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Abstract—SRAM-based FPGAs are widely used in many criti-
cal systems in which dependability is an essential factor. However,
SRAM-based FPGAs are sensitive to Single Event Upsets (SEUs),
especially when they are used in space. Scrubbing is an effective
technique to protect FPGA Configuration Memory (CM) against
SEUs. One major hurdle in read-back scrubbing techniques is
that they suffer from long Mean Time To Repair (MTTR). In this
paper, we propose scatter scrubbing, a new method that reduces
MTTR by exploiting the locality of SEUs sensitive bits in CM. It
is based on 1) splitting FPGA CM into several partitions based
on how critical the CM bits are for proper operation of the
FPGA circuit, and 2) deriving a smart schedule for scrubbing the
partitions. Finding an optimal partition and scheduling has non-
polynomial complexity; therefore we rely on clever heuristics,
especially for the first step. However, for small designs, we
developed an accelerated brute-force method giving the optimal
solution, which we can use as a reference. The experimental
results show, for real FPGA designs, up to 64% reduction in
MTTR compared to state-of-the-art techniques.

Index Terms—FPGA, fault tolerance, SEU, scrubbing, config-
uration memory

I. INTRODUCTION

Many of the modern digital embedded systems, such as
used in space and automotive domains, make use of custom
off the shelf Static-RAM Field Programmable Gate Arrays
(SRAM FPGAs) due to all the advanced provided features,
like huge capacity, high performance, relatively low power
consumption, and reconfigurability. Reconfigurability is one
of the most interesting items, as it offers the opportunity to
update or correct the system design even after implementing
a final version. The reconfigurability feature is provided by
using a large SRAM based Configuration Memory (CM),
which stores the circuit bitstream. However, SRAM cells
are typically susceptible to Single Event Upsets (SEUs) i.e.
transient bit flips in the memory cell state induced by high
energetic particle strike. SEUs can potentially corrupt correct
operation of any design. In a design where there is no room to
accept any significant risk of functional failure, fault tolerance
techniques can essentially play a key role and ensure the
applicability of SRAM-based FPGAs, especially in radiation
harsh environments.

Two well-known fault tolerance techniques widely used are:
Modular redundancy (MR) [1] and scrubbing [2]. Modular
redundancy is based on replicating modules to detect or even
correct an error. Error detection is possible by Dual Modular
Redundancy (DMR) where outputs of two identical copies of
one circuit are compared. Instantaneous error detection and
error correction are achievable by Triple Module Redundancy
(TMR) using majority vote of three identical copies of one spe-
cific circuit. Still, neither DMR nor TMR could actually clear

SEUs from configuration memory (CM). Thus, errors can be
potentially accumulated and lead to a non-functioning modular
redundant unit. To clean CM from SEUs and overcome error
accumulation problem, scrubbing methods are combined with
modular redundancy. This paper concentrate on scrubbing.

In the simplest scrubbing method i.e. blind scrubbing, errors
are removed from CM by periodically overwriting memory
contents with a golden copy of bitstream stored in reliable
external memory. Several scrubbing methods are introduced
to improve blind scrubbing in term of efficiency. However,
in all of the existing scrubbing methods, the Mean Time to
Repair (MTTR) the error is proportional to the time required to
traverse CM, which is a relatively slow process. For instance,
rewriting the entire CM of Zynq-7000 FPGA using 32-bit wide
100 MHz Internal Configuration Access Port (ICAP) takes
about 8 ms. Reducing this time leads to improvement in system
availability which is critical especially for real-time systems.

Several works have been reported on how to reduce the
MTTR in FPGA designs inspired by the idea of partitioning
whole design into sub-partitions with zero overlaps [1]. MTTR
is reduced by applying scrubbing only on the sub-partition
in which error is occurred. G. L. Nazar et al. [3] recently
introduced a technique that even further reduces MTTR by
starting scrubbing of each sub-partition from a frame where
likely a lot of critical bits are to be found. CM bits are
critical if flipping their value, i.e. an error occurred, results in
observable different circuit behavior, that is, a circuit failure.

This paper proposes a new scrubbing technique, the first
one based on non-sequential scrubbing of CM frames. It
switches between CM frame partitions prioritized based on
SEU vulnerability analysis. Some consecutive parts of memory
are more probable to result in failure when infected by SEUs.
They are, therefore, prioritized to be scrubbed earlier than
other parts. Although switching among partitions introduces
time overhead due to accessing non-continuous part of CM,
taking this overhead into account, our proposed technique
shows promising results. This paper major contributions are:
• New non-sequential scrubbing technique called Scatter

Scrubbing, that reduces the MTTR based upon exploiting
the locality of critical bits. It includes:
– Heuristic methods for partitioning the CM taking into

consideration the locality of critical bits (Section IV-C)
– A method for optimally scheduling obtained set of parti-

tions (Section IV-A)
• An accelerated brute-force scheme to find the partitions and

partition order giving the optimal MTTR (Section IV-B)
• Performance analysis of scatter scrubbing (Section V)
Experimental results show that scatter scrubbing reduces978-1-7281-2260-1/19/$31.00 ©2019 IEEE



Figure 1: The logic and CM layer of the shown example design
consists of 3 partitions A,B and C, implemented on an FPGA. ED
logic implements the used error detection mechanism. The red cross
in CM frame 10 of partition B indicates an error (SEU / bitflip).

MTTR up to 64% compared to the state-of-the-art techniques.

II. PRELIMINARIES AND RELATED WORK

Scatter scrubber targets partitioned circuits [1]. We assume
one error detection mechanism, like DMR, for each of those
individual partitions. Scrubbing is only applied to CM frames
corresponding to the logic in which an error occurs. After
detecting an error, scrubbing of frames starts, and stops when
the erroneous CM frame has been updated (see Fig.1). Our
goal is to reduce the time it takes from detecting an error
till repairing it. This time depends on the number of frames
required to be traversed until the infected frame is reached.

A. Existing Scrubbing Methods
Scrubbing is a method to remove non-permanent effects

of SEUs from CM. In this paper we have investigated most
well-known scrubbing methods: 1) Blind scrubbing [4] in
which bitstream is periodically rewritten with golden copy
stored in radiation hardened memory. There exists some tim-
ing overhead in blind scrubbing technique as obviously the
entire bitstream is not necessary to be rewritten; 2) read-back
scrubbing instead corrects the detected error by rewriting only
the infected part [5]- [8]. CM frames are read back from frame
with lowest address to highest one in a consecutive manner
Scrubbing is halted after repairing the erroneous frame; 3)
Shifted scrubbing [3] that is similar to read-back scrubbing
except that the starting point of scrubbing is addressed to
a frame other than the lowest one in CM [3]. Despite all
existing methods, frames are not consecutively scrubbed in
scatter scrubbing method. A criticality metric is defined for
every bunch of frames and the ones with higher criticality are
scrubbed earlier in time. Thus, the probability of repairing an
error in a shorter time is increased compared to other methods.
Table I compares the aforementioned scrubbing methods in
more details.

B. SEU effect in FPGA Configuration Memory
In SRAM-based FPGAs, circuit design is stored in a large

memory i.e. CM. The content of CM is accessible for read
and write operations frame by frame. Each frame has a linear
address in a range from 0 to the total number of FPGA frames.
For instance, the XC7Z020 chip contains 7951 frames in which
each frame includes 3232 bits. Essential bits are the subset of
CM bits which if “they are changed unintentionally by a SEU,

Table I: Comparison of various scrubbing methods. CF, CP, EP are
Critical Frame, Critical Partition and Erroneous Frame respectively

Scrubbing
method

Starting
point

Error
check

Consecutive Write back
frames

Blind frame 1 no yes all frames
Read-back frame 1 yes yes only EF
Shifted most CF yes yes only EF
Scattered most CP yes no only EF

it is possible that the function in the FPGA does not behave
as intended” [9]. Xilinx tools provide users with essential bits.
When a high energetic particle strikes an essential bit, it causes
a bit flip in it. However, not all the essential bits leads to failure
if they are flipped by SEUs. For example, they may be masked
by upcoming logic. The subset of essential bits which leads
to a failure when they are flipped, is called critical bits.

III. PROBLEM STATEMENT

The goal of this paper is to further reduce MTTR. We
exploit the fact that the probability of getting a circuit failure
due to an error in one of the CM frames is not the same for all
frames, i.e. not all frames have the same criticality. Therefore,
on average repairing an error takes less time when the frame
with more critical bits is scrubbed earlier than other frames.
Thus frames are prioritized based on their number of critical
bits to be scrubbed. The maximum reduction in MTTR can
be achieved when the frames are sorted based on their critical
bits in descending order (i.e ordered scrubbing).

Take an example with a simple design including 14 frames
with addresses 1 to 14. Assume the number of critical bits of
each frame is as shown in Fig.2 (a). Taking these numbers
into account, the optimal scrubbing order (S3) of the frames 1
to 14 is 14, 7, 4, 2, 5, 11, 8, 9, 10, 3, 1, 6, 12, 13 respectively
(i.e frame 1 is the 14th frame which are scrubbed, etc). The
scrubbing order of frames are also shown in Fig 2 in case read-
back scrubbing method (S1) and shifted scrubbing (S2) are
used. For example, first, frame numbers 3 to 14 are scrubbed
consecutively, then frame number 1, and finally frame 2 are
scrubbed, in shifted scrubbing. As shown in Fig.2 (b), more
reduction in MTTR is achieved when S3 is used.

Above mentioned optimal MTTR reduction is achieved
assuming that accessing non-consecutive CM frames costs
zero overhead. However, according to Xilinx documentations
[10], each non-consecutive access, either read or write, to CM
frames introduces some time overhead. For example, for the 7
series FPGAs, each non-consecutive access, read/write, intro-
duces 1.5 times of one frame read/write latency overhead. This
time overhead includes the time required for ICAP interface
synchronization and initiation (i.e. 60 cycles), in addition to the
time required for read/write a dummy frame (i.e. 101 cycles).
Applying this time overhead (J) in the MTTR calculation
makes the MTTR of ordered scrubbing the worst among all as
shown in Fig.2 (b) (i.e S4). Thus, in order to avoid increment
in MTTR due to non-consecutive access, the number of jumps
over the CM is required to be limited. Taking this into
account, we propose scatter scrubbing in which the frames
are partitioned such that each partition consists of consecutive
frames. Thereafter, partitions are ordered to be scrubbed. This
frame partitioning and ordering should potentially result in
a significant reduction in MTTR. For instance, assume that
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S1=Conventional S2=Shifted S3=ordered, J=0 S4=ordered, J=1.5 S5=Scattered 
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Figure 2: a) a sample design with 14 frames, red numbers are the
order of traversing frames corresponding to scrubbing method S1-5,
b) MTTR of each scrubbing method (units is the time of reading a
frame and J is time overhead due to non-continues CM access)

frames in Fig. 2 (a) are clustered into partitions of frames 1-2,
3-9, 10-12, and frames 13-14. In this case, these 4 partitions
are scrubbed with the order of 4,2,1,3 respectively (i.e S5
scrubbing method). MTTR is clearly reduced when compared
to the cases of applying S1, S3, and S4.

A. Problem Formulation

Consecutive frames of a design, from lowest to highest
address, are associated respectively to f1, f2 , ..., fN , where N
is the total number of frames, and the set of all frames is
F = {fi : 1 ≤ i ≤ N}. If the number of critical bits in each
frame i.e h(fi) is given, the scatter scrubbing problem is to
find partitions and order them such that MTTR is minimized
as formulated by:

given :

{
fi
h(fi)

wants :

{
pj
o(pj)

mimimize MTTR

(1)
where pjs, 1 ≤ j ≤ M (M ≤ N ), are partitions such

that pj ⊂ F,
M⋃
j=1

pj = F and pi ∩ pj = φ ( i ̸= j).

Note that each partition should include only consecutive
frames. In addition, indexing of partitions is defined such
that partition with lower index includes frames with lower
indexes. Moreover, o(pj), 1 ≤ j ≤ M stands for the
scrubbing order of partition pj . For example, S5 partitions
highlighted by underline in Fig.2 (a) are p1 = {f1, f2},
p2 = {f3 , f4 , ..., f9}, p3 = {f10 , f11, f12}, p4 = {f13 , f14}
and o(p1), o(p2 ), o(p3 ), o(p4 ) are as 4, 2, 1, 3 respectively.
For example, in this case p1 is the fourth partition which is
scrubbed.

The MTTR is defined as the average time required to repair
an occurred error, and is calculated as (2):

MTTR =
N∑

i=1

pr(fi) × d(fi) (2)

where pr(fi) = h(fi)
B (B=total critical bits number) is the

probability of failure provided error is occurred in fi. Further,
d(fi) is required time to traverse all the fj that have scrubbing
order equal and less than fi, including fi:

d(fi) = o(fi) × Ts + j(fi) × J (3)
In (3), o(fi) is scrubbing order of fi and j(fi) is number
of necessary jumps in CM addresses before reaching fi. In
addition, Ts =

S
R is defined as the required time for read/write

one frame with S bits and rate of R bits/sec. Last definition

in (3), J is time overhead due to non-consecutive access to
CM, e.g. J for Xilinx 7-series FPGA is 1 .5 Ts.

IV. SCATTER SCRUBBING

Scatter scrubbing problem is a non-linear discrete opti-
mization problem. According to our knowledge, none of the
existing optimization solutions can be used directly to find
the optimal solution for scatter scrubbing in finite time. The
exhaustive search for finding the optimal solution is not possi-
ble in finite time. To overcome complexity, scatter scrubbing
problem is split into two separate sub-problems i.e. ordering
problem and partitioning problem.
A. Proposed Ordering Method

For the sake of simplicity and without loss of generality,
let’s assume that all the partitions are known and predefined.
The goal with ordering problem is to order these known
partitions such that MTTR is minimized:

given :

{
fi, h(fi)

pj , 1 ≤ j ≤ M

wants : o(pj)

mimimize MTTR
(4)

Given (3) and (2) and the knowledge of predefined partitions
MTTR can be rewritten as

N∑

i=1

(pr(fi)× ((

o(p(fi))−1∑

j=1

N(pj)) + I(fi) + o(p(fi))× J)) (5)

where pj is partition corresponding to order j, p(fi) is the
partition that fi belongs to, N(pj) is the number of frames in
the partition with order j and I(fi) is the difference between
the index of fi and the first frame in p(fi). Actually, d(fi) is
rewritten based on the information obtained from pre-known
partitions. By expanding (5), MTTR will be:

MTTR =
N∑

i=1

o(p(fi))−1∑

j=1

(N(pj)× pr(fi)) +
N∑

i=1

(pr(fi)× I(fi))

+
N∑

i=1

(pr(fi)(o(p(fi)× J))

(6)

Note that the second term in (6) is always a constant value,
independent from partition order, and it can be eliminated
in the process of minimization. For simplicity, we can now
define a simplified version of MTTR by combining first and
last terms in (6) while sigma indices are changed in the range
of partitions:

MTTR′ =
M∑

l=1

(pr(pl) × (γ(pl) +K × l)) (7)

where pr(pl) is the summation of pr(fi) for all frames in pl

i.e.
∑

fi∈pl pr(fi), γ(pl) is the number of frames are traversed
until pl is reached i.e.

∑l−1
j=1 N(pj) and K = J

Ts
. It is

important to note that minimizing MTTR′ is the same as
minimizing MTTR. In order to find the minimum value of
MTTR′, the Theorem 1 is exploited.

Theorem 1. MTTR′ in (7) is minimized when partitions are
ordered such that pr(pl)

N(pl)+K , for l = 1 to M form a decreasing
sequence.

Proof. Let P = p1, p2 , ..., pj , pj+1, ..., pM be an arbitrary
order and P′ be the same order except pj and pj+1, (1 ≤ j ≤
M ) is interchanged. Thus, pr′(p′l)=pr(pl), γ′(p′l)=γ(pl) for
l ̸= j, j + 1 ; pr′(p′i)=pr(pj+1), pr′(p′j+1)=pr(pj), γ′(p′j) =
γ(pj) and γ′(p′j+1) = γ(pj) +N(pj+1). Referring to Smith
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Figure 3: Eight possible partition combinations for four frames, red
line indicates frames grouped to a partition

Rule [11], P minimize the MTTR′ value, if and only if for
any P′:
M∑

l=1

(pr(pl) × (γ(pl)+K × l)) ≤
M∑

l=1

(pr′(p′l) × (γ′(p′l)+K × l))

(8)
where by expanding (8), using above equalities and γ(pj+1) =
γ(pj) +N(pj), it is concluded that P minimize the MTTR′

value if and only if for any l, (1 ≤ l ≤ M ), (9) is satisfied:
pr(pl+1)

N(pl+1) +K
≤ pr(pl)

N(pl) +K
(9)

Thus, MTTR is minimum when partitions with higher pr(p)
N(p)+K

are ordered to be scrubbed earlier. For instance, consider the
example in Fig.2, the given partitions are p1 = {f1, f2},
p2 = {f3 , f4 , ..., f9}, p3 = {f10 , f11, f12}, p4 = {f13 , f14}
and pr(p)

N(p)+K for each partition is 2 , 5 .64 , 8 .8 , 1 .7 respec-
tively. Thus, based on Theorem 1, the minimum MTTR is
achieved when partitions 1 to 4 are scrubbed with the order
of 3 , 2 , 1 , 4 respectively.
B. Accelerated Brute-force

In brute-force all possible partition combinations and, for
each combination, all possible orderings are searched to find
out a) right partition combination and b) corresponding scrub-
bing orders, in which MTTR is minimized. Obviously, this is
an extreme search algorithm for large designs.To understand
how a brute-force search works in this framework, assume that
a given design consists of four frames (f1, f2 , f3 , f4 ) with
various criticality as shown in Fig.3. There are eight different
partition combinations derived from grouping frames, as also
shown in Fig.3. For each of the partition combinations, there
exists different scrubber ordering. For instance, in the first
partition combination from the left side in Fig. 3, the orders
of p1, p2 , p3 can be respectively 1 2 3, 1 3 2, 2 1 3, 2 3 1, 3
1 2 and 3 2 1. Each of these possible orderings results in one
different final MTTR value. The minimum value among all
obtained MTTR for a partition combination is selected. This
value still needs to be compared with other obtained MTTR
values coming from seven other partition combinations. This
algorithm can be extended to any other larger design, which
could be very compute intensive.

Instead of a normal brute-force algorithm, we propose an
accelerated brute-force algorithm based on Theorem 1, to
avoid searching for all possible orders of a partition combi-
nation. Thus, in the example shown in Fig.3, for each of the
eight partition combinations, Theorem 1 determines the only
ordering which result in the minimum MTTR. To a larger
extent, for each combination with M partitions, computation
complexity reduces with a factor of 1

M ! .
C. Proposed Partitioning Method

In Accelerated brute-force,
∑N−1

M=1

(N−1
M

)
various partition

combinations are required to be searched, which in terms

of computation time is only feasible for a small number of
frames. We, therefore, propose a heuristic partitioning method
which evaluates only a subset of all possible partition combi-
nations in order to find a solution close to minimum MTTR.
Taking into account the features of optimal solutions obtained
by accelerated brute-force, the proposed heuristic includes
two different phases. First, an initial partition combination
is generated. Second, consecutive partitions are merged when
merging them leads to a further reduction in MTTR.

1) Generating Initial Partition Combination Using Max-TH
Algorithm : The critical bits number of neighboring frames
are usually similar to each other, according to our observation.
Thus, the strategy of Max-TH algorithm is to group frame with
higher critical bits and its surrounding frames with similar
critical bits number and form one partition. As shown in
algorithm 1, among all frames, the frame which has maximum
critical bits number (i.e. fj) is selected and forms one new
partition. Then, its adjacent frames are added to this partition
one by one till their critical bits number is equal or higher than
a predefined threshold i.e. αh(fj) (α is constant, 0 < α ≤ 1 ).
Then second new partition is formed by finding the next frame
with maximum critical bits number among the rest of un-
partitioned frames. Similar to the first partition, the second
partition includes some consecutive neighboring frames that
have critical bits number more or equal to the threshold. This
procedure is continued until all frames are partitioned.
ALGORITHM 1: Max-TH algorithm

1 INPUT: F = {fi : 1 ≤ i ≤ N}, h(fi), α
2 OUTPUT: pj , 1 ≤ j ≤ M
3 A = F ;
4 while A ̸= φ do
5 Find fj in A with maximum h(fj);
6 p = Create empty partition;
7 Add fj to p; A = A− fj ; k = j + 1;
8 while h(fk) ≥ αh(fj) and k ≤ N do
9 Add fk to p; A = A− fk; k ++;

10 end
11 k = j − 1;
12 while h(fk) ≥ αh(fj) and k ≥ 1 do
13 Add fk to p; A = A− fk; k −−;
14 end
15 Store p;
16 end

2) Merging Partitions : By comparing the initial partitions
derived from Algorithm 1 and partitions obtained from accel-
erated brute-force, it is observed that merging three adjacent
partitions i.e. pj , pj+1, pj+2 may result in some additional
reduction in MTTR if they have following characterization:
1) maximum critical bits of frames in middle partition pj+1

(i.e. Max(pj+1)) is less than each of two other partitions,
2) the ratio of maximum critical bits number of pj to pj+2

is either less than or equal to α, or larger than or equal to
1
α . The whole partitions are traversed once to find partitions
with aforementioned property as shown in algorithm 2. Then if
merging them leads to an additional reduction in MTTR, they
are merged. Note that MTTR is calculated for the obtained
partition combination while partitions are ordered based on
the proposed ordering method introduced in Sec.IV-A.

After that, the whole partitions are traversed once again
except this time two consecutive partitions are merged if only
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Figure 4: Experiments Flow

it leads to a reduction in MTTR. This process is continued
until no reduction is achieved during a whole trace through
the partitions.
ALGORITHM 2: Merging algorithm

1 INPUT: P=Max-Th(F); min=MTTR(P );
2 OUTPUT: pj , 1 ≤ j ≤ M which leads to minimum MTTR
// Merge 3 partitions :

3 for pj ∈ P , j : 1 → M do
4 if Max(pj+1) ≤ Max(pj), Max(pj+2) and
5

Max(pj+2)

Max(pj)
≤ α or

Max(pj+2)

Max(pj)
≥ 1

α then
6 if MTTR after merge(pj , pj+1, pj+2) < min then
7 merge pj , pj+1, pj+2; update P ;

min=MTTR(P );
8 end
9 end

10 end
// Merge 2 partitions :

11 while MTTR is reduced do
12 for pj ∈ P , j : 1 → M do
13 if MTTR after merge(pj , pj+1) < min then
14 merge pj , pj+1 ; update P ; min=MTTR(P );
15 end
16 end
17 end

Final partition combination is investigated for adjacent
partitions that have consecutive order. Extra jumping overhead
in between two adjacent partitions that have consecutive order
can be eliminated, because the scrubber does not have to
jump to different addresses. These two partitions are naturally
combined to one partition.

V. EXPERIMENTAL RESULTS

In our experiments, Xilinx FPGAs is used as testing bench-
mark. The essential bits are provided by Xilinx Vivado tool.
However, an injection-based emulator is required in order to
extract the critical bits and distribution of them within the
frames of a design. The emulator is designed based on the
work proposed in [12], implemented on a Zynq board. The em-
ulator consists of a controller executed on an ARM processor
and Single Event Mitigation (SEM) IP core implemented on
FPGA (i.e. XC7Z020). SEM IP is activated by the controller
in order to inject an error into a specific configuration bit.
Then, the critical bit is recognized by comparing the output
of Design Under Test (DUT) after error injection with the
expected output. Injection is accomplished in which every bit
of design under test is flipped and for each bit, several random
inputs are fed into the design.

Fig.4 depicts general flow of our experimental process. In
an initial step, the DUT is equipped with an error detection

Table II: DMR implementation characterizations of DUTs
DUT CM Frames LUTs FFs Slices
Adder16 35 452 1073 344
FFT4 159 753 2042 1291
Ripple carry 35 290 556 233
Brent kung 35 566 1072 415
FFT8 271 1356 3881 2196
FIR8 71 520 1053 355
ITC99b04 107 393 590 362
Kinematic 505 5069 2026 1598
Multiplier 32 414 4096 1072 1352
Kugge stone 70 715 1073 454

technique which is in our experiments DMR. In the next step,
the DMRed version of DUT is integrated into the emulator.
The DMRed DUT is connected into the controller through
the AXI interface. Then, the controller is configured to inject
SEUs only into frames of DMRed DUT. The critical bits list
generated by emulator is fed into a parser implemented with
C++ which produces a list of critical bits number that belongs
to the design frames i.e. critical bits histograms. The critical
bits histograms are used to generate and schedule partitions.
Finally the MTTR of proposed methods including Both heuris-
tic and brute-force and existing scrubbing including read-back
and shifted scrubbing are calculated for a fair comparison.

A set of 15 benchmarks including small synthetic designs
and real designs are used as DUT. Synthetic designs consist of
small number of frames (between 15 to 20) so that accelerated
brute-force is applicable for them in a feasible time. The
real benchmarks size varies from tens to several hundreds
of CM frames. Table.II provides characterizations of DMR
implementation of real benchmarks.

Fig.5 shows the obtained MTTR for each DUTs when each
of scrubbing methods listed in the Fig.5 is used. As expected,
using read-back scrubbing leads to maximum MTTR among
the other methods, because scrubbing always starts from the
frame with the lowest address without taking the critical
bits histogram into account. Our proposed heuristic scatter
scrubbing achieves the most reduction in MTTR compared
to the other methods. Note, our MTTR improvements range
from a few microseconds till several hundreds. This is very
relevant, considering circuit cycles times are in the range of
nanoseconds. Using heuristic scatter scrubbing, on average
40% and 25% reduction in MTTR is achieved compared
to read-back and shifted scrubbing respectively. The amount
of reduction percentage in MTTR due to using heuristic
scatter scrubbing compared to shifted scrubbing is varied for
different applications as shown in Fig.5. The more critical bits
locality exists within the application frames, the more MTTR
reduction can be obtained using our method. On the other
hand, not much reduction is achievable with our method for the
application with uniform critical bits distribution. For example,
about 64% reduction is obtained for Fast Fourier Transform
(FFT) due to the existence of many consecutive frames with
similar critical bits, mainly because of the modular design of
FFT. However, since Brent Kung has interwoven and uniform
circuit, MTTR is not improved much using our method. MTTR
is shown in Fig.5 for when scatter scrubbing is used and jump
overhead is assumed to be zero. It provides a good metric
that indicates maximum potential reduction is achieved for
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Figure 6: Normalized MTTR for when various thresholds are used
to generate initial solution in heuristic scatter scrubbing

a specific critical bit distribution by using scatter scrubbing.
The less difference between conventional scrubber MTTR and
the heuristic scatter scrubber MTTR with zero jump overhead
assumption, the less reduction is expected to be achieved by
heuristic scatter scrubber with non-zero jump overhead.

As discussed in Sec.IV, heuristic scatter scrubbing results in
a near-optimal solution. However, for small synthetic circuits,
optimal MTTR is achievable using accelerated brute-force
method as shown in Fig.5. The results show that the MTTR
obtained using heuristic scatter scrubbing is equal to optimal
MTTR obtained by accelerated brute-force while the execution
time of the former is much less than the latter.

Effect of choosing different thresholds in order to generate
an initial solution using Max-TH algorithm is evaluated when
α is varied between zero and one. Fig.6 shows obtained
normalized MTTR using various α. The results show that,
minimum MTTR is obtained when 0 .4 ≤ α ≤ 0 .6. However,
considering α out of this range does not lead to more than 25%
increment compared to minimum MTTR is achieved when
0 .4 ≤ α ≤ 0 .6. This is because even the MTTR of the initial
solution becomes worse by taking α < 0 .4 or α> 0 .6, but
MTTR is reduced eventually through algorithm 2.

The scatter scrubber hardware is the same as the state-of-
the-art shifted scrubber, except additional memory is required
to store the starting frame and size of each partition, and
the ability to switch among partitions. Since the number of
partitions is in the order of 100, not much extra memory is
needed.

VI. CONCLUSION

A new scrubbing technique is proposed in this paper. Our
proposed scrubber is initiated only when an error is detected

using DMR. It is stopped directly after repairing the infected
bit. Our contribution is to minimize the time between detecting
an error and repairing it. Taking the critical bits histogram into
account, we proposed methods for 1) partitioning, and for 2)
scheduling the frames. In a given FPGA design, configuration
frames are partitioned by grouping number of consecutive
frames including approximately similar critical bits. Those
partitions are then scheduled for scrubbing based on proposed
ordering method such that at the end of scrubbing scheme
MTTR is minimized. Experimental results show that scatter
scrubber reduces MTTR on average 40% and 25%, with a
maximum of 86% and 64%, compared to existing read-back
scrubbing and shifted scrubbing, respectively.
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