
lected as inputs to two locking MUXes. The MUXes obfuscate
one randomly selected output node for each input node, i.e.,
{gi, gj}. Two individual key-inputs {ki, kj} are used, where
each key-input acts as a select line for one MUX. The S2

strategy selects two multi-output nodes {fi, fj}, but performs
locking using a single key-input ki controlling a single MUX.
One randomly selected output node for a randomly selected
input node is locked. E.g., in Fig. 4 2©, S2 selects fi and one
of its output nodes gi. The S3 strategy selects and locks one
multi-output node fi using a single key-input ki controlling one
MUX. fj in the case of S3 is a single-output node. Finally, the
S4 strategy sets no restrictions on {fi, fj}. A single key-input
ki drives two MUXes and locks one output node for each input
node. In all the strategies, the MUXes are configured to cause
no circuit reduction and no combinational loops.

The cost of the S4 strategy, in terms of the number of gates
added, is larger compared to the rest of the strategies. However,
S4 is always applicable as there are no restrictions on {fi, fj}.
To reduce costs, the enhanced D-MUX (eD-MUX) only uses
S4 when none of the other strategies is viable.

2) Symmetric MUX-based LL [14]: Concurrent to D-
MUX, Alaql et al. [14] propose another technique (Fig. 4 5©),
which can be considered as a special case of D-MUX. We
denote this locking strategy as S5. Note that S5 is equivalent
to S4, but two individual key-inputs are driving the individual
MUXes. Here, {fi, fj} are one-output nodes.

C. Link Prediction Problem

Link prediction refers to the problem of inferring missing
links from an observed graph. Let G(D,V) denotes a graph
with a set of edges D and a set of nodes V . Given V and
a subset of true links E ∈ D, the objective is to identify
the unobserved true links S referred to as target links, where
D = E+S. Link prediction has varied usages in recommender
systems, drug discovery, and knowledge graph completion,
etc. Traditional link prediction heuristics rely on handcrafted
features, which might fail to express the complex patterns in

the graph that actually determine the link formations. Recently,
the authors in [17] demonstrated how GNNs can directly learn
suitable “heuristics” from local enclosing subgraphs around
links. SEAL [17] extracts an enclosing subgraph around each
target link, computes a subgraph embedding using a GNN,
and uses it for link prediction. Since the subgraph embeds
information regarding the target link, the label of the subgraph
can be considered the label of the target link.

D. Graph Neural Networks (GNNs)
GNNs generate an embedding for each node v ∈ V in a

graph G through iterations of message passing [18] as follows,
where hlv denotes the embedding of v at the lth iteration.

alv = AGGl({hl−1
u : u ∈ N(v)}) (1)

hlv = COMBINEl(hl−1
v , alv) (2)

The AGG function collects information from the neighbors of
v, N(v), and extracts an embedding alv for the layer l. The
COMBINE function updates the features of v by combining
hl−1v with alv . The updated embedding, hlv , captures information
regarding v and its neighborhood. After L iterations of message
passing, a read-out is performed to generate a graph-level
embedding, hG , which can be used for graph classification.

III. PROPOSED MUXLINK ATTACK MODEL

Attack Model: We assume an adversary located in the fab
with access only to the GDSII representation of a locked design.
The attacker performs reverse engineering to obtain the locked
netlist and determines the location of the key-gates by tracing
the key-inputs from the tamper-proof memory. Fig. 5 shows an
overview of the main steps of MuxLink.

A. Enclosing Subgraph Extraction
The first step is identifying the key-controlled MUXes by

tracing the key-inputs (see Fig. 5 1©) and removing them from
the netlist. The netlist is then converted to an undirected graph
G = (E ,V), where V represents the set of nodes (gates), and
E ⊆ V × V represents the set of observed links (wires). A is
the symmetric adjacency matrix of G. The graph representation
of the netlist does not include primary inputs and primary
outputs, as we are interested in capturing the composition of
gates and their connectivity. All the inputs to the MUXes are
marked as target links, added to set S and excluded from E
(see Fig. 5 2©). Next, MuxLink extracts an h-hop enclosing
subgraph for each pair of target nodes f and g (see Fig. 5 3©).
The h-hop enclosing subgraph for (f, g) is induced from G
containing the nodes { j | d(j, f) ≤ h or d(j, g) ≤ h },
where d(y, x) is the shortest path distance between x and y. As
discussed in Sec. II, the techniques only check if the inputs to
the MUXes {fi, fj} are driving a single gate or multiple gates.

Fig. 3. MUXLink attack [13] converts the problem of guessing correct keys to a link prediction problem and predicts the correct connection utilizing GNN

propagation delay by stopping the synthesis tools from circuit
reduction as for both values of each key in a D-MUX structure;
both cones should be available in the circuit.

Although the D-MUX technique can thwart the constant
propagation attacks, the authors in [13] proposed MUXLink,
which showed that this technique is vulnerable when the attack
is based on the link representation of the target circuit since
D-MUX brings local modifications to the circuit that can
be reversed based on the extracted features of the circuits’
structure.

MUXLink attacks the interconnect obfuscation techniques
by converting the logic locking scheme to a link prediction
problem. Then it uses GNN to infer the correct links based on
the features of the enclosing subgraph of the locked units.
Fig. 3 shows the flow of the MUXLink attack. MUXLink
extracts the h-hop subgraphs of the target nodes. Each node in
this subgraph will be assigned an information matrix and tag
corresponding to its relationship with the target nodes. This
tag is calculated for each node in the subgraph based on the
shortest path distance of each node to the target nodes (nodes
fi, fj , gi , and gj). Finally, the GNN predicts the probability of
each link, and post-processing uses these numbers to predict
the correct links.

C. GNN-based attack against gate obfuscation

Fig. 4a shows a gate obfuscation scheme where an XOR
key gate is placed in front of a logic gate from the design.
The protection of this scheme is based upon re-synthesizing
as without re-synthesizing, it is easy to infer the value of
the correct key, which is one here. However, in SAIL [10]
the authors showed that re-synthesizing leads to local changes
(Fig. 4b) that can be learned and used to trace back the changes
and finally infer the correct key values. Although powerful,
SAIL has shortcomings like complex learning models [12].

OMLA overcomes the shortcomings of the SAIL by utiliz-
ing the GNNs. Fig. 5 shows the general flow of the OMLA
attack. This attack converts the circuit’s netlist to an undirected
graph and maps the key guessing problem to subgraph classi-
fication. Like MUXLink, Each node in this subgraph will be
assigned an information matrix and a label corresponding to its
relationship with the target key node. Each label corresponds
to the distance of the gates from the key gate based on the
number of hops.

K

i1
i2

i3
i4

i5

i6

i7 o1

o2

F

T

K

i1
i2

i3
i4

i5

i6

i7 o1

o2

T

K

i1
i2

i3
i4

i5

i6

i7 o1

o2

F

?

i2

i3
i4

o

i1
K

i2

i3
i4

o

i1 K

i2

i3
i4

i1

o

(a) Before re-synthesis

K

i1
i2

i3
i4

i5

i6

i7 o1

o2

F

T

K

i1
i2

i3
i4

i5

i6

i7 o1

o2

T

K

i1
i2

i3
i4

i5

i6

i7 o1

o2

F

?

i2

i3
i4

o

i1
K

i2

i3
i4

o

i1 K

i2

i3
i4

i1

o

(b) After re-synthesis

Fig. 4. Gate obfuscation. a) Before re-synthesis. b) After re-synthesis

For the training phase, OMLA follows the self-referencing
model. The locked target netlist is used to generate train-
ing/validation sets. This way, the model can learn the biases
of the target circuit and infer the keys more accurately.

III. LIMITATIONS OF GNN-BASED ATTACKS

The final netlist of a circuit is a product of security-agnostic
synthesis tools. This netlist contains repeated structures and
repeated basic functions [14]. This means that the graph of
the netlist has multiple subgraph localities with the same
network of wires and gates. Although adding key structures
(gate or interconnect) and re-synthesizing the design can lead
to subgraph changes, these changes will be confined to only a
small number of hops and are still detectable [10], [12]. As a
result, the structure of the extracted subgraph local to the add-
on security gates can leak information about the value of the
key bit inside that subgraph. So, the naive gate or interconnect
obfuscations cannot protect the circuits.

To protect the design from GNN attacks, security designers
should add perturbations to the netlist of the circuit in such a
way that the GNN fails to infer the correct key values from
the information learned during the training phase.

In this section, we first discuss the challenges for protecting
circuits against GNN-based attacks; then, we show that cus-
tomizing selection during the locking process can drastically
decrease the accuracy of the GNN-based attacks for both
interconnect and gate logic locking.

A. Challenges for protecting circuits against GNN

As mentioned, to protect the design from GNN-based at-
tacks, the security designer should add some perturbations to
the circuit’s netlist. Fig. 6 shows various perturbation types
that can be used to change the prediction of the GNNs.
However, not all perturbations apply in a circuit’s netlist. In

ALRAHIS et al.: OMLA: AN ORACLE-LESS MACHINE LEARNING-BASED ATTACK ON LOGIC LOCKING 3

!/
ℎ = 1
ℎ = 2

Feature
Vector

!Node
Tag

Label
(Key-value)

❶ Input Locked Netlist ❷ Enclosing Subgraph
Extraction. Here ℎ = 2.

❸ Node Labeling and Feature
Aggregation using GNN

❹ Predict Subgraph Label (key-value)
Based on the Aggregated Information

Final Subgraph
Embedding

"

−2 = 3, 0,0,0,0
−1 = 0, 3, 0,0,0
−0 = 0,0, 3, 0,0
−1 = 0,0,0, 3, 0
−2 = 0,0,0,0, 3

Hot
Encoding

2
1

2

-2

-2
-1 0

^ 0
~^ 0
& 0
~& 0
| 0

0
~ 2

0

|~
!"#

0$%

2&'
0&%

Fig. 2. OMLA attack stages. The colors dark gray, gray and white represent the 2-hop, 1-hop and 0-hop (root gate) neighborhoods, respectively.

!- !.
Netlist

Localities

$ = &Subgraphs

OMLA Labeling $ ≠ & -10110-1

Fig. 3. Processing an undirected graph, a GNN will assign the same em-
bedding to both localities because the corresponding subgraphs are identical.
OMLA’s annotated subgraphs allow for differentiation between the localities of
ka and kb and preserve the original direction in the corresponding netlists.

(see B). The target key-gate will always get a unique label
of 0, allowing the GNN to distinguish the key-gate from the
rest of the nodes. Representing a netlist as an undirected
graph causes the loss of IN/OUT-neighborhood notion (see
Fig. 3). To overcome such a challenge, we embed the IN/OUT-
neighborhood information using node labeling. We addition-
ally assign the label a sign (-/+) to capture the existence of
a node in the IN/OUT-neighborhood of the key-gate, while
still benefiting from the undirected graph representation (see
Fig. 3). The final labels are hot-encoded and concatenated with
the original node feature matrix (see C in Fig. 2).
C. Dataset Generation

To train OMLA, we follow the self-referencing model used in
SnapShot/SAIL (see Fig. 4). The locked target circuit is used
to generate the training/validation set so that the model learns
the target design’s bias and the behavior of the logic locking
method. A dataset is created by copying the target locked
netlist N times and then re-locking each copy with a key-
size K. The N re-locked netlists are then resynthesized, and
the N ×K subgraphs around the newly added key-gates are
extracted and split at random using 90:10 ratio for training and
validation. During testing, OMLA extracts K subgraphs around
the original key-gates and predicts their labels (key-values).
D. Key Prediction as (Sub)graph Classification

The pseudocode of OMLA’s inference algorithm is shown
in Algorithm 1, where fL indicates the composition of the
function f (3) for the L layers. We build an L-layer GNN to
perform graph classification on the extracted subgraphs, where
the target labels are the corresponding key-bit values (see 4
in Fig. 2). After obtaining the node embeddings from the final
output layer of the GNN (H(L)

[s]), we can generate the subgraph
embedding vector using graph level READOUT function. g is
a dense output layer with softmax activation, which maps
the subgraph embeddings to the target key-bit values. OMLA is
flexible with what GNN to use. Thus, we choose the graph
isomorphism network (GIN) architecture [9] as it is one of the
most expressive GNNs. GIN updates node representations as
follows, where MLP represents a multi layer perceptron.

h(l)
v = MLP(l)

(
h(l−1)
v +

∑
u∈N (v)

h(l−1)
u

)
(5)

Algorithm 1 OMLA Inference Algorithm
Input: G (V, E,X,A); Target nodes (key-gates) Vk; GNN;
Output: Predicted labels vector Y for Vk (key-values);
for s ∈ Vk do

Get G[s]
(
V[s], E[s],X[s],A[s]

)
by SAMPLE on G

Build L-layer GNN with layer operation f

H
(L)
[s]
← fL

(
X[s],A[s]

)

yG[s]
← g

(
READOUT

(
H

(L)
[s]

))

end for

Target Netlist Key Length (Number of Samples)

ℎ-hop sampler

Logic Re-locking

Re-synthesis Target NetlistTarget NetlistTarget Netlist)

Self Referencing
Dataset Generation

Graph Transformation

Target NetlistTarget NetlistLabeled Subgraphs
)×(×0.9

Training Set
Target NetlistTarget NetlistLabeled Subgraphs

)×(×0.1

Validation Set

ℎ-hop sampler

Graph Transformation

Target NetlistTarget NetlistUnlabeled Subgraphs
(

Testing Set

GNN

Batch Size
Hidden

Dimension

OMLA

Predicted KeyOUTPUT

INPUTS

Best Validation
Acc. ?

Layers

Fig. 4. OMLA flow and experimental setup using the self-referencing model.

GIN considers all structural information from all iterations of
the model by replacing (4) with subgraph embeddings con-
catenated across all layers of GIN as follows. The READOUT
function adds all node embeddings from the same layer.

hG[s] = CONCAT
(

READOUT
({

h(l)
v |v ∈ G[s]

}) ∣∣ l = 0, 1, . . . , L
)

(6)

IV. EXPERIMENTS

Fairness of Comparison. We evaluate OMLA on the ISCAS-
85 [14] and ITC-99 [15] combinational benchmark sets, and
directly compare OMLA’s results with the results reported for
SnapShot and SAIL in [6], making sure we follow the
same experimental setup. We implement (i) the same locking
scheme (X(N)OR RLL [1]), (ii) lock the same benchmarks,
(iii) use the same key-size, and (iv) use the same number
of training samples as in [6]. We also use the key-prediction
accuracy (KPA) as an evaluation metric similarly to [6], where
KPA = (|Kc|/|K|) ∗ 100. |Kc| indicates the number of
correct key-assignments and |K| denotes the total key-size.
The evaluation was performed on an Intel(R) Xeon(R) CPU
X5680 @3.33GHz with 95GB of RAM.

We build a self-referencing training model as discussed in
Sec. III-C and set N = 1000 and K = 64 to be consistent with
SnapShot evaluation in [6]. The generated locked netlists are
re-synthesized using Synopsys Design Compiler. We employ
the Nangate 45nm Open Cell Library [16] and initially limit
the usage of gates with input size greater than two to have

Authorized licensed use limited to: SLUB Dresden. Downloaded on February 21,2022 at 11:39:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. OMLA attack [12] converts the netlist to a graph and guesses the correct key values based on the enclosing subgraph structures utilizing GNN

1 2

3
6

4

5
1 2

3
6

4

5

1 2

3
6

4

5

2

1 2

3
6

4

5

(a) Deleting an edge

1 2

3
6

4

5 1 2

3
6

4

5

1 2

3
6

4

5

7

1 2

3
6

4

5

(b) Adding an edge

1 2

3
6

4

5 1 2

3
6

4

5

1 2

3
6

4

5

7

1 2

3
6

4

5

(c) Node injection

1 2

3
6

4

5
1 2

3
6

4

5

1 2

3
6

4

5

2

1 2

3
6

4

5

(d) Feature modification

Fig. 6. Various graph perturbations

the following, we discuss the meanings and possibility of these
perturbations with regard to a circuit’s netlist.

• Deleting an edge: Removing an edge in a netlist can
be interpreted as removing the connection between two
circuits’ gates. As this type of perturbation can change
the final outputs of the circuit to wrong values, it is not
a possible solution for thwarting GNN-based attacks. If
the designers want to use this sort of perturbation in
the circuit, they should neutralize the effects of such
perturbation by adding new corrective structures to the
circuit. However, this additional circuitry may leave its
traces [15] that can further be utilized to attack the circuit.

• Adding an edge: This perturbation can be interpreted as
connecting two gates in the circuit. Like deleting an edge,
this type of perturbation can lead to unwanted output
values in the circuit unless it is followed by a corrective
add-on logic in the circuit that leaves traces [15].

• Node injection: This perturbation in a circuit can be
interpreted as adding new gates and connections. Both
gate and interconnect obfuscations follow this type of
perturbation. Re-synthesizing a circuit cannot omit this
perturbation. However, GNN-based attacks have shown
that this perturbation only brings local changes to the
netlist that can be learned and utilized for the attack.

• Modifying features of the nodes: The feature vector of
a node in GNN-based attacks contains the type of the
corresponding gate, connections to primary inputs (PIs),
connections to primary outputs (POs), and connections to
key inputs (KIs). Changing these features in a netlist may
affect the attacks; however, the security designer cannot
rely on this type of perturbation. The reason is that the
attackers have access to the netlist based on the threat
model. So, they can re-synthesize the design using the
intended technology library. As a result, these features
can be changed, and the attacker can continue the attack
with the new netlist.

In the following, we discuss how the structural aware selec-
tion of a subset of nodes in a netlist for bringing node injection
perturbation can stop the GNNs from learning meaningful
information that leads to thwarting the GNN-based attacks.

B. Thwarting GNN-based attacks against interconnect obfus-
cation

Interconnect obfuscation perturbs the netlist by injecting
Multiplexers as new nodes into the design and connecting
these nodes to the correct and arbitrary nodes from the graph.
As mentioned, GNN-based attacks predict the valid link based
on the extracted locality of the locked nodes.

To evaluate the limitations of the GNN-based attacks against
interconnect obfuscation, we used the MUXLink attack. We
followed two approaches to decrease the accuracy of the
MUXLink.

In the first approach, we locked some of the circuit’s PIs
and POs using two input switch boxes (SB). Fig. 7 shows
this locking scheme. Here all the connections to PIs are now
connected to the add-on Multiplexers. Moreover, a buffer is
connected to each PI and PO to enable the MUXLink attack,
as this attack does not consider PIs and POs as nodes. The
intuition behind this approach is that PIs have the same feature
vector and no predecessors in the graph. We are disconnecting
them from their successors using Multiplexers in the link pre-
diction phase. So, the GNN has no tool to distinguish them and
predict the correct keys. The same goes with POs, as they have
the same feature vector and no successor, if we disconnect
them from their predecessors, GNN cannot classify them. In
section IV, we show that obfuscating output interconnects of
PIs and input interconnects of POs can ultimately thwart the
MUXLink attack.

PO1

PO0PI0

PI0

PI5
PI4

PI1

PI3

PI3

PI1

K1
K0

Fig. 7. Locking POs and PIs of a circuit

In the second approach, we perturb nodes from the same
depth in the graph corresponding to gates from the same level
in the circuit. Fig. 8 shows this approach. In this approach, we
disconnect a gate from its successors. Then we connect these
links to the output of the Multiplexer of the SB. Note that this
is different from the D-MUX approach as it chooses only one
of the outputs of the two target nodes to obfuscate.

There are two intuitions behind this approach. Firstly, as the
circuit structure is uniform, there is a good chance that nodes
from the same level confirm well to the same predecessor and
successor structures. Secondly, injecting multiple perturbations
in the same vicinity of the graph can adversely affect the attack
by affecting the labels of the nodes connected to the target
nodes. Note that MUXLink uses double radius node labeling
(DRNL) calculated based on the shortest path between nodes
with a three-hop distance to the target nodes. So, the chance
of manipulating these labels will be higher with multiple
perturbations in the same vicinity. In section IV, we show
that this approach can decrease the accuracy of the MUXLink
comparing the D-MUX approach.

C. Thwarting GNN-based attacks against gate obfuscation

Like interconnect obfuscation, gate obfuscation perturbs the
netlist by injecting a Multiplexer and a new logic gate into
the netlist. This new logic gate is connected to the same
input cone of the locked gate. We use the OMLA attack
to evaluate the limitations of the GNN-based attacks against
gate obfuscation. OMLA follows a self-referencing model
for attacking circuits as training based on the target circuit
provides the best accuracy. Training on the same circuit that
the attacker is trying to break leads to better results as the
model is trained based on the biases of the target netlist (only
66% accuracy for the best case with a generic training model
[12]). However, we show that this strength can be used against
the attacker.

To show the limitations of the self-referencing model, we
locked all and only the XOR and XNOR gates of the circuit.
The intuition behind this technique is that the extracted local
subgraphs of the XOR and XNOR gates will probably have
similar structures different from other parts of the circuit. So
if we lock all of the XOR and XNOR gates, there will be
no XOR and XNOR gates left for training. As a result, the
training phase cannot learn any useful information about the
locked structures.

K

T

F

T

F

Level n-1 Level n Level n+1

Fig. 8. Locking fanout cone of gates in same depth

In section IV we show how locking all XOR and XNOR
gates can decrease the accuracy of the OMLA attack.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We used ISCAS-85 combinational benchmark sets to eval-
uate our approaches using MUXLink and OMLA attacks. The
level of protection of each approach against the attack is
evaluated using key-prediction accuracy (KPA) which shows
the percentage of correctly guessed keys. Moreover, we report
the key-guessing accuracy (KGA) for the MUXLink attack as
this attack is capable of reporting X instead of Zero or One
values when it fails to guess the correct key. KPA and KGA
are calculated as follows:

KPA =
KEYCorrect

KEYTotal
∗ 100% (1)

KGA =
KEYCorrect +KEYX

KEYTotal
∗ 100% (2)

All the attack codes have been compiled and run on a single
node with an Intel processor running at 4 GHz and 24 GB of
RAM with UBUNTU 20.04.3.

B. Analyzing limitations of GNN-based attacks against inter-
connect obfuscation

To assess our approaches against GNN-based attacks on
interconnect obfuscation, we first locked the PIs and POs of
the benchmark circuits using the obfuscation scheme shown
in Fig. 7.

To evaluate the effects of obfuscating all the output logic
cones of the gates inside the same depth, we separately
obfuscated the circuit’s first, second, and third levels, once
with our approach and once with the D-MUX approach.
Firstly, we only locked all the gates from the first level of
the circuit. Then we attacked the circuit using MUXLink. We
followed the same approach only for gates on the second level
of the circuit, and finally, we locked and attacked the gates
from the third level of the circuit.

Table I shows the results of the MUXLink attack for various
levels and approaches. As shown in the table, obfuscating PIs
and POs thwart the MUXLink attack, as this attack will not

TABLE I
ANALYZING THE LIMITATIONS OF GNN-BASED ATTACKS AGAINST INTERCONNECT OBFUSCATION

Benchmark
PI locking Level 1 locking Level 2 locking Level 3 locking PO locking

Our approach D-MUX Our approach D-MUX Our approach D-MUX Our approach Our approach
KPA% KGA% KPA% KGA% KPA% KGA% KPA% KGA% KPA% KGA% KPA% KGA% KPA% KGA% KPA% KGA%

c1355 0 100 100 100 80 80 9 100 0 100 100 100 0 100 0 100
c1908 0 100 67.3 82.6 19.14 77.3 84.37 93.7 16.66 82.5 88.8 91.66 3.2 96.2 0 100
c5315 0 100 93.75 96.8 8.3 86.9 86.2 100 79.93 83.2 91.11 100 61.53 84.61 0 100
c7552 0 100 35.93 65.62 19.82 76.72 90.62 93.75 54.10 71.01 79.11 100 53.11 75.2 0 100
c2670 0 100 70 86 10 92.5 97.05 97.05 67.7 85.9 32 74 19.23 80.7 0 100
c3540 0 100 66.66 74.35 44.93 69.23 61.36 82.9 49.01 68.6 52.27 75 49.3 67.28 0 100

TABLE II
ANALYZING THE LIMITATIONS OF GNN-BASED ATTACKS AGAINST GATE

OBFUSCATION

Benchmark Obs % Key size KPA %
c1355 58 113 51.2
c1908 34.5 68 49.11
c5315 8.4 101 58.4
c7552 15.6 204 46.44
c2670 9.4 47 52.4
c3540 5.6 42 51.33

extract meaningful structures from the PIs and POs subgraph.
This table also shows that obfuscating all the output logic
cones of the gates inside the same depth can decrease the
accuracy of the MUXLink. Additionally, we can see that
different security levels are achieved by locking different
depths of circuits. This result can provide a basis for more
research to find the best subset of the netlist’s nodes for
perturbation.

C. Analyzing limitations of GNN-based attacks against gate
obfuscation

To show the limitations of the self-referencing model of the
GNN-based attacks on gate obfuscation, we lock all the XORs
and XNORs inside the circuits. This way, the attacker can only
lock other types of gates for the training.

We used the YOSYS tool with a synthetic library containing
BUFF, NOT, and all two-input logic gates for technology
mapping. Note that based on [12], OMLA is agnostic to both
synthesis tools and technology libraries. So, this setup is valid
for the attack. For training, we locked the target netlist 500
times. We used XOR/XNOR gates as key gates for both test
and training sets. In the test set, all the XOR/XNOR gates
of the original circuits are locked by adding key XOR/XNOR
gates. In the training set, we locked the remaining gates of
the circuits randomly using XOR/XNOR key gates with a key
size of 64.

The results of the attack on various circuits are shown in
table II. For multiple circuits in the benchmark, the percentage
of locked gates is also provided to demonstrate the overhead
of this technique. These results show that the self-referencing
model, which is the strength of the GNN-based attack, can
be circumvented by locking all the structures with the same
footprint in the circuit. Security designers can further utilize
these results to develop locking algorithms that aim to find
such structures in the circuit.

V. SUMMARY

In this paper, we investigated the limitations of the GNN-
based attacks on the logic locking technique. For the first
time, we discussed the challenges of protecting circuits against
GNN-based attacks and proposed various approaches to over-
come these challenges by limiting the learning capabilities of
the GNNs. We showed that locking the first and last stages of
the circuits can thwart GNN-based attacks against interconnect
obfuscation. Moreover, we showed that obfuscating all the
gates in the same depth of a circuit can decrease the accuracy
of the GNN-based attacks. For gate obfuscation, we showed
that limiting the self-referencing model of the GNN leads to
preventing attacks.

ACKNOWLEDGMENT

This work was partially funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation)—Project
Number 439891087—SecuReFET and the German Federal
Ministry for Education and Research (BMBF) under the
framework of VE-CirroStrato.

REFERENCES

[1] J. A. Roy et al., “Markov. epic: Ending piracy of integrated circuits,” in
DATE, 2008.

[2] J. Rajendran et al., “Security analysis of logic obfuscation,” in DAC,
2012.

[3] M. Yasin et al., “On improving the security of logic locking,” IEEE
TCAD, 2015.

[4] D. Sisejkovic et al., “Deceptive logic locking for hardware integrity
protection against machine learning attacks,” IEEE TCAD, 2021.

[5] P. Subramanyan et al., “Evaluating the security of logic encryption
algorithms,” in HOST, 2015.

[6] M. T. Rahman et al., “Defense-in-depth: A recipe for logic locking to
prevail,” Integration, 2020.

[7] L. Mankali et al., “Titan: Security analysis of large-scale hardware
obfuscation using graph neural networks,” IEEE TIFS, 2022.

[8] A. Alaql et al., “Sweep to the secret: A constant propagation attack on
logic locking,” in AsianHOST, 2019.

[9] A. Alaql, et al., “Scope: Synthesis-based constant propagation attack on
logic locking,” IEEE TVLSI, 2021.

[10] P. Chakraborty et al., “Sail: Machine learning guided structural analysis
attack on hardware obfuscation,” in AsianHOST, 2018.

[11] L. Alrahis et al., “Untangle: unlocking routing and logic obfuscation
using graph neural networks-based link prediction,” in ICCAD, 2021.

[12] L. Alrahis, et al., “OMLA: An oracle-less machine learning-based attack
on logic locking,” IEEE TCASII: Express Briefs, 2021.

[13] L. Alrahis et al., “MuxLink: circumventing learning-resilient mux-
locking using graph neural network-based link prediction,” in DATE,
2022.

[14] Y. Zhang et al., “TGA: An oracle-less and topology-guided attack on
logic locking,” in Proceedings of the 3rd ACM Workshop on Attacks and
Solutions in Hardware Security Workshop, 2019.

[15] L. Alrahis et al., “GNNUnlock: Graph neural networks-based oracle-less
unlocking scheme for provably secure logic locking,” in DATE, 2021.

