
IEEE COMPUTER ARCHITECTURE LETTERS, VOL. XX, NO. X, MARCH 2023 1

Efficient Memory Layout for Pre-alignment Filtering of
Long DNA Reads Using Racetrack Memory

Asif Ali Khan, Fazal Hameed, Taha Shahroodi, Alex K. Jones Fellow, IEEE ,
and Jeronimo Castrillon, Senior Member, IEEE

Abstract—DNA sequence alignment is a fundamental and computationally expensive operation in bioinformatics. Researchers have
developed pre-alignment filters that effectively reduce the amount of data consumed by the alignment process by discarding locations
that result in a poor match. However, the filtering operation itself is memory-intensive for which the conventional Von-Neumann
architectures perform poorly. Therefore, recent designs advocate compute near memory (CNM) accelerators based on stacked DRAM
and more exotic memory technologies such as racetrack memories (RTM). However, these designs only support small DNA reads of
circa 100 nucleotides, referred to as short reads. This paper proposes a CNM system for handling both long and short reads. It
introduces a novel data-placement solution that significantly increases parallelism and reduces overhead. Evaluation results show
substantial reductions in execution time (1.32×) and energy consumption (50%), compared to the state-of-the-art.

✦

1 INTRODUCTION

High-throughput sequencing (HTS) technologies produce
an extensive volume of sequencing data, encompassing both
short reads (consisting of hundreds of nucleotides) and long
reads (extending to thousands of nucleotides). Subsequently, the
generated raw data is commonly used in diverse analyses, such
as disease diagnostics and genetic evolution, among others.
Sequence alignment represents a fundamental and computa-
tionally demanding stage within these analysis pipelines [1].

Several algorithms are employed for sequence alignment.
Dynamic programming based solutions are accurate but scale
poorly with the problem size [2]. Seed-and-extension algo-
rithms are more scalable [3], [4] but still exhaust considerable
effort on genome locations that eventually do not align. Many
of these poor alignment locations can be easily discarded using
pre-alignment filters [5], [6], [7], [8].

Pre-alignment filters significantly reduce the number of
DNA fragments that are passed on to the computationally
expensive alignment phase by eliminating the apparent mis-
matches. This improves the end-to-end performance of the
aligners by circa 2× [5]. These filters employ lightweight algo-
rithms to compute a similarity score for each candidate location.
Detailed alignment operations are only performed at locations
that pass a set threshold on the similarity score.

For pre-filtering to accelerate the overall processing time
effectively, it must be considerably faster than the actual align-
ment operation. However, considering the larger genomics
data sets, this can become challenging. To reduce their com-
putational time, pre-alignment filters have been implemented
in CPUs, GPUs, FPGAs, ASICs, and computing-near-memory
(CNM)1 solutions [5], [6], [7], [8], [9]. The CNM solutions
dramatically reduce the data movement on the external channel
between the memory and the processor.

• Asif Ali Khan and Jeronimo Castrillon are with TU Dresden, 01069
Dresden, Germany Email: asif ali.khan@tu-dresden.de.

• Fazal Hameed is with the American University of Sharjah (AUS), UAE.
• Alex K. Jones is with the University of Pittsburgh, 1238 Benedum Hall,

3700 O’Hara Street, Pittsburgh, PA 15261, USA.
• T. Shahroodi is with TU Delft, 2628 Delft, Netherlands.

Manuscript received July XX, 2023; revised July XX, 2023.
1. This is also sometimes referred to as processing near memory

(PNM) or processing in memory (PIM).

...

1

31

0 4095

SA: Subarray

AP
1

...

0

1

0

0

0

1

...

1

1

0

1

0

0

...

1

0

1

0

1Bank 0
Bank 63

...

...SA0

DBC 0

DBC 15

SA511

DBC 1

0

...
511

0 4095

rx

y = x + 511 * o

rx+co rx+𝜏

ry ry+𝜏ry+co

...

...

...

0

Row

𝜏 = 4095 * co
co: column offset

rx+o rx+o+co rx+o+𝜏

o: row offset

...

SA1

Row buffer (local)

Row buffer (global)

RTM nanowire

Domain

Domain wall block
 cluster (DBC)

Fig. 1: Racetrack memory organization.
Pre-alignment filtering is particularly beneficial for long

reads, which are predicted to revolutionize genomics [10] but
require considerably more resources for processing. Unfortu-
nately, they have received no attention from the community.
SneakySnake is the only available filtering algorithm for long
reads but is not compatible with CNM acceleration [8]. On
the contrary, GRIM [5], ALPHA [9] and FIRM [7] are CNM-
accelerated but do not support long reads.

This paper proposes an extension to the FIRM filter to
support long reads. Concretely, we introduce algorithmic mod-
ifications to the FIRM filter to support long reads. Similar to
FIRM [7], our CNM-accelerator leverages the unprecedented
density, energy, and performance efficiencies of racetrack mem-
ory (RTM) [11]. However, the FIRM memory layout necessitates
substantial data duplication, resulting in significant perfor-
mance degradation when handling long reads. To address this
challenge, we present an innovative RTM layout for our CNM
accelerator that supports both short and long reads. Our layout
minimizes RTM shifts to an absolute minimum and maximizes
parallelism for varying numbers of parallel working bin units
in the accelerator. To our best knowledge, this is the first CNM
solution that efficiently handles long reads.

2 BACKGROUND AND RELATED WORK

2.1 RTM Organization
RTM is a spintronic nonvolatile memory. A single cell in RTM
is a magnetic nanowire, or track that can be split into circa

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. XX, NO. X, MARCH 2023 2
Memory layers

Subarray0 ... Subarray16383

M
e

m
o

ry
 A

c
c
e

s
s

S
c
h

e
d

u
le

r

Row0

Row510

Presencebits of Roww

(pertinent to)B 1-bit registers

B
in

 U
n

it
 (

fo
r

r k
)

B
in

 U
n

it
 (

fo
r

r k
+

1
)

...

B
in

 p
re

s
e

n
c
e

 D
a

ta
 (

L
o

a
d

w
id

th
)

Logic layer

Counter (rk+1,qi)

Comparator (rk+1,qi)

Adder (rk+1,qi)

r
AAAAA

0
r

 AAAAA

1
r

 AAAAA

4094
r

 AAAAA

4095

q
Token-id
i

r
0

r
1

r
4094

r
4095

Row1

Row511

B
in

 U
n

it
 (

fo
r

r k
+

B
-1

)

B
in

 U
n

it
 (

fo
r

r k
+

B
-2

)

q
Token-id

i

M
e

m
o

ry

c
o

m
m

a
n

d
s

Seed Location Filter Bitmask...

Subarray1

tor
0

r
4095 tor

0
r
4095 tor

33550336
r
33554431

Accessed in parallel

r
AAAAC

0
r

 AAAAC

1
r

 AAAAC

4094
r

 AAAAC

4095

r
CTTTG

0
r

CTTTG

1
r

 CTTTG

4094
r

 CTTTG

4095

r
CTTTT

0
r

CTTTT

1
r

 CTTTT

4094
r

 CTTTT

4095

...

Roww ...

...
...

...
...

...
...

r
Token-id

0
r

Token-id

1
r

Token-id

4094
r

Token-id

4095

Row2 r
AAAAG

0
r

 AAAAG

1
r

 AAAAG

4094
r

 AAAAG

4095...
...

AAAAA to CTTTT GAAAA to TTTTT GAAAA to TTTTT

Fig. 2: GRIM filter hardware design and data mapping of 4096
bins (i.e., r0 to r4095) in R to Subarray0

100 magnetic regions, or domains separated by domain walls
(see Fig. 1, top right). During an RTM access, a domain must
be shifted and aligned to an access port (AP) position. RTM
nanowires are typically grouped into domain block clusters [11]
or DBCs. These DBCs are then organized into subarrays, fol-
lowing a similar structure to traditional memory technologies,
where they form banks and ranks (left). In our proposed ac-
celerator, each DBC comprises 4096 nanowires, with each one
containing 32 domains, resulting in subarrays of dimensions
512× 4096 (as illustrated in Fig. 1, bottom-right).
RTM exhibits several promising properties, including SRAM-
class access speed, lower energy requirements, SRAM/DRAM-
class endurance, and exceptional density. For DNA pre-
alignment filtering, similar to FIRM, we favor RTM over other
nonvolatile memories (NVMs) because of two primary consid-
erations: (i) the remarkable density of RTMs, essential for ac-
commodating entire reference genomes, and (ii) the inherently
sequential memory access pattern of the application which
perfectly aligns with the sequentiality in RTMs.

2.2 Pre-Alignment filtering

Pre-alignment filters proactively skip poor alignment map-
ping positions, minimizing the number of extend operations
in read aligners [5], [7], [9]. Among others, the GRIM filter
has demonstrated effective utilization of 3D-stacked memory
devices, leading to significant performance improvements in
read mappers through substantial parallelism [5].

GRIM-algorithm based filters [5], [7], [9] work from query
genome “reads” Q = {q0, q1, . . . , qm−1} for alignment onto a
reference genome, R = {r0, r1, ..., rn−1}, where each qi and ri
represents a DNA read and a segment of the reference genome
(called a bin), respectively. Each query read consists of many
nucleotides from Γ = {A,C,G, T} where the exact read size
is determined by the sequencing technology while the bin size
is typically fixed to 100 [5], [9]. Each read and bin is split into
tokens where a token is a string consisting of t nucleotides, i.e.,
a string in Γt. The reference bins are represented with binary
bitvectors (r⃗), where the bit value (presence bit) at a specific
position, i.e., r⃗[token] is set if token is present in the bin. The
pre-alignment filter then compares each read with all the bins
on a token-by-token basis, accumulates the bit values of r⃗ for
each token in the query read, and compares the sum output of
each bin with a set threshold. In other words, a bin rk is selected
for a read qi if

∑
token∈qi

r⃗k[f(token)] > Thr.

2.3 State-of-the-art pre-alignment filters
Fig. 2 shows the CNM architectures employed by recent pre-
alignment filters such as GRIM, ALPHA, and FIRM [5], [7],
[9]. The right side of the figure shows how reference bins (r)
are mapped to the memory. The accelerator compares a read
qi with B reference bins in parallel, where B is the number of
bin units in the accelerator (shown in green on the left). Let
us call these simultaneously executed bins a binset. For a fair
comparison with existing filters, we assume the same binset
and the memory access granularity, i.e., 4 k bits.

For each token in a read, the GRIM architecture loads the
presence bits of a binset into the 4 k 1-bit registers of the
logic layer, compares them with the read token, and updates
their corresponding counters. Once all tokens of the read qi
are exhausted, the comparator compares the value of the ac-
cumulators with a given threshold and sets a bit in the filter
bitmask register to 1 if the accumulator value for a given bin is
greater than the threshold. The sequence aligner then reads this
bitmask, discards bins having value 0, and applies a compute-
intensive dynamic programming solution at other positions to
find the actual mapping position.

ALPHA [9] exploits the tokens repetition in query reads to
minimize the number of memory accesses in the GRIM filter.
Concretely, if the set of distinct tokens in qi is represented by
Θ, i.e., Θ(qi) = {distinct tokens in qi}, ALPHA maintains each
token count value in a dedicated buffer called CountBuffer. In
the filtering processing, instead of accessing a row of bitvectors
multiple times for repeated tokens in a read, ALPHA only
accesses rows storing unique tokens to compute the sum value.
For instance, for a particular bin rk ∈ R, the accumulated sum
is computed as

∑
j∈Θ(qi)

CountBuffer(j) · r⃗k[f(j)].
FIRM replaces DRAM with RTM in the ALPHA design and

proposes layout optimizations to minimize the inherent shift
operations of the RTM technology [7]. All these designs can
only handle short reads.

3 PRE-ALIGNMENT FILTERING FOR LONG READS

The proposed mechanisms for pre-alignment filtering in Sec-
tion 2.2 are not directly applicable to long reads. Applying the
filtering algorithm without adjusting the bin and token sizes
for long reads would yield near-zero filtering rates due to high-
magnitude CountBuffer values. Conceptually, increasing both
the token and bin sizes might allow direct long read filtering,
but that requires considerable changes to the hardware; e.g.,
the bit vectors’ and CountBuffer’s memory footprint increase
exponentially with token size, making the design impractical.
For instance, increasing the token size by one increases the
memory footprint of the bit vectors by 4×.

To filter long reads without significant overhead, we keep
the bin and token sizes unchanged and instead split the long
reads into chunks with sizes comparable to the reference bins.
Each chunk is compared with successive bins in the refer-
ence genome, and the similarity score of individual chunks
is accumulated to compute the overall similarity score. For
instance, in Fig. 4, the long read qi is divided into N = 4
chunks: chk0, chk1, chk2, and chk3. In order to find the
mapping similarity score of qi at any location in the refer-
ence genome, referred to as a logical bin, ρj , all chunks of
qi having separate count buffers are compared to successive
bins in R starting at the location rj . For instance, if we want
to compute the similarity of qi with ρ0 at location r0, chk0

is compared to r0, chk1 to r1, chk2 to r2, and chk3 to r3
and the similarity score of the comparisons is accumulated:∑i=N−1

i=0

∑
j∈Θ(chki)

CountBufferchki(j) ∗ rvk+i[f(j)] where k is
the starting position in the reference genome (0 in this case).

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. XX, NO. X, MARCH 2023 3

...

Row0 r
AAAAA

0

r
256

r
AAAAA

8192

r 8448
Row1

Row31

col0

...

col1

...
AAAAA AAAAA

...

r
AAAAA

33546240

r 33546496

col4095

AAAAA

...
r

7936

AAAAA ...r
16128

r
33554176

AAAAA AAAAA

Subarray0 (AAAAA)

r
8192

AAAAA
r

16384
r

33554432

AAAAA AAAAA...
r

8448

AAAAA
r

16640
r

33554688

AAAAA AAAAA...
r

8704

AAAAA
r

16896
r

33554944

AAAAA AAAAA...
Redundant rows

for N = 4

r
8192

TTTTT
r

16384
r

33554432

TTTTT TTTT...
r

8448

TTTTT
r

16640
r

33554688

TTTTT TTTTT...
r

8704

TTTTT
r

16896
r

33554944

TTTTT TTTTT...

col0 aligned to

Accumulator0

col4095 aligned to

Accumulator4095

...

...

Row480 r
AAAAA

15

r
267

r
AAAAA

8207

r 8463
Row481

Row511

...
AAAAA AAAAA

...

r
AAAAA

33546255

r 33546511

AAAAA

...
r

7951

AAAAA
r

16143
r

33554191

AAAAA AAAAA

...

...

r
TTTTT

240

r
496

r
TTTTT

8432

r 8668

col0 col1

...
TTTTT TTTTT

...

r
TTTTT

33546480

r 33546736

col4095

TTTTT

...
r

8176

TTTTT
r

16368
r

33554416

TTTTT TTTTT

Subarray16383 (TTTTT)

...

...

r
TTTTT

255

r
511

r
TTTTT

8447

r 8703 ...
TTTTT TTTTT

...

r
TTTTT

33546495

r 33546751

TTTTT

r
8191

TTTTT
r

16383
r

33554431

TTTTT TTTTT

...

...

r
AAAAA

240

r
496

r
AAAAA

8432

r 8668

col0 col1

...
AAAAA AAAAA

...

r
AAAAA

33546480

r 33546736

col4095

AAAAA

...
r

8176

AAAAA
r

16368
r

33554416

AAAAA AAAAA

Subarray16383 (AAAAA)

...

...

r
AAAAA

255

r
511

r
AAAAA

8447

r 8703 ...
AAAAA AAAAA

...

r
AAAAA

33546495

r 33546751

AAAAA

r
8191

AAAAA
r

16383
r

33554431

AAAAA AAAAA

...

...
...

r
TTTTT

0

r
256

r
TTTTT

8192

r 8448

col0 col1

...
TTTTT TTTTT

...

r
TTTTT

33546240

r 33546496

col4095

TTTTT

...
r

7936

TTTTT
r

16128
r

33554176

TTTTT TTTTT

Subarray1023 (TTTTT)

...

...

r
TTTTT

15

r
267

r
TTTTT

8207

r 8463 ...
TTTTT TTTTT

r
TTTTT

33546255

r 33546511

TTTTT

...
r

7951

TTTTT
r

16143
r

33554191

TTTTT TTTTT

...

r
AAAAA

16

r
272

r
AAAAA

8192

r 8448

col0 col1

...
AAAAA AAAAA

...

r
AAAAA

33546240

r 33546496

col4095

AAAAA

...
r

7952

AAAAA
r

16128
r

33554176

AAAAA AAAAA

Subarray1024 (AAAAA)

...

...

r
AAAAA

31

r
267

r
AAAAA

8207

r 8463 ...
AAAAA AAAAA

...

r
AAAAA

33546255

r 33546511

AAAAA

...
r

7951

AAAAA
r

16143
r

33554191

AAAAA AAAAA

...

DBC15 of

Subarray1023

D
B

C
0
 o

f

S
u

b
a

rr
a

y
1

0
2

3

Domain Block Cluster (DBC)

D
B

C
0

D
B

C
1

5

Fig. 3: Our optimized data placement for long reads, with backward compatibility for short reads.
Intuitively, the proposed split-and-compare mechanism for

long reads should not affect the filtering accuracy as we retain
the small token window of short reads. Nonetheless, we vali-
date the correctness of our filtering algorithm by comparing its
output with the BWA-mem and minimap2 aligners. We ensure
that the bin positions filtered out are not contained in the output
of the two aligners.
3.1 CNM Architecture for Short and Long Reads
FIRM [7] only handles short reads. In order to use the FIRM
accelerator for long reads, it requires data duplication and
column shifting. To explain it further, let us assume we want
to compare the first 4 k logical bins (i.e., ρ0 to ρ4095) in R with a
given long read qi having N = 4. For the comparison to work,
the last N − 1 = 3 logical bins (i.e., ρ4093, ρ4094, and ρ4095)
requires three redundant columns for r4096, r4097, and r4098 in
each subarray. Second, in order to use the same accumulator for
all N chunks, this data layout requires shifting each fetched row
for alignment prior to summation, as in the accelerator design
a single accumulator to use to compute the similarity score of
one entire reference bin. The shifting problem can be avoided
by using N accumulators per long read. However, this requires
considerable changes and hardware overhead to the accelerator
design to sum up all the partial results of the N accumulators.
This also incurs energy overhead and reduces the parallelism
degree from 4096 to 4096/N .

Alternatively, placing successive bins (belonging to the
same logical bin) in adjacent rows also solves the accumulator
alignment problem. However, in RTM-based systems, it may
result in a notable increase in RTM shifts. In the following, we
introduce a novel data placement mechanism that resolves the
accumulator alignment problem while reducing the number
of RTM shifts. In the following, we propose a novel data
placement mechanism that solves the accumulator alignment
problem while reducing the number of RTM shifts.

3.1.1 Optimized Data Placement for Long and Short Reads
Fig. 3 shows our novel data layout that supports both long and
short reads. Note that the subarray layout (e.g., Subaary0) is

r0 r1 r2 r3 r4 r5 r6 r7

ρ0
ρ1

qi

Compare qi

with ρ0

...

chk0 chk1 chk2 chk3

r8 r9 r10

ρ7
ρ8...

r11

...

Compare qi with ρ1

Compare qi

with ρ7

Compare qi with ρ6

L0
L1

L2
L3

L4
L5

L6
L7

ρj : Logical bin

Fig. 4: Overview of the pre-filtering for long reads

r0

t t

r8192

chk0 chk0 chk0 chk0 chk0 chk0

...

...

...

t

r33546240

Acc0 Acc2

Similarity score of qi

with ρ0 (comprising r0, r1, r2, r3)

An arbitrary row of memory containing presence bit vectors

of 4096 bins pertinent to token t stored in the first location of

four DBCs (i.e., DBC0 to DBC3) of Subarray0 to Subarray1023

t

r33538048

t

r33529856

t

r16384

r1

t t

r8193
...
...

t

r33546241

t

r33538049

t

r33529857

t

r16385

r2

t t

r8194

chk2 chk2 chk2 chk2 chk2 chk2

...

...

t

r33546242

t

r33538049

t

r33529858

t

r16386

r3

t t

r8195
...
...

t

r33546243

t

r33538050

t

r33529859

t

r16386

chk3 chk3 chk3 chk3 chk3 chk3

Acc1 Acc4095Acc4094Acc4093

S
te

p
 1

S
te

p
 2

S
te

p
 3

S
te

p
 4

Similarity score

of qi with ρ33546240

Row0

Row32

Row64

Row96

chk1 chk1 chk1 chk1 chk1 chk1

DBC0

DBC1

DBC2

DBC3

Fig. 5: An example showing how the novel data placement
solves the accumulator misalignment problem for long reads.

similar to Fig. 1, i.e., each subarray has 16 DBCs, each DBC has
4096 nanowires (number of columns) and each nanowire has 32
bits (e.g., DBC0 contains Row0−31). In the proposed mapping,
presence bits of the reference bins are stored in a subarray-
interleaved fashion, as indicated by the subarray labels (e.g.,
Subarray0 (AAAAA), meaning this subarray exclusively stores
presence bits for token AAAAA). This interleaving reduces the
number of active subarrays and minimizes within-subarray
movements (RTM shifts), as subarrays dedicated to tokens
that are not present in the query read are never accessed.
Presence bits of successive bins (e.g., r0−3) in a logic bin (ρ0)
are placed in the same column (col0) and the same index of
adjacent DBCs (DBC0−3). The row and column offsets (see
Fig. 1) in our layout are parameterized so that they can work
with different memory sizes and configurations. For instance,
for the memory configuration in Fig. 3, column offset is de-
termined as S × W/1024 = 8192, where S is the number of
subarrays and W is the rows per subarray. The row offset is
o = D × S/1024 = 256, where D is DBCs per subarray. This
layout does not require column shifting as all bins belonging to
logical bin ρj are already aligned to the same accumulator.

To demonstrate how this layout solves the accumulator
alignment problem, consider the example in Fig. 5 where all
bins of ρ0 (i.e., r0, r1, r2, and r3) are aligned to Acc0. Similarly
all bins pertinent to ρ33546240 are aligned to Acc4095. Compared
to FIRM’s layout where (N − 1) × S redundant columns were
needed for long reads, which accumulates to a considerable
19.3% storage overhead for a subarray with W = 512, our

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. XX, NO. X, MARCH 2023 4
TABLE 1: Energy and latency values [13], [14], [15]

Operation Value

Activation and precharge: DRAM/RTM 1964/1087 [pJ]
DRAM energy: Access / IO 1.25/0.40 [pJ]/bit
RTM energy: Read / shift 0.76/0.23 [pJ]/bit

Background power: DRAM/RTM 410/212 [mW]
RTM shift latency 1.87 (2 cycles)

tRAS -tRCD-tRP -tCAS -tWR (DRAM) 20-8-8-8-8 [cycles]
tRAS -tRCD-tRS -tCAS -tWR (RTM) 9-4-2S-4-4 [cycles]

Accel. power per bit (dynamic/leakage) 1.77·103 / 11.16 [mW]
Preproc. unit per bit (dynamic/leakage) 11.6 / 1.13 [mW]

new data placement for long reads requires (N − 1) × 1024
redundant rows (required for the last 1024 subarrays) for the
entire memory, which is an overhead of 1.2% for a 8GB
memory. Note that this data layout also supports short reads
and produces comparable results to the layout in FIRM [7].

4 EVALUATION
For evaluation, we use four paired-end input short read
genomes of size 100, same as in [7], and four long read
genomes [12] of size 10K (L1-10kb, L2-10kb) and 15K (L1-15kb,
L2-15kb). For the sake of comparison to the GRIM and ALPHA
filters, we assume bin and token sizes of 100 and 5, respectively.
We model an 8GB memory having 64 banks and 512 subarrays
per bank using the cycle-accurate RTM simulator RTSIM [16]
The energy and latency numbers of the logical components and
the memory subsystems shown in Table 1 are estimated using
McPat [14], DRAMSpec [13], DESTINY [15], and Cadence RTL-
Compiler Synthesis for the custom components on the logic
layer, all presuming 32nm fabrication technology.

We compare the pre-alignment filtering runtime and energy
consumption of our design with the state-of-the-art GRIM [5],
ALPHA [9] and FIRM [7] designs. We also explicitly compare the
naive FIRM layout (CNM-LC) with our shift and performance
aware layout (CNM-LI) and report the energy and performance
results. All results include the query read preprocessing, i.e.,
populating the count buffers, loading the metadata of R and
the data transfers between the memory and the logic layers.

4.1 Results and discussions

The performance and energy efficiency of the proposed RTM-
based CNM system largely depends on access parallelism and
shift cost. Naively extending the short reads’ optimized layout
proposed in FIRM for long reads, noted as CNM-LC, leads
to performance and energy inefficiencies. As discussed in Sec-
tion 3.1.1, our CNM-LI avoids unnecessary shifts compared to
CNM-LC data placement, which reduces the shifting overhead
in RTM by 11.8× for long reads. This shift reduction is because
our CNM-LI design requires a single shift per access. As a
result, CNM-LI reduces the execution time on average by 1.32×
compared to CNM-LC (see Figure 6). It also reduces the energy
consumption by 50% compared to the CNM-LC (see Figure 7).

For short reads, our proposed data mapping produces com-
parable results to FIRM [7] while outperforming GRIM and
ALPHA by a factor of 3.6× and 3.4× respectively. Moreover,
it reduces energy consumption by 2.5× and 2.3× compared
to GRIM and ALPHA, respectively (see Figure 7). The energy
results analysis shows that the background and the refresh
energy account for a significant portion of the total energy in
the DRAM-based designs, GRIM and ALPHA.

5 CONCLUSIONS
In this paper, we present an RTM based CNM system for
energy-efficient pre-alignment filtering. We propose a novel
data mapping that significantly reduces the data duplication

and RTM shift operation overheads and maximizes parallelism.

L1-1
0k

b

L2-1
0k

b

L1-1
5k

b

L2-1
5k

b

M
ea

n
0

0.5

1

0.25

0.75

R
un

ti
m

e

PNM-LC
PNM-LI

Fig. 6: Runtime comparison of CNM-LI and CNM-LC.

A
LP

H
A

FI
R

M LI

LC
*

LI
*0

0.5

1

Short Reads Long Reads

En
er

gy

Refresh
ACT-PRE
Access/IO

Shift
Idle(mem)

Dynamic(logic)
Leakage(logic)

PPU

Fig. 7: Short and long reads energy comparison.
Our exploration of the design space and experimental evalua-
tion show that our proposed layouts support both long and
short reads. For short reads, our novel mapping produces
comparable results to FIRM while for long reads, it reduces
the execution time and energy consumption by 1.32× and 50%,
compared to the data mapping presented in FIRM.
REFERENCES

[1] R. C. Edgar et al., “Petabase-scale sequence alignment catalyses
viral discovery,” Nature, vol. 602, no. 7895, pp. 142–147, 2022.

[2] T. F. Smith and M. S. Waterman, “Identification of Common
Molecular Sub sequences,” Journal of Molecular Biology, vol. 147,
no. 1, pp. 195–197, March 1981.

[3] M. Vasimuddin et al., “Efficient architecture-aware acceleration of
bwa-mem for multicore systems,” IPDPS, pp. 314–324, 2019.

[4] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,”
Bioinformatics, vol. 34, no. 18, pp. 3094–3100, 05 2018.

[5] J. Kim et al., “GRIM-Filter: Fast Seed Location Filtering in DNA
Read Mapping using Processing-in-memory Technologies,” BMC
Genomics, vol. 19, no. 2, 2018.

[6] Y. Turakhia et al., “Darwin: A hardware-acceleration framework
for genomic sequence alignment,” bioRxiv, 2017.

[7] F. Hameed et al., “Dna pre-alignment filter using processing near
racetrack memory,” IEEE CAL, no. 02, pp. 53–56, jul 2022.

[8] M. Alser et al., “SneakySnake: a fast and accurate universal
genome pre-alignment filter for CPUs, GPUs and FPGAs,” Bioin-
formatics, vol. 36, no. 22-23, pp. 5282–5290, 12 2020.

[9] F. Hameed et al., “ALPHA: A Novel Algorithm-Hardware Co-
design for Accelerating DNA Seed Location Filtering,” IEEE Trans-
actions on Emerging Topics in Computing, pp. 1–1, 2021.

[10] G. Logsdon et al., “Long-read human genome sequencing and its
applications,” Nature Rev. Genet., vol. 21, no. 10, pp. 597–614, 2020.

[11] R. Bläsing et al., “Magnetic racetrack memory: From physics to the
cusp of applications within a decade,” Proceedings of the IEEE, vol.
108, no. 8, pp. 1303–1321, 2020.

[12] “Genome in a bottle data indexes,” https://github.
com/genome-in-a-bottle/giab data indexes/tree/master/
AshkenazimTrio, accessed: 2023-08-09.

[13] O. Naji et al., “A High-level DRAM Timing, Power and Area
Exploration Tool,” in SAMOS, July 2015, pp. 149–156.

[14] L. Sheng et al, “McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures,”
in Int. Symp. on Microarch., 2009, pp. 469–480.

[15] S. Mittal et al., “Destiny: A comprehensive tool with 3d and
multi-level cell memory modeling capability,” Jour. of Low Power
Electronics and Applications, vol. 7, no. 3, 2017.

[16] A. A. Khan et al., “RTSim: A Cycle-Accurate Simulator for Race-
track Memories,” IEEE Computer Architecture Letters, vol. 18, no. 1,
pp. 43–46, Jan 2019.

https://github.com/genome-in-a-bottle/giab_data_indexes/tree/master/AshkenazimTrio
https://github.com/genome-in-a-bottle/giab_data_indexes/tree/master/AshkenazimTrio
https://github.com/genome-in-a-bottle/giab_data_indexes/tree/master/AshkenazimTrio

	Introduction
	Background and Related Work
	RTM Organization
	Pre-Alignment filtering
	State-of-the-art pre-alignment filters

	Pre-alignment Filtering for Long Reads
	CNM Architecture for Short and Long Reads
	Optimized Data Placement for Long and Short Reads

	Evaluation
	Results and discussions

	Conclusions
	References

