
A System Development Kit for Big Data
Applications on FPGA-based Clusters:

The EVEREST Approach
Christian Pilato†, Subhadeep Banik‡, Jakub Beránek∥, Fabien Brocheton‡‡, Jeronimo Castrillon§,

Riccardo Cevasco††, Radim Cmar
x
, Serena Curzel†, Fabrizio Ferrandi†, Karl F. A. Friebel§, Antonella Galizia¶

xi
,

Matteo Grasso††, Paulo Silva∥, Jan Martinovic∥, Gianluca Palermo†, Michele Paolino∗∗,
Andrea Parodi¶, Antonio Parodi¶, Fabio Pintus¶, Raphael Polig∗, David Poulet‡‡, Francesco Regazzoni

xii‡,
Burkhard Ringlein∗, Roberto Rocco†, Katerina Slaninova∥, Tom Slooff‡, Stephanie Soldavini†, Felix Suchert§,

Mattia Tibaldi†, Beat Weiss∗, Christoph Hagleitner∗
∗IBM Research Europe, Switzerland, †Politecnico di Milano, Italy, ‡Università della Svizzera italiana, Switzerland,

§Technische Universität Dresden, Germany, ¶Centro Internazionale di Monitoraggio Ambientale, Italy,
∥IT4Innovations, VSB – Technical University of Ostrava, Czech Republic, ∗∗Virtual Open Systems, France,

††Duferco Energia, Italy, ‡‡NUMTECH, France,
x
Sygic, Slovakia,

xi
IMATI - Consiglio Nazionale Ricerche (CNR), Italy,

xii
University of Amsterdam, The Netherlands

Abstract—Modern big data workflows are characterized by
computationally intensive kernels. The simulated results are often
combined with knowledge extracted from AI models to ultimately
support decision-making. These energy-hungry workflows are
increasingly executed in data centers with energy-efficient hard-
ware accelerators since FPGAs are well-suited for this task due
to their inherent parallelism.

We present the H2020 project EVEREST, which has developed
a system development kit (SDK) to simplify the creation of
FPGA-accelerated kernels and manage the execution at runtime
through a virtualization environment. This paper describes the
main components of the EVEREST SDK and the benefits that
can be achieved in our use cases.

I. INTRODUCTION

Modern big data applications often require processing large
volumes of data with massively parallel algorithms (including
machine learning ones). They are used in several application
domains, like scientific computing, healthcare and medicine,
transportation, etc. Each algorithm is generally described as
a workflow, which is executed on cloud-based or on-premise
infrastructure and offloading critical calculations to hardware
accelerators, e.g., FPGAs. Designers face several challenges
in generating efficient FPGA accelerators.

First, application designers must write code that the hard-
ware generation tools can understand. Today, application de-
signers generally use a variety of programming languages
(e.g., Fortran, Python, Rust, C/C++, domain-specific lan-
guages), while hardware generation tools are usually limited to
a few of them (e.g., C/C++/SystemC) [13], demanding exten-
sive and error-prone code rewriting. On top of this, selecting
and using proper custom data formats is essential to obtain
efficient implementations without sacrificing accuracy [12,
24]. Then, depending on the architecture of the target platform,
several optimizations can be applied to the FPGA system
architecture to improve the execution, especially regarding

data management. For example, data layouts in memory must
match how the information is read/written to avoid bottlenecks.
Unfortunately, existing toolchains do not support automatic
optimizations, so hardware experts must hand-craft the so-
lutions, which is tedious and error-prone. For this reason,
they often apply standard optimizations based on well-known
application patterns (e.g., loop unrolling and pipelining) or
system architectures (e.g., double buffering), easily leading
to sub-optimal solutions. Finally, the availability of resources
at runtime may prevent the system from meeting application
requirements. To account for this, applications should adapt to
the environment, changing how the computation is performed.
To the best of our knowledge, no single framework for big
data applications supports all these features.

EVEREST is a H2020 EU project that aims at simplifying
the development of complex big data applications for FPGA-
based data centers [15]. The EVEREST System Development
Kit (SDK) is a framework for optimizing selected kernels in
the application workflow. We first introduce our application
use cases (Section II) and our target platform prototype
(Section III). We then introduce the EVEREST SDK (Sec-
tion IV), and we detail our main contributions: (1) a data-
driven compilation framework (Section V), (2) a virtualized
runtime environment (Section VI), and (3) an anomaly detec-
tion service (Section VII). In Section VIII, we describe the
current EVEREST prototypes and the technical insights that
we obtained, while Section IX concludes the paper.

II. APPLICATION USE CASES

The development of the EVEREST SDK is driven by three
use cases: an application for the prediction of renewable
energy production, an application for air-quality monitoring,
and a traffic modeling and prediction system. The first two use

ar
X

iv
:2

40
2.

12
61

2v
1 

 [
cs

.A
R

] 
 2

0 
Fe

b 
20

24



cases are based on weather predictions. We now describe the
relevant aspects of all these workloads.

A. WRF-based Weather Simulations

Modeling weather scenarios is at the base of many en-
vironmental and societal challenges. In EVEREST, we rely
on WRF, a state-of-the-art numerical model for weather fore-
casts [17]. The model can operate at spatial resolutions from
hundreds of meters to hundreds of kilometers. WRF also
provides the data assimilation system, called WRFDA, since
the ingestion of observational data represents valuable support
to weather prediction by improving the initial condition of the
problem [2]. Weather prediction models are HPC applications
with high demands of computational and storage resources.

CIMA exploits WRF daily as a high-resolution limited-area
model for meteorological research and operational weather
forecasts. In EVEREST, CIMA aims to improve the accuracy
of weather predictions by (1) pushing forward data assim-
ilation and achieving better descriptions of the atmospheric
state used as WRF initial conditions, (2) speeding up the
WRF execution by means of the EVEREST FPGA nodes to
implement and test an ensemble prediction. An accelerated
WRF implementation can enable new market opportunities
for other application sectors (e.g., high-impact weather event
prediction, precision agriculture, pedestrian path planning)
thanks to the possibility of evaluating the impact of more
frequent and possibly more accurate simulations.

B. Renewable-energy prediction

The energy prediction use case concerns the forecast of the
power generated by a wind farm. The application target aims
to help energy traders reduce forecast errors in the predictions
used in short-term markets for the entire renewable portfolio
and related unbalanced costs. To do so, the application requires
(1) a weather forecast with the evolution of meteorological
parameters (e.g., wind speed), updated at hourly resolution,
and (2) parameters and historical data of the wind farm (e.g.,
measured wind speed, availability of the wind turbines and
transmission systems. The input of the WRF numerical model
has been customized to fit the wind farm site topography
and provide the forecast at different height levels to get
closer to the wind turbine height. EVEREST uses a machine-
learning approach combining deterministic weather forecasts,
historical WRF time series, historical datasets of the wind
farm, and real-time data, trained with at least one year of data.
The current version of the application uses the Kernel Ridge
algorithm, which considers wind-related parameters and the
corresponding energy produced in the farm.

C. Air-quality monitoring

In the air-quality use case, we aim to forecast the impact
of atmospheric releases of an industrial site on its surround-
ing environment and adapt site activities to avoid pollution
peaks. Such application has a two/three-day time window and
combines (1) a weather forecast at hourly resolution with (2)
an atmospheric air-quality forecast, along with forecasts of

the site emissions and some fixed parameters (e.g., the local
topography and land use around the site, the site buildings, the
emission velocity or temperature) In the case of high impacts,
the industrial site can activate emission reduction processes
to respect acceptable pollution levels. Such actions have a
financial cost (tens of thousands of euros per day), so they
should be used only when needed. The industrial site decides
to plan its activity for the next days in the morning. So,
reducing the time to obtain the forecasts is essential.

The accelerated WRF allows for accurate weather forecasts,
while errors are limited with machine learning. The ML-based
method will combine multiple weather forecasts (due to the
natural uncertainties of numerical weather simulations) forced
by local weather observations on-site. The approach focuses
on three weather parameters that are frequently observed: the
air temperature at 10m, the wind direction, and the wind speed.

D. Traffic modeling

Precise traffic models and predictions help understand and
improve every-minute traffic conditions. Our use case is a
traffic ecosystem for precise and fast calculations of traffic
model and prediction, both short-term (e.g., a subsequent hour)
and long-term (e.g., any given future time point). We use (a)
floating car data (FCD) (from mobile devices used in Sygic
navigation) that define vehicle speeds on GPS positions across
the road network; (b) origin-destination matrix data (ODM)
(from mobile operators) that define the overall mobility of
citizens across the city grid; (c) meteorological data such as
temperature and precipitation. With computationally intensive
algorithms, we calculate the traffic model, which is represented
by (a) macroscopic parameters for each road segment (speed,
flow, intensity) for each 15-minute interval over a weekday
and (b) coefficients of the prediction model for each road
segment. On top of the models, we build traffic prediction and
intelligent routing. The traffic ecosystem regularly updates its
model with new daily incoming data. To improve the system
quality, we use (1) a convolutional neural network for training
the road speed prediction model; (2) a Hidden Markov model
for map matching of sparse and noisy FCD points on a road
network; (3) a Gaussian Mixture model for an alternative
traffic prediction with incomplete data; (4) Probabilistic Time
Dependent Routing to infer correct arrival times.

The traffic ecosystem poses challenges both in storage and
processing. Big data sets must be transferred across compo-
nents, stored, and available for processing. Computations must
be fast and cost-efficient to meet a daily processing cycle.

III. EVEREST TARGET SYSTEMS

The EVEREST target system is a converged heterogeneous
platform, as depicted in Figure 1. In the back end, the platform
comprises computing nodes with FPGA-based compute accel-
erators. In the front end, the platform features a unified work-
flow deployment based on Jupyter Notebooks. In between, a
middleware stack of technologies consolidates the hardware
capabilities of the back end into consumable services. We con-
sider computing nodes that include IBM Zurich’s on-premise



Extend and customize with EVEREST use cases 
and domain specific capabilities

Vertical Solutions (e.g., traffic simulation)

Simplify experiences with 
seamless integration of platform 
capabilities

API-based Micro-services

Deploy anywhere FPGA-as-a-
service from the data center to 
the edge with enhanced QoS

Virtualization and Container Platform

(e.g., Kubernetes, OpenShift)

Fast and intelligent workflow deployments

EVEREST Accelerators

Open 
Ecosystem

Big Data DevOps
(e.g. Cloud object 
storage, MapReduce, 
Lithops)

• Off-the-shelf FPGAs (e.g. Xilinx Alveo) 
and GPUs (e.g. Nvidia V100)

• Consortium’s On-prem cloud (e.g. IT4I 
Salomon, IBM cloudFPGA)

EVEREST Target System

Fig. 1. The EVEREST converged heterogeneous platform

Heterogeneous Compute Cluster and IT4I’s on-premise clus-
ters (e.g., Salomon, Barbora, Karolina). The EVEREST target
system includes the following architectural components.

EVEREST computing nodes. They include CPUs (Intel
Xeon, AMD EPYC), PCIe-attached FPGAs (AMD Alveo
u55c, u280) with Xilinx Runtime (XRT), and Network-
attached FPGAs (IBM cloudFPGA) directly connected to a
10Gbps TCP/UDP network stack. Both FPGA systems sup-
port the creation of complex FPGA system architectures that
interface with the rest through standard AXI interfaces. Such
systems support both HDL (VHDL, Verilog) and automatic
synthesis with high-level synthesis (from C/C++/SystemC).

BigData DevOps. Application developers need a simplified
programming interface that enables distributed computing
at scale. Many computationally intensive workloads involve
large-scale data analytics.

API-based microservices. The evolution of cloud applications
into loosely coupled microservices opens new opportunities
for hardware accelerators. Components are packaged up in
containers as microservices that can handle compute-intensive
tasks (e.g., data ingestion, data assimilation, and data process-
ing). Offering such micro-services using RestAPI enables the
reuse of the functionality across different use cases.

IV. EVEREST SYSTEM DEVELOPMENT KIT

The EVEREST SDK combines commercial and open-
source tools into a unified and interoperable framework to ease
the development of complex FPGA system architectures and
optimize the runtime execution of the applications. Figure 2
shows an overview of the tools. For example, we can exe-
cute high-level synthesis (HLS) with Vitis HLS to generate
hardware descriptions for most of the components (including
interface protocols) or with Bambu [6] for smooth integration
with the compiler and its custom data formats. The EVEREST
SDK includes a data-driven compilation framework, which
creates complex FPGA architectures from high-level descrip-
tions of the kernels to be accelerated, and a virtualized runtime
environment, which monitors the execution at runtime and
adapts it to the surrounding environment. All tools within
the SDK are wrapped under the basecamp command, which
provides a single point of access to the users of the SDK.

RuntimeCompilation

basecamp

Application Description

Deep learning

General Tensor 
Kernels

Dataflow
Pipelines

Integration & Assembly

EVP

Deployment & Runtime Management

HLS-based Synthesis

Bambu

obj
obj

DOSA

EKL

Ohua

Olympus

EVKIT

EFSM

Variant info

bitstream mARGOt

Fig. 2. EVEREST SDK components.

Compilation. The computational kernels marked for FPGA
offloading are translated into the corresponding hardware de-
scriptions and, in turn, the bitstream configurations. EVEREST
aims to unify the different input languages into a single hard-
ware generation flow based on MLIR and HLS. The compiler
backend supports different target platforms (e.g., AMD Alveo
and IBM cloudFPGA [20]), also varying the configuration of
the memory architectures around the accelerators.

Deployment. The deployment of the application workflows
leverages the LEXIS platform1, which has been extended to
offload the execution of selected kernels to FPGA. Once a
task (or one of its parts) is marked for FPGA acceleration, its
execution is set to be offloaded to FPGA-based clusters.

Execution. During resource allocation, the FPGA cluster may
reserve a variable number of nodes for the given application.
If the accelerated task requires more resources, the EVEREST
runtime can adapt the computation accordingly. Additional
dynamic autotuning can be performed to match the character-
istics of the data and the required computation to save energy
or improve performance.

V. DATA-DRIVEN COMPILATION FRAMEWORK

This section discusses the concrete input languages, in-
termediate representation, and the hardware generation flow
supported by the EVEREST SDK.

A. Input languages and abstractions

The EVEREST SDK leverages high-level domain-specific
languages (DSLs) and programming abstractions. These lan-
guages can hold rich semantic information to enable system-
level architectural exploration, which is hardly possible with
the low-level languages supported by mainstream HLS tools.
We leverage existing DSLs for physics simulations [9, 22],
for dataflow [4], and on popular frameworks for machine
learning [3]. As input, the SDK supports standard ONNX ML
models, a high-level language for kernels, and a coordination
language for high-level dataflow, as detailed below.

1) EVEREST kernel language: To develop the kernel lan-
guage, we studied the RRTMG radiation module of the WRF
code, which consumes around 30% of the compute cycles.
For RRTMG acceleration, existing tensor abstractions, e.g., in
TVM [3] or CFDlang [22, 23], had to be extended to support
in-place construction, broadcasting, index re-association, and
subscripted subscripts. The EVEREST Kernel Language pro-
vides a general syntax for the Einstein Notation [14] as shown

1https://lexis-project.eu/web/lexis-platform/



τMg =
∑
dT

∑
dp

∑
dη

rσx,x,dηασx,x,dT,dp,dηkT+dT,p+dp,η+dη,g

i_strato = select(p[x] <= strato, 1, 0)
i_flav = bnd_to_flav[i_strato, bnd]
i_T = [j_T, j_T+1]
i_eta = [j_eta[i_flav[x], x, p], j_eta[i_flav[x], x, p]+1]
i_p = [j_p+i_strato, j_p+i_strato+1]
tau_abs = (r_mix[i_flav[x], x, e]

* f_major[i_flav[x], x, t, p, e]

* k_major[i_T[x, t], i_p[x, p], i_eta[x, e], g])

Fig. 3. Example of major absorber in the EVEREST Kernel Language.

fn match_one(gv: GpsVector, mapcell: MapCell) ->
RoadSpeedVector {↪→
#[kernel(offloaded = true, multiplicity = [1, 1, 1,

1],↪→
path = "projection.cpp")]

let cv: CandiVector = projection(gv, mapcell);

let t: Trellis = build_trellis(gv, cv, mapcell);
let rsvbb: RoadSpeedVector = viterbi(t, cv);
interpolate(rsvbb, mapcell)

}
Fig. 4. Example ConDRust syntax for map matching a single element.

in Figure 3. This code snippet corresponds to 200 lines of
Fortran code in the original WRF RRTMG implementation.

2) EVEREST coordination language: A coordination lan-
guage is key to integrating the components constituting a
larger application. The EVEREST SDK uses an imperative
language based on a subset of the Rust programming language
called ConDRust [27]. ConDRust is based on Rust’s safe
ownership model, offers provable determinism (which greatly
eases the design of complex heterogeneous systems), and
exposes parallelism [5]. In addition to this, the imperative
model of ConDRust makes it easier to migrate applications.
This is, for instance, the case of the Map-Matching algorithm
of the traffic use case, sketched in ConDRust in Figure 4.

The coordination language connects software and hardware
components from the kernel language or an ONNX inference
model. As a key added value, the language uses rich types to
pass the information to hardware-level interface generation.

B. MLIR representations

The EVEREST SDK relies on the MLIR framework [11]
to converge different HPC, Big Data, and ML abstractions for
system-level optimizations. We contributed several dialects,
optimizations, and abstraction lowerings to implement several
compilation flows. The main dialects and their relations are
shown in Figure 5. Other frontends can generate representa-
tions to enter the EVEREST SDK, like torch and tosa. ML
applications from TVM can be read into the jabbah dialect,
currently under development. To converge and optimize the
different ML DSLs, we follow the concept of Operation
Set Architectures [18]. This level of abstraction, captured by
jabbah, is also used to optimize the distribution of ML ap-
plications [19]. The SDK provides dialects for the frontends of
the kernel language (ekl), the coordination language (dfg),
and the legacy CFDlang (cfdlang). The dialects ekl and
cfdlang can be lowered to an MLIR implementation of the
intermediate tensor language [23] (teil) and a new dialect

Arithmetic
support

jabbah

esn

teil

External frontends

onnx torch

tosa quant

ekl

cfdlang

EVEREST frontends
External 
backends

fsm

hw

gpu

linalg

affine

buffer

tensor

MLIR dialects

Entry dialects

base2

Coordination, integration, backend

dfg olympusevp
Condrust/ohua

cyclic bitub

Fig. 5. EVEREST MLIR dialects (in blue) and their integration with other
core MLIR dialects (in green). Dialects under construction in grey-blue

for the Einstein notation (esn). These abstractions are used
to implement a series of transformations [24].

Custom data representations are often needed to truly ex-
ploit the efficiency of hardware implementations. To this end,
the SDK includes a set of dialects to properly model custom
data types in MLIR [7], namely, base2, cyclic, bit
and ub. The latter is currently being moved to core MLIR
for proper support for undefined behavior. The remaining
dialects handle integration within the EVEREST platform
(evp) and system-level optimization based on the dataflow
of the application (olympus).

C. System-level generation

The EVEREST hardware system generation tools, Olympus
and DOSA for network attached FPGAs [19], automatically
create an optimized FPGA system architecture. Starting with
the MLIR description of kernel interactions in the olympus
dialect [26], the kernel implementations in RTL or C for
HLS (for Bambu or Xilinx Vitis), and the FPGA platform
details, Olympus creates a custom infrastructure for data
movement and organization for the kernels. In the case
of network-attached FPGAs, hardware-agnostic synchronous
communication routines are generated and inserted [21]. This
infrastructure consists of both the necessary hardware modules
instantiated on FPGA and host code drivers to move data from
host to device and initiate execution on the device. During
generation, Olympus will apply relevant optimizations, such
as private local memory sharing [16], double-buffering, and
read/execute/write pipelining. Additionally, Olympus applies
bus-based optimizations such as replicating kernels and divid-
ing a wide memory bus into “lanes” to serve each replication
[24], or “packing” the data efficiently to save bandwidth [25].

VI. VIRTUALIZED RUNTIME ENVIRONMENT

A. Resource management

Once the data center has allocated the node resources, the
EVEREST resource manager (1) schedules and assigns the
workflow tasks to the computational nodes while respecting
their dependencies and resource requests; (2) load-balances
the computation when necessary; (3) performs data transfers
when an input of a task is computed on a different node; (4)
monitors the cluster and reschedules tasks if needed.

The runtime interaction with the target applications is done
through a Dask-like API, requiring only minimal modifica-
tions. The original Dask API is extended with EVEREST-



bitstream bitstream

bitstream

bitstream

Fig. 6. Component diagram inside a physical node (virtualization perspective)

specific features, mainly to specify the resource requests and
the possibility of kernel fine-tuning.

B. Virtualization infrastructure

We use a virtualization environment to allocate and manage
resources across the heterogeneous EVEREST nodes. Figure 6
shows the components running on each physical node and the
attached accelerators. It aims to offer the applications inside
the Virtual Machine (VM/Guest) the same accelerated func-
tions that would be physically accessed. We use QEMU-KVM
as the hypervisor running in the host and libvirtd as the
agent, which will expose the relevant libvirt API to the
external components, e.g., the resource manager.

We use the SR-IOV (Single Root I/O virtualization) tech-
nique2 to expose a Physical Function (PF) and several Virtual
Functions (VFs). The PF provides the management interface
to assign a VF to a separate VM. One VF can be assigned
to a single VM, but many VFs can be assigned to the same
VM. This approach results in near-native performance. The
components inside the guest can utilize the VF like they were
executing in a physical environment. One of the drawbacks of
SR-IOV is that it is less flexible than other I/O virtualization
methods, as it has a more static nature regarding the maximum
number of defined VFs and the way resources are assigned
to the VMs. To mitigate the latter downside, we design a
mechanism that will receive a request from the EVEREST
resource allocator and, depending on the exact situation, will
perform dynamic plugging/unplugging of VFs to/from the
VMs.

Both the autotuner, the runtime manager, and the resource
allocator can interact with the virtualization infrastructure
using libvirt. Thanks to the libvirtd daemon, the
node where the hypervisor is installed can respond to queries
about available resources and the system’s current status. The
autotuner can use this feature to make decisions.

C. Dynamic autotuning

The EVEREST autotuner, named mARGOt [8], is an
application-level library that monitors the application perfor-
mance during execution and selects the best configuration ac-
cording to the execution environment (i.e., available hardware
resources, resource usage, and data to be processed). The

2Single Root I/O Virtualization and Sharing Specification

EVEREST mARGOt works by using knobs and metrics. The
former are variables controllable by the library and are used
to set the chosen configuration (e.g., application parameters
or code variants). The metrics are observable variables whose
value reflects functional and extra-functional properties for
the application’s execution. The mARGOt library requires
describing the hardware used for the execution, including
all the aspects of the current execution environment that
can influence the choice of the best configuration (e.g., the
number of CPU cores, their frequency, their utilization, and the
presence of FPGA accelerators for the algorithm variants [10]).
The dynamic autotuning framework selects the best set of
knob values (e.g., application parameters or variants) based
on metric values and execution environment status.

VII. ANOMALY DETECTION

The SDK allows developers to deploy anomaly detection
at any point throughout their workflow with minimal effort.
Anomaly detection can serve as input sanitization to protect
the models or to detect other security events. Developers are
provided with two nodes: model selection and detection. In
model selection, AutoML techniques are used to automatically
find the best model and its best hyperparameters on the
provided data, using the Tree-structured Parzen Estimator
algorithm for hyperparameter sampling of Optuna [1]. After
a specified amount of time, the node will output the best-
found model. The detection node receives the same data as
the model selection node and runs the model on the provided
data to detect anomalies. As output, the node produces a JSON
file containing the indexes of data points that are considered
anomalous, upon which further action can be taken. The model
is continuously updated with current data. The library handles
most common data formats, but a simple configuration file
must be provided to load the data if a special format is used
or some specific subset of data should be processed.

VIII. PROTOTYPES AND TECHNICAL HIGHLIGHTS

This section describes the EVEREST prototypes and how
we plan to apply the SDK features. Finally, we discuss the
technical highlights of the project.

Accelerated WRF. WRFDA currently assimilates data from
radar and authoritative and non-authoritative weather stations.
We also derived customized configurations to understand the
impact of atmospheric variables on the related workflows. The
WRF model runs on HPC resources through LEXIS with a
historical dataset, including about two years of prediction.
The hardware acceleration of the WRF model’s radiative-
convective processes will lead to better predictions.

Renewable-energy prediction. Currently, the weather model
is connected with the prediction application with automatic
transfers of the high volume of WRF data to the rest of
the application. This complete application is used to fine-
tune the algorithms, parameters, inputs, and WRF runs to
improve accuracy in a backtesting scenario. The possibility
of increasing the number of WRF runs with more updates and
getting closer to power delivery is a crucial advantage.



Air-quality monitoring. The current deployment of the air-
quality use case combines a WRF-based weather forecast and
an air-quality forecast using the ADMS model3. EVEREST
will manage FPGA execution for the WRF part to reduce the
execution time and manage ensemble weather forecasts. An
ensemble can be created by using i) different weather global
forecasts as input, ii) different physical modules in the WRF
configuration, or iii) perturbations in initial 3D weather fields.

Traffic modeling. For Map-Matching, we conducted an ex-
ploration using the EVEREST SDK to generate hardware-
accelerated implementations of the individual sub-kernels and
to transparently decide at compile time where to allocate
the kernels (FPGA or CPU), increasing the flexibility of
the application based on the available target nodes. We also
implemented the PTDR kernel on a compute cluster with
Alveo u55c FPGAs, integrating it with the overall simulator.
We also tested this component with the virtualization layer.

EVEREST technical highlights. The EVEREST project
demonstrated that big data applications can benefit from
FPGA accelerators, but their design and optimization demand
integrated tools. Due to the variety of input languages, the con-
vergence obtained with the MLIR flow is essential to unify the
design of the FPGA architectures and decouple optimizations
at the compiler level (for the application’s functionality) and
the platform level (for efficient data management). Custom
data formats can significantly speed up the computation,
trading off resource requirements and accuracy. The virtualized
runtime environment enables seamless support for nodes with
different hardware characteristics. In conclusion, coordinated
tools (like the ones in the EVEREST SDK) are essential and
can significantly improve the designer’s productivity.

IX. CONCLUDING REMARKS

This paper presented the main result of EVEREST, i.e., the
EVEREST SDK, which is a framework for big data applica-
tions on FPGA-based clusters. We presented the three major
features: the compilation framework, the runtime environment,
and the anomaly detection service. We also discussed how the
SDK can be applied to the project’s use cases and the technical
highlights coming from the project.

ACKNOWLEDGEMENTS

This project has received funding from the EU Horizon 2020
Programme under grant agreement No 957269 (EVEREST).

REFERENCES

[1] T. Akiba et al. “Optuna: A Next-generation Hyperparameter
Optimization Framework”. In: Proc. of ACM SIGKDD. 2019.

[2] P. Bauer et al. “The quiet revolution of numerical weather
prediction”. In: Nature 525.7567 (2015).

[3] T. Chen et al. “TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning”. In: Proc. of OSDI. 2018.

[4] S. Ertel et al. “Compiling for Concise Code and Efficient I/O”.
In: Proc. of CC. 2018, pp. 104–115.

3http://cerc.co.uk/environmental-software/ADMS-model.html

[5] S. Ertel et al. “STCLang: State Thread Composition as a
Foundation for Monadic Dataflow Parallelism”. In: Proc. of
Haskell. 2019.

[6] F. Ferrandi et al. “Bambu: an Open-Source Research Frame-
work for the High-Level Synthesis of Complex Applications”.
In: Proc. of DAC. 2021, pp. 1327–1330.

[7] K. F. A. Friebel et al. “BASE2: An IR for Binary Numeral
Types”. In: Proc. of HEART. 2023.

[8] D. Gadioli et al. “mARGOt: A Dynamic Autotuning Frame-
work for Self-Aware Approximate Computing”. In: IEEE
Transactions on Computers 68.5 (2019).

[9] S. Karol et al. “A Domain-Specific Language and Editor for
Parallel Particle Methods”. In: ACM Trans. on Mathematical
Software 44.3 (2018).

[10] N. Khouzami et al. “Model-based Autotuning of Discretiza-
tion Methods in Numerical Simulations of Partial Differential
Equations”. In: Journal of Computational Science (2021).

[11] C. Lattner et al. “MLIR: Scaling compiler infrastructure for
domain specific computation”. In: Proc. of CGO. 2021.

[12] R. Murillo et al. “Generating Posit-Based Accelerators With
High-Level Synthesis”. In: IEEE TCAS-I 70.10 (2023).

[13] R. Nane et al. “A Survey and Evaluation of FPGA High-Level
Synthesis Tools”. In: IEEE TCAD 35.10 (2016).

[14] J. G. Papastavridis. Tensor calculus and analytical dynamics.
Routledge, 2018.

[15] C. Pilato et al. “EVEREST: A design environment for
extreme-scale big data analytics on heterogeneous platforms”.
In: Proc. of DATE. 2021, pp. 1320–1325.

[16] C. Pilato et al. “System-Level Optimization of Accelerator Lo-
cal Memory for Heterogeneous Systems-on-Chip”. In: TCAD
36.3 (2017).

[17] J. G. Powers et al. “The weather research and forecasting
model: Overview, system efforts, and future directions”. In:
Bulletin of the American Meteorological Society 98.8 (2017).

[18] B. Ringlein et al. “Advancing Compilation of DNNs for FP-
GAs Using Operation Set Architectures”. In: IEEE Computer
Architecture Letters 22.1 (2023), pp. 9–12.

[19] B. Ringlein et al. “DOSA: Organic Compilation for Neu-
ral Network Inference on Distributed FPGAs”. In: Proc. of
EDGE. 2023.

[20] B. Ringlein et al. “System Architecture for Network-Attached
FPGAs in the Cloud using Partial Reconfiguration”. In: 2019
29th International Conference on Field Programmable Logic
and Applications (FPL). 2019, pp. 293–300.

[21] B. Ringlein et al. “ZRLMPI: A Unified Programming Model
for Reconfigurable Heterogeneous Computing Clusters”. In:
2020 IEEE 28th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). 2020,
pp. 220–220.

[22] N. A. Rink et al. “CFDlang: High-level Code Generation for
High-order Methods in Fluid Dynamics”. In: Proc. of RWDSL.
2018, pp. 1–10.

[23] N. A. Rink et al. “TeIL: a type-safe imperative Tensor
Intermediate Language”. In: Proc. of ARRAY. 2019.

[24] S. Soldavini et al. “Automatic creation of high-bandwidth
memory architectures from domain-specific languages: The
case of computational fluid dynamics”. In: ACM TRETS 16.2
(2023).

[25] S. Soldavini et al. “Iris: Automatic Generation of Efficient
Data Layouts for High Bandwidth Utilization”. In: Proc. of
ASPDAC. 2023.

[26] S. Soldavini et al. Platform-Aware FPGA System Architecture
Generation based on MLIR. 2023. arXiv: 2309.12917.

[27] F. Suchert et al. “ConDRust: Scalable Deterministic Concur-
rency from Verifiable Rust Programs”. In: Proc. of ECOOP.
2023.

https://arxiv.org/abs/2309.12917

	Introduction
	Application Use Cases
	WRF-based Weather Simulations
	Renewable-energy prediction
	Air-quality monitoring
	Traffic modeling

	EVEREST Target Systems
	EVEREST System Development Kit
	Data-driven Compilation Framework
	Input languages and abstractions
	EVEREST kernel language
	EVEREST coordination language

	MLIR representations
	System-level generation

	Virtualized Runtime Environment
	Resource management
	Virtualization infrastructure
	Dynamic autotuning

	Anomaly Detection
	Prototypes and Technical Highlights
	Concluding Remarks

