
http://www.everest-h2020.eu

dEsign enVironmEnt foR Extreme-Scale big data
analyTics on heterogeneous platforms

D4.2 — Intermediate report of the
compilation framework

The EVEREST project has received funding from the European Union’s
Horizon 2020 Research & Innovation programme under grant agreement
No 957269

Ref. Ares(2022)2531381 - 04/04/2022



http://www.everest-h2020.eu

Project Summary Information

Project Title dEsign enVironmEnt foR Extreme-Scale big data analyTics on heterogeneous
platforms

Project Acronym EVEREST

Project No. 957269

Start Date 01/10/2020

Project Duration 36 months

Project Website http://www.everest-h2020.eu

Copyright
© Copyright by the EVEREST consortium, 2020.

This document contains material that is copyright of EVEREST consortium members and the Euro-
pean Commission, and may not be reproduced or copied without permission.

Num. Partner Name Short Name Country
1 (Coord.) IBM RESEARCH GMBH IBM CH

2 POLITECNICO DI MILANO PDM IT

3 UNIVERSITÀ DELLA SVIZZERA ITALIANA USI CH

4 TECHNISCHE UNIVERSITAET DRESDEN TUD DE

5 Centro Internazionale in Monitoraggio Ambientale -
Fondazione CIMA CIMA IT

6 IT4Innovations, VSB – Technical University of Ostrava IT4I CZ

7 VIRTUAL OPEN SYSTEMS SAS VOS FR

8 DUFERCO ENERGIA SPA DUF IT

9 NUMTECH NUM FR

10 SYGIC AS SYG SK

Project Coordinator: Christoph Hagleitner – IBM Research – Zurich Research Laboratory

Scientific Coordinator: Christian Pilato – Politecnico di Milano

The technology disclosed herein may be protected by one or more patents, copyrights, trademarks
and/or trade secrets owned by or licensed to EVEREST partners. The partners reserve all rights with
respect to such technology and related materials. Any use of the protected technology and related
material beyond the terms of the License without the prior written consent of EVEREST is prohibited.

Disclaimer
The content of the publication herein is the sole responsibility of the publishers and it does not nec-
essarily represent the views expressed by the European Commission or its services. Except as
otherwise expressly provided, the information in this document is provided by EVEREST members
"as is" without warranty of any kind, expressed, implied or statutory, including but not limited to any
implied warranties of merchantability, fitness for a particular purpose and no infringement of third
party’s rights. EVEREST shall not be liable for any direct, indirect, incidental, special or consequen-
tial damages of any kind or nature whatsoever (including, without limitation, any damages arising
from loss of use or lost business, revenue, profits, data or goodwill) arising in connection with any
infringement claims by third parties or the specification, whether in an action in contract, tort, strict
liability, negligence, or any other theory, even if advised of the possibility of such damages.

D4.2 - Intermediate report of the compilation framework 2



http://www.everest-h2020.eu

Deliverable Information
Work-package WP4

Deliverable No. D4.2

Deliverable Title Intermediate report of the compilation framework

Lead Beneficiary TUD

Type of Deliverable Report

Dissemination Level Public

Due Date 01/10/2020

Document Information
Delivery Date 04/04/2022

No. pages 41

Version | Status 0.4 | Final

Responsible Person Jeronimo Castrillon (TUD)

Authors
Jeronimo Castrillon (TUD), Karl Friebel (TUD), Felix Wittwer (TUD), Burkhard
Ringlein (IBM), Michele Fiorito (PDM), Fabrizio Ferrandi (PDM), Donatella Sciuto
(PDM), Christian Pilato (PDM), Stephanie Soldavini (PDM)

Internal Reviewer Christoph Hagleitner (IBM)

The list of authors reflects the major contributors to the activity described in the document. All EVEREST
partners have agreed to the full publication of this document. The list of authors does not imply any claim of
ownership on the Intellectual Properties described in this document.

Revision History
Date Ver. Author(s) Summary of main changes
12.01.2022 0.1 Jeronimo Castrillon (TUD) Initial structure

17.03.2022 0.2 Multiple contributors Major content in place

18.03.2022 0.3 Jeronimo Castrillon (TUD) Finish overviews, simplified table of contents,
fixed consistency issues.

31.03.2022 0.4 Jeronimo Castrillon (TUD) Clean up, reacted to comments by internal
reviewer.

Quality Control

Approved by Internal Reviewer April 4, 2022

Approved by WP Leader April 4, 2022

Approved by Scientific Coordinator April 4, 2022

Approved by Project Coordinator April 4, 2022

D4.2 - Intermediate report of the compilation framework 3



http://www.everest-h2020.eu

Table of Contents

1 Executive Summary 5
1.1 Structure of this Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Overview of the Compilation Framework 6

3 Language Support and Intermediate Representations 8
3.1 Language Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 CFDlang Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.2 Fortran Integration for WRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.3 Dataflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Intermediate Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 Design Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Multi-Level Intermediate Representation (MLIR) Language Stack for Numeri-

cal Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.3 Dataflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 High-Level Transformations and Domain-Space Exploration (DSE) 19
4.1 Kernel Transformations and Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Dataflow Transformations and Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Performance-Related Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Transformations for Offloaded Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.1 Engine and Streaming type of Machine Learning (ML) architectures . . . . . . . 22
4.3.2 Leveraging Existing ML-tools for FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.3 DSE for MLWorkload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Hardware Generation Flow 25
5.1 Hardware-Oriented Optimizations and Kernel Generation . . . . . . . . . . . . . . . . . . 25

5.1.1 Loop Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.2 Custom Precision Floating-point Data Types . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Memory-Related Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Integration Test: The Case of Computational Fluid Dynamics . . . . . . . . . . . . . . . . 30

6 Code Generation and Runtime Integration 35

7 Conclusions 37

References 39

D4.2 - Intermediate report of the compilation framework 4



http://www.everest-h2020.eu

1 Executive Summary

The EVEREST project proposes a platform and system development kit to deploy demanding workflows to
suitable high-performance or edge hardware [17]. This document provides an intermediate description of the
compilation framework, midway through the project. The compilation framework plays a key role in provid-
ing high-level programming support for productivity together with a methodology for optimization. The latter
includes software and hardware transformations as well as autotuning support for runtime adaptivity.

In this document, we describe the technologies, tools and components of the compilation framework. De-
tails on how to use the tools are provided in Deliverable D4.3. The design presented here follows the specifi-
cation provided in Deliverable D4.1, which depicted a complex landscape of programming languages (Fortran,
Rust, C++, Python) and computational requirements (large workflows combining High-Performance Comput-
ing (HPC), Big Data and machine learning). In this document we describe the language abstractions, source-
to-source high-level transformations and hardware-oriented transformations for computational motifs that are
representative of those found in the use cases of the EVEREST project. Given the complexity of the use cases,
some of which are further developed during the project, this document focuses on individual compilation flows
and how they converge prior to execution on the EVEREST target platform.

Deliverable highlights
No. Highlight Section(s)

1 Coherent framework design, integrating multiple software components Section 2
(Figure 1)

2 Language support for the different domains of the EVEREST project Section 3.1

3 Initial plan for convergent intermediate representation and optimization
Section 3.2.1,
Section 4.1
(Figure 4)

4 Infrastructure for transformation, optimization and variant-generation for the
different domains of the EVEREST project Section 4

5 Generalized HW generation flow with support for multiple downstream
HLS-flows

Section 5
(Figure 14)

6
Seamless connection between software compilation and hardware
transformations for kernel-level optimizations, memory optimizations and
system integration

Section 4.1-
Section 5.3

7 Initial integration with the runtime system Section 6
(Figure 21)

1.1 Structure of this Document

This document starts with an overview of the compilation framework in Section 2. The overview lists all involved
software components of the framework, which are then described in the remaining sections. In particular, the
added language support to react to the use case requirements Deliverable D2.2 is described in Section 3. The
section also describes the compiler-internal representations and the interfacing to the hardware generation
flow. Section 4 describes transformations and optimizations, leveraging the high-level intermediate represen-
tations introduced in Section 3. Hardware programming and integration flows are described in Section 5. This
includes extensions to High-Level Synthesis (HLS) flows and system-level integration support for the EVER-
EST platform. The presented flow is concluded with Section 6, which describes how the components in this
document will be integrated with the dynamic runtime environment described in Deliverable D5.1. This deliv-
erable finishes with conclusions and next steps in Section 7.

D4.2 - Intermediate report of the compilation framework 5
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2 Overview of the Compilation Framework

Figure 1 – Overview of the compilation flow.

Following from Figure 1 in Deliverable D4.1, a more detailed representation of the languages, components,
tools, interfaces and methods of the compilation framework is shown in Figure 1. From the high-level point of
view, the figure reflects the heterogeneity of the requirements identified early in the project. This is reflected
on the multiple types of applications (dataflow/task graphs, HPC kernels and machine learning), the different
languages (Fortran, C/C++, ONNX, Rust, Python and Domain-Specific Languages (DSLs)), the rich set of
interfaces (via intermediate code in LLVM or MLIR, via generated C/C++ or Rust code and other metadata
for variant generation), and the integration with multiple external tools and frameworks (WRF build system,
TVM, the MLIR infrastructure, Vivado/Vitis HLS tools. As described in the proposal, one the goals of the
EVEREST SDK and its compilation framework is to work on unification of methods, so as contribute to the
convergence of data-centric applications involving HPC, Big Data and machine learning. At the intermediate
level, Figure 1 shows unification around the MLIR framework. This is a considerable advancement with respect
to the decoupled flows planed for simplicity in Deliverable D4.1. As the programming flows advance towards the
HW of the EVEREST platform, the flows converge ending at the final bitstream and code generation step. For
generality, the HW generation flow supports both vendor-tools (e.g., Xilinx Vivado/Vitis) as well as open-source
alternatives (Bambu).

Figure 1 also shows that the data management techniques from WP3 inspire the implementations in the
methods and tools developed within WP4. The code produced by the compiler can run standalone on the
different nodes of the EVEREST platform, with only CPUs, or with bus or network-attached Field Programmable
Gate Arrays (FPGAs). For final deployment, the code adheres to the Application Programming Interfaces
(APIs) of the EVEREST runtime environment of WP5.

From top-to-bottom, the four major phases of Figure 1 are described in this deliverable. The language
support (front end) and the internal compiler representations are described in Section 3. We describe the
adaptations to the Ohua DSL to cater for implicit dataflow applications, like the routing algorithm described in
Deliverable D2.1; the basic Cfdlang DSL for tensor kernels in HPC, like in Computational Fluid Dynamics (CFD)
applications in Deliverable D2.1; and how we leverage the prominent TVM framework for machine learning,
for decision making in multiple use cases as described in Deliverable D2.1. The MLIR-based intermediate
languages support primarily the HPC kernels. However, as shown in the figure, we plan to provide a dataflow
IR in MLIR, equivalent to the internal one used in the Ohua compiler. That way and with the ONNX-MLIR
import a unified representation for all types of application classes can be readily obtained.

D4.2 - Intermediate report of the compilation framework 6
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In the compiler middle end (optimization in Figure 1) the EVEREST compilation framework integrates a
series of analysis and optimizations for the different application cases. This includes typical coarse grained op-
timizations for dataflow, algebraic and polyhedral optimizations for mathematical kernels in HPC and standard
optimizations for deep neural networks. Software-only versions can be produced after the optimization that
can run on standard CPU nodes. Multiple such versions can be passed to the mARGOt autotuner for further
optimization at runtime.

For nodes with reconfigurable hardware, the compiler middle-end can produce different interfaces and de-
scriptors for the hardware generation part (HW and HLS in Figure 1). From the Rust backend of the dataflow
language, LLVM IR can be generated for the Bambu HLS tool. For the HPC kernels, the compiler can interface
directly via MLIR or LLVM with Bambu, or generate C/C++ code with HLS pragmas for Vitis/Vivado or Bambu.
Bambu’s polyhedral analysis seamlessly interoperates with the representations used in the middle end. Cus-
tom number representations supported by the language for HPC kernels are compatible with those supported
for Bambu for trade-off analysis (area, performance and accuracy). Information about lifetime of variables, data
formats and data allocation (cf. Deliverable D3.1) can also be exported for custom memory subsystem genera-
tion using Mnemosyne. Mnemosyne then creates private local memories and the logic to bring the data to and
from the right accelerator. Machine learning applications are processed within the Dosa framework. The Dosa
framework intelligently selects the best implementation for the operators used in the deep neural network. After
this phase, multiple different Register Transfer Level (RTL) implementaitons for standalone kernels, functions
(nodes in the dataflow graph) or machine learning operators are generated via HLS using either Bambu or
Vivado/Vitis.

The final phase of the compilation framework (code-gen and system generation in Figure 1 is responsible
for creating the entire system on the FPGA(s), performing the HW-SW integration and finally generating the
binaries and bitstreams. At this level, Olympus performs several optimizations to effectively use the area in
the FPGA and balance the computation and communication time (specially relevant for systems with multiple
memory channels). This phase can profit from a further MLIR integration in the second half of the project.
In this way, operator scheduling and graph pipelining information from the upper compilation stages can be
passed to the system integration.

D4.2 - Intermediate report of the compilation framework 7
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3 Language Support and Intermediate Representations

This section discusses the language support (Section 3.1) and intermediate representations (Section 3.2 of
the compiler framework. As specified in the project plan and Deliverable D4.1, we provide support for ker-
nels in HPC and machine learning as well as for tasks and dataflow graphs. We had originally planned to
support particle-based simulations in the compilation framework, but an explicit need was not identified in the
requirement analysis (cf. Deliverable D2.2).

3.1 Language Support

3.1.1 CFDlang Extensions

Our starting point for the EVEREST kernel DSL was the CFDlang language [20], originally designed for CFD
applications with primitives extended to cross-domain tensor expressions in [24]. It adopts an operator-based
syntax for tensor expressions, as opposed to index-based expressions in languages such as TensorCompre-
hensions [31]. This provides the freedom needed to implement data management techniques as described
in Deliverable D3.1. Various extensions have been made to the implementation of this language in order to
bring the EVEREST technology to the Inverse Helmholtz kernel use case. See Figure 2 for our driving inverse
Helmholtz operator example in current DSL syntax.

At present, most extensions to CFDlang are related to the compiler implementation, and will be described in
Section 3.2. This allows us to make major adjustments to the language itself very quickly, which was one of the
prerequisites to achieve the use-case provider-centric design evolution targeted in Deliverable D2.2. We are
currently at a point in language design where the application requirements have been identified and concrete
implementations have been planned, but there is no coherent solution for all use cases yet. In this prototype
phase, we have identified a few inconsistencies in the language and began to improve the integration into the
EVEREST flow. For example, this includes changes to the way declarations are made, so that the DSL reflects
the user’s view of the application better, and forms a closer link to the EVEREST runtime (discussed later in
Section 6).

var input S : [11 11]
var input D : [11 11 11]
var input u : [11 11 11]
var output v : [11 11 11]
var t : [11 11 11]
var r : [11 11 11]

t = S#S#S#u . [[1 6][3 7][5 8]]
r = D * t
v = S#S#S#r . [[0 6][2 7][4 8]]

Figure 2 – The inverse Helmholtz operator kernel in CFDlang DSL.

Future extensions will be necessary to achieve the targets set for the DSL in Deliverable D2.2 in a trans-
parent and transferable fashion. Our current changes to the EVEREST kernel DSL and it’s design include:

• Index-based expressions: While the absence of index-based expressions makes CFDlang free of Unde-
fined Behavior (UB), we will relax this constraint to provide better support for use cases. In particular,
a restricted introduction of implicitly ranged indices will allow mapping a larger subset of linear algebra,
without introducing UB, while achieving a more readable syntax at the same time.

• Stencil application: Stencils are an important part of many numerical physics simulations, and are often
prime candidates for the kind of optimization we pursue. With our interoperable pipeline based on MLIR,
we now include language features that we can delegated to third-party components. With the Open-
EarthCompiler [13], stencils are a logical first step in that direction, as they can also be of use to the
exemplary EVEREST applications.

• Annotations: Although a maximum degree of automation is desired, it is still prudent to allow for external
D4.2 - Intermediate report of the compilation framework 8
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guidance through DSL annotations. As a first step, this gives us the tools to test and design more of our
internal annotations that are used in the lowering process. For example, annotations that clarify intent
and extra functional requirements, such as quantization information, give useful insight to the compiler
that only the domain expert could provide.

3.1.2 Fortran Integration for WRF

One part of unifying the view the runtime and the user have on the application through the DSL is the method
with which it is integrated into the existing codebase. In case of WRF, we have a large legacy codebase which
makes a DSL integration particularly challenging. These challenges affect the EVEREST kernel DSL itself, its
runtime library, and the “host application” (i.e. WRF in this case).

Our efforts have been three-fold in this regard:

• Fortran-style DSL syntax extensions: We rely on domain experts for the extraction of kernels from the
host application. For domains such as weather modeling, this is a sensible approach, since they have
lots of experience running simulations. In practice, this does not just mean identifying kernels, but also
refactoring the legacy codebase to extract kernel invocations to function calls, so that we may provide
an Foreign Function Interface (FFI) interface. In the case of WRF, this is relatively easy because of its
inherent disaggregation of the individual driver components, but still requires the user to reason about
the Fortran interface with all its peculiarities. By offering a new, optional declaration syntax, we accept
a subset of Fortran that is relevant for FFI as shown below. As a result, the compiler can automate the
error-prone process of matching the data layouts and transcribing the interfaces.

REAL :: S(11 ,11)

REAL , DIMENSION (11 ,11 ,11) :: D,u,v,t,r

• C++-Fortran interop runtime library: The unification of the EVEREST flows has highlighted the need
for common interface abstraction. Towards such a unification, we started developing a common utility
library using the memref abstraction of the MLIR as the most general form of argument passing between
components.

A C++-Fortran interop library is also added to the EVEREST kernel DSL runtime (see Interop Layer in
Section 6). In the short term, this library assists us in porting the Rapid Radiative Transfer Model for GCM
Solvers (RRTMG) driver from its original source, especially when it comes to its integrating testing suite.

• Pre-processing facilities: As a final method of reducing the barrier between DSL and host application,
we added pre-processing facilities to our flow. With this scheme, we enable a mixed-source approach for
applications like WRF, where the EVEREST kernel DSL can be merged with the original codebase. With
regards to long term motivations for projects like ours, we consider it important to enable the application
developers (in this context not the users but developers of WRF) to ship a compatible upgrade, even if
our DSL can not yet reach that level of interchangeability.

3.1.3 Dataflow

As basis for a language that can express dataflow, we use the Ohua compiler framework [8, 6]. An earlier
prototype of the framework used its own frontend DSL that closely resembled the host language, but differed in
the supported language features and the grammar definition [33]. The new version of the framework, instead,
uses a subset of the host language as input. This allows the easy reuse of existing code, which significantly
improves the usability of Ohua, one of the key requirements defined in Deliverable D2.2. More importantly, it
also allows for quicker extensions of the compiler to support new languages as we can use existing parser and
Abstract Syntax Tree (AST) definitions in both the front-end for parsing and the back-end for code generation.
Ohua’s middle-end is target-agnostic, which means that changes to the core logic of the compiler are usually
not necessary to support a new language. Currently, front- and backends are implemented for both Rust and
Python, albeit support for the latter is only experimental at the moment. In the following, we will focus on the

D4.2 - Intermediate report of the compilation framework 9
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Figure 3 – Current status of the Ohua compilation flow.

Rust integration of our compiler, which is of higher relevance for EVEREST use cases. Figure 3 shows the
current flow of the Ohua compiler. The end-to-end flow is explained in more detail in Section 3.2.3.

At its core, an Ohua algorithm (implemented in any supported language subset) is merely a composition of
calls to both stateless and stateful functions in a separate file. The definition of such functions is not part of
the programming model, i.e., they are not part of Ohua’s compilation process. This allows for reuse of existing
functions that implement the actual functionality of a program as well as operations on data structures, often
referred to as methods. Developers provide a file of valid Rust code to the compiler, which will then in turn
produce a file describing the same algorithm in parallel Rust.

An implementation of the Probabilistic Time Dependant Routing algorithm from the Traffic Simulation Use
Case, would then look like this:

1 pub fn delay_profile(

2 route: Arc<Route<String>>,

3 departure_time: DateTime<Utc>,

4 prob_profile: Arc<SegmentsHistoryProbProfile<String, Quartiles>>,

5 samples: usize,

6 ) -> Vec<Duration> {

7 let no_limit = Arc::new(NoLimitProbProfile::new());

8 let free_flow_duration = drive(route.clone(), departure_time, no_limit);

9

10 let mut res = Vec::new();

11 for _ in helpers::sample_range(samples) {

12 let duration = drive(route.clone(), departure_time, prob_profile.clone());

13 let delta = duration - free_flow_duration;

14

15 res.push(delta);

16 }

17

18 res

19 }

Deliverable D4.3 details how we arrive at this snippet by transforming the original code base.

In the middle-end, the Ohua compiler operates on a Dataflow Graph (DFG). This directly results in two
fundamental restrictions on the input code:

• Using references is prohibited: In an Ohua program, each function call in the algorithm definition is
regarded a single node in the DFG. After applying transformations to the graph, as outlined in Section 4.2,
the resulting graph is serialized into Rust code. The parallel Rust code encapsulates each node of the
graph by spawning it as a separate thread, realizing communication between these operators by using
unbounded FIFO queues. This enables pipeline parallelism in the graph. But at the same time, this
also means that using shared references becomes impossible. A simple solution to this problem is the
introduction of reference counted pointers which allow the sharing of data across nodes at a negligible
cost. We are looking into methods of automatically wrapping data structures in such pointers where

D4.2 - Intermediate report of the compilation framework 10
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necessary, e.g., by enhancing the type checker along the lines of stacked borrows [14].

• Stricter move semantics: In a typical Rust program, primitive types and also some slightly more com-
plex ones implement the Copy trait. This trait relaxes the strict ownership semantics of Rust by ad-hoc
copying data on the fly when it is used several times in an owned fashion. While purely a quality-of-life
improvement, copy semantics help to reduce bloat in the code by repeatedly having to clone data or using
references as layer of indirection. Ohua is currently unable to support this feature because values gener-
ated during the execution of the algorithm are only visible in the scope of the dataflow node. Therefore,
copying the result to multiple other nodes is impossible without a deeper understanding of the target lan-
guage’s type system, which is beyond the scope of our compiler implementation. As a result, developers
need to resort to manually cloning any value produced during execution of the algorithm. Arguments to
the algorithm are not affected by this and still support copy semantics, as the value can simply be copied
into the different dataflow node scopes.

Other limitations such as the absence of support for if clauses mainly stem from the prototype nature of
the compiler.

A key motivation behind using a dataflow-driven DSL in the EVEREST project is that a DFG abstracts over
the individual computations that form the algorithm. This comes in handy when deploying such a program onto
heterogeneous architectures. The abstraction will allow for a tight integraton for off-loading single nodes of the
DFG to FPGAs using HLS, as outlined in Section 5.1.Since the off-loaded functions themselves are not part of
the compilation process of Ohua, the main difference between offloaded functions and normal functions is the
communication with the nodes. While normal nodes of the DFG communicate with one another using Rust’s
standard FIFO queues, communication with an off-loaded node requires actual data transfers from and to the
accelerator. To notify the Ohua Compiler (ohuac) of this change, functions that will be deployed onto the FPGA
will be annotated with a macro:

#[ kernel]

let result = offloaded_computation(/* args */);

3.1.4 Machine Learning

ML is a very active field of research, which gave birth to plenty of tools, standards, and frameworks aiming to
support users and researchers. The EVEREST project decided to use the community-standard Open Neural
Network eXchange (ONNX) as input language, which will be introduced briefly in the following.

The ONNX project [27] aims to enhance the interoperability of ML tools by developing a standardised
format to export and import neuronal networks. ONNX is actively developed by a large community, managed
by the Linux Foundation. ONNX defines a dataflow computation graph [29], together with built-in operators
[28] and data types. Each node in this acyclic graph can have multiple in- and outputs and represents a call
to an operator. ONNX is extensible, so that custom operators and data types can be used. The ONNX graph
can be exported to .onnx files, which are compressed using Protocol Buffers [11]. Thanks to efforts on the
ONNX-MLIR integration by the open source community (cf. Figure 1), supporting ONNX contributes to the
convergence efforts of the EVEREST project.

An example of a decompressed graph containing a single 2D convolution with activation and pooling layers
represented in ONNX is shown in Listing 1. The shown example is developed and trained in the tool Pytorch
and exported via ONNX. Similarly, a user of the EVEREST ONNX flow would develop and train a neuronal
network in her/his preferred tool and export it into the interoperable community standard ONNX.

3.2 Intermediate Representations

Our previous definition of the compilation framework had not mandated the use of a particular Intermediate
Representation (IR), aside from the interface to Bambu. Still, we expressed our desire for a unified IR that,
similar to embedded DSLs, combines both host and device code in a single place. With this alpha release, we
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graph {
node {

input: "input .1"
input: "conv1.weight"
input: "conv1.bias"
output: "5"
name: "Conv_0"
op_type: "Conv"
attribute {

name: "dilations"
ints: 1
ints: 1
type: INTS

}
attribute {

name: "group"
i: 1
type: INT

}
attribute {

name: "kernel_shape"
ints: 5
ints: 5
type: INTS

}
attribute {

name: "pads"
ints: 0
ints: 0
ints: 0
ints: 0
type: INTS

}
attribute {

name: "strides"
ints: 1
ints: 1
type: INTS

}
}
node {

input: "5"
output: "6"
name: "Relu_1"
op_type: "Relu"

}
node {

input: "6"
output: "7"
name: "MaxPool_2"
op_type: "MaxPool"
attribute {

name: "kernel_shape"
ints: 4
ints: 4
type: INTS

}
attribute {

name: "pads"
ints: 0
ints: 0
ints: 0
ints: 0
type: INTS

}
attribute {

name: "strides"
ints: 4
ints: 4
type: INTS

}
}
node {

input: "7"
output: "8"
name: "Flatten_3"
op_type: "Flatten"
attribute {

name: "axis"
i: 1
type: INT

}
}
node {

input: "8"
input: "fc1.weight"
input: "fc1.bias"
output: "9"
name: "Gemm_4"
op_type: "Gemm"
attribute {

name: "alpha"
f: 1.0
type: FLOAT

}
attribute {

name: "beta"
f: 1.0
type: FLOAT

}
attribute {

name: "transB"
i: 1
type: INT

}
}

name: "torch -jit -export"
initializer {

dims: 36
dims: 3
dims: 5
dims: 5
data_type: 1
name: "conv1.weight"
raw_data: "..."
}

initializer {
dims: 36
data_type: 1
name: "conv1.bias"
raw_data: "..."

}
initializer {

dims: 10
dims: 1764
data_type: 1
name: "fc1.weight"
raw_data: "..."

}
initializer {

dims: 10
data_type: 1
name: "fc1.bias"
raw_data: "..."

}
input {

name: "input .1"
type {

tensor_type {
elem_type: 1
shape {

dim {
dim_value: 1

}
dim {

dim_value: 3
}
dim {

dim_value: 32
}
dim {

dim_value: 32
}

}
}

}
}
output {

name: "8"
type {

tensor_type {
elem_type: 1
shape {

dim {
dim_value: 1

}
dim {

dim_value: 1764
}

}
}

}
}

}

Listing 1 – A 5x5 Convolution with 3 in channels and 36 out channels followed by a Relu activation, a 2x2 max pooling, a batch flatten and one dense
operation. The raw data of the weights and bias are omitted.
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have begun embracing the MLIR as the single representation from front-end to system integration, wherever
possible. We demonstrate the advantages of this approach in light of arbitrary precision floating-point compu-
tations and our now closely integrated Bambu flow. A unified IR promises interdependent optimization of host
and device code, which is key to our planned system integration flow, carrying over our previous achievements.
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Figure 4 – Overview of current and planned IR collaboration.

Figure 4 shows a collaboration diagram of the different IRs currently used, and the currently planned
changes. Depicted is a subview of Figure 1, which starts from the input languages and ends at the sys-
tem integration level. The three application flows are separated by their front-ends, which we expect to be able
to merge with little effort, using existing MLIR infrastructure and our extensions to it. While the contrast in the
application domains makes interoperation between middle-end components not very likely, we are still looking
to share an MLIR representation here in multiple places. This is especially relevant for the planned exten-
sions to the way Olympus will integrate with applications, for which we imagine a unified application-embedded
support runtime with a custom MLIR dialect (indicated by evp in Figure 4).

Components which are currently precluded from a fully integrated MLIR infrastructure are our machine
learning and dataflow-centric flows. However, we do not view this as problematic, since interoperability can
be achieved with currently available third-party components. In addition, we expect future developments in the
field of MLIR front-ends to widen the range of supported programs and languages considerably.

3.2.1 Design Rationale

Extending MLIR for a new kind of language, application domain or target device is made easy through its
decoupled dialect infrastructure. We are able to develop the DSLs, the runtime and the device drivers mostly
independently, and represent them as independent parts within the same IR. A unified flow through MLIR
is also eased by its ability to interact with third-party components, which can provide further domain-centric
optimizations or languages.

The key aspects of this design are:

• Front-end integration: By connecting the DSL front-end directly within MLIR, we greatly speed up the
iterative language design process we are facing. Additionally, we provide tangible benefits to the user of
our EVEREST SDK. Through the use of MLIR’s facilities and location tracking, we can provide accurate
debug information and relate implementation obstacles back to DSL code. Not only does the domain
expert receive more valuable error information and performance hints, our dialect design also allows a
backward flow that can visualize changes to them as DSL code.
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• Separated domain-centric optimizations: To enable truly cross-domain capable optimizations, we must
clearly separate them from the front-end tasks related to host code embedding, and make them entirely
independent of target-specific transforms. MLIR provides a growing ecosystem of dialects that are de-
signed for this purpose, and we extend it with new ones that fit into this existing hierarchy. We want to
give future users the power to plug their own components in these places, which is made possible by
MLIR.

• Abstract interfaces: A dependency from an abstract to a concrete dialect is often the easiest way to
introduce a new level into the hierarchy, but violates the single responsibility principle on a higher level.
We adopt a design where the higher level dialects only provide abstract definitions of e.g. number formats,
memory transfers and accelerator resources. This allows us to freely add implementing dialects, such as
new target devices, and gives them the highest degree of freedom possible.

We are still using components that are not native to MLIR, which means that interchange formats entering
and leaving it are required (cf. Figure 1). For example, we projected that a C99-based transpiler would need
to be employed for preparing HLS code. In the unified MLIR flow, we are providing a back-end translation that
emits such C99 code, allowing us to interface with vendor tools. Similarly, ONNX can be round-tripped through
MLIR using third-party projects, which allows us to plumb our machine learning flow more quickly to a unified
front-end. MLIR is also capable of exporting to LLVM-IR, which can be reused by a variety of external tools
with outstanding availability and capabilities.

Our new advancements in interfacing with Bambu have shown that MLIR can ultimately substitute all this,
with added benefits on top. Bambu accepts LLVM-IR, the process of obtaining which is destructive to metadata
we attach to MLIR, cutting Bambu off from any domain knowledge much like in the C99 case. However, Bambu
provides its own MLIR input path, which can perform elaborate transformations on the information available
there. We are now designing dialects to act as vendor interfaces to such functionality, which has already
enabled arbitrary precision floating-point numbers for our numerical kernel flow.

3.2.2 MLIR Language Stack for Numerical Computations

Our most tightly MLIR-integrated flow yet is the one for numerical kernels, which currently uses the CFDlang
DSL as input. Following the guidelines from Section 3.2.1, we have implemented a set of dialects that imple-
ment the desired separation. Figure 5 shows the dialect hierarchy from abstract on the left to concrete on the
right (following from the specification in Figure 8 of Deliverable D4.1). In this flow, cfdlang takes the role of the
front-end dialect, which subsumed all the previous diverging AST and expression tree IRs. The teil dialect is
our proposal for a cross-domain tensor expression optimization framework, and is implemented more conven-
tionally with a direct dependency on the existing linalg dialect. It provides an abstract number representation
interface, which allows an implementation dialect, such as our own base2 dialect, to implement tensor scalar
types.

The compilation flow is depicted in Figure 6, which shows when these dialects are used. The teil dialect
exists transiently as a means to perform our domain-centric optimizations, such as tensor factorization. Using
the base2 dialect, the scalar type is then implemented, which continues to coexist with the rest of the program
until it is passed to synthesis. After scalar type implementation, we enter the target-specific part of this flow,
where teil can also be used effectively, but further steps are only downward in the dialect hierarchy. This
proceeds until a synthesizable artifact is obtained, at which point MLIR is either exited towards a vendor tool,
or passed to the Bambu input pipeline.

One advantage of this flow is that it directly enables us to target CPUs, and also puts GPUs in range of
future extensions. As an example, Figure 7 shows the inverse helmholtz operator kernel in the cfdlang dialect
in MLIR, next to an excerpt of its LLVM-IR lowering. This lowering is obtained using standard MLIR components
directly from the bottom of our dialect hierarchy, and can be processed with LLVM optimizers for targeting a
multitude of different CPU architectures.
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Figure 5 – MLIR dialect dependencies for numerical computations. EVEREST additions marked in red.
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Figure 6 – Dialects in the MLIR flow for numerical kernels.

module {
c fd lang . program {

c fd lang . i npu t @S : [11 11]
c fd lang . i npu t @D : [11 11 11]
c fd lang . i npu t @u : [11 11 11]
c fd lang . de f ine @t : [11 11 11] {

%0 = cfd lang . eva l @u : [11 11 11]
%1 = cfd lang . eva l @S : [11 11]
%2 = cfd lang . prod %1, %0 : [11 11] , [11 11 11]
%3 = cfd lang . cont %2 : [11 11 11 11 11] i nd i ces [2 5 ]
%4 = cfd lang . prod %1, %3 : [11 11] , [11 11 11]
%5 = cfd lang . cont %4 : [11 11 11 11 11] i nd i ces [2 5 ]
%6 = cfd lang . prod %1, %5 : [11 11] , [11 11 11]
%7 = cfd lang . cont %6 : [11 11 11 11 11] i nd i ces [2 5 ]
c fd lang . y i e l d %7 : [11 11 11]

}
c fd lang . de f ine @r : [11 11 11] {

%0 = cfd lang . eva l @t : [11 11 11]
%1 = cfd lang . eva l @D : [11 11 11]
%2 = cfd lang . mul %1, %0 : [11 11 11] , [11 11 11]
c fd lang . y i e l d %2 : [11 11 11]

}
c fd lang . output @v : [11 11 11] {

%0 = cfd lang . eva l @r : [11 11 11]
%1 = cfd lang . eva l @S : [11 11]
%2 = cfd lang . prod %1, %0 : [11 11] , [11 11 11]
%3 = cfd lang . cont %2 : [11 11 11 11 11] i nd i ces [1 5 ]
%4 = cfd lang . prod %1, %3 : [11 11] , [11 11 11]
%5 = cfd lang . cont %4 : [11 11 11 11 11] i nd i ces [1 5 ]
%6 = cfd lang . prod %1, %5 : [11 11] , [11 11 11]
%7 = cfd lang . cont %6 : [11 11 11 11 11] i nd i ces [1 5 ]
c fd lang . y i e l d %7 : [11 11 11]

}
}

}

; ModuleID = ' < s td in > '
source_f i lename = " LLVMDialectModule "

@__constant_11x11x11xf64 = p r i v a t e constant [11 x [11 x [11 x double←↩
] ] ] z e r o i n i t i a l i z e r

dec lare i 8 * @malloc ( i64 )

dec lare vo id @free ( i 8 * )

de f ine vo id @kernel ( double * %0, double * %1, i64 %2, i64 %3, i64 %4, ←↩
i 64 %5, i64 %6, double * %7, double * %8, i64 %9, i64 %10, i64 ←↩
%11, i64 %12, i64 %13, i64 %14, i64 %15, double * %16, double * ←↩
%17, i64 %18, i64 %19, i64 %20, i64 %21, i64 %22, i64 %23, i64 ←↩
%24, double * %25, double * %26, i64 %27, i64 %28, i64 %29, i64 ←↩
%30, i64 %31, i64 %32, i64 %33) {

%35 = c a l l de re fe renceab le_or_nu l l (10648) i 8 * @malloc ( i64 10648)
%36 = b i t c a s t i 8 * %35 to double *
br l a b e l %37

37: ; preds = %63, %34
%38 = phi i64 [ %64, %63 ] , [ 0 , %34 ]
%39 = icmp s l t i64 %38, 11
br i 1 %39, l a b e l %40, l a b e l %65

40: ; preds = %37
br l a b e l %41

41: ; preds = %61, %40
%42 = phi i64 [ %62, %61 ] , [ 0 , %40 ]
%43 = icmp s l t i64 %42, 11
br i 1 %43, l a b e l %44, l a b e l %63

44: ; preds = %41
br l a b e l %45

45: ; preds = %48, %44
%46 = phi i64 [ %60, %48 ] , [ 0 , %44 ]
%47 = icmp s l t i64 %46, 11
br i 1 %47, l a b e l %48, l a b e l %61

48: ; preds = %45
%49 = mul i64 %38, 121
%50 = mul i64 %42, 11
%51 = add i64 %49, %50
%52 = add i64 %51, %46

Figure 7 – Example lowering from cfdlang to LLVM-IR (excerpt).
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3.2.3 Dataflow

The compilation process for heterogeneous dataflow applications involves two different types of intermediate
representations. One is the internal representation of Ohua, which is used to reason about the dataflow within
a program. The other IR is used to communicate with the kernel compilation phase.

3.2.3.1 Internal Dataflow Representation

The programming model promoted by Ohua with its restrictions on variable usage enable the compiler to
easily translate an algorithm into a dataflow graph. This representation exposes pipeline and task-level paral-
lelism while preserving the algorithm semantics. And while the actual internal representation in the compiler
consists of several stages exposing different key aspects of the graph more clearly, as explained in Deliverable
D4.1, this generalized view suffices to explain the core concepts of the compiler.

Ohua first translates the sequential input algorithm into applicative normal form and afterwards transforms
it from an imperative into a functional form. This transformation relies on the notion of state threads which we
already explored earlier [7]. Every call to a stateful function there becomes a state thread which accepts a
piece of state as input, mutates it, and yields the modified state again. Similarly, a call to a stateful function
within a loop turns the whole loop into a state thread.

From this functional description, Ohua translates stateful and stateless function calls into nodes of a
dataflow graph. Data dependencies between nodes are transformed into arcs that transfer data values in
FIFO order. The different types of nodes in our dataflow graph are denoted as follows:

n ::= fSL | fSF | for | reuse | trfix

The first two node types execute calls to stateless and stateful functions respectively. In order to perform
a call, a node needs to retrieve a data value from each of its incoming arcs and emits the result of the call to
its outgoing arc before the next call is constructed. Stateful nodes additionally emit their updated state via a
dedicated outgoing arc. Ohua translates loops and tail recursions directly into dedicated dataflow nodes. The
for node streams the elements of the vector into its outgoing arc. The trfix node models the concept of tail
recursion in the graph. Both language constructs, loops and tail recursion, open a new contextual scope, i.e.,
a subgraph. For tail recursion, this subgraph is closed such that the only way for data to enter and leave the
graph is the trfix node. For loops, data enters the subgraph via for and reuse nodes and leaves it via a
stateful function call node. Data that enters the loop subgraph via the for node “drives” the computation. reuse
nodes gate the arcs that receive the data entering the loop. It attaches a reuse count n where n is the number
of loop iterations, i.e., elements in the looped vector. Function call nodes that receive such a data value reuse
it over the course of n calls.

This internal representation is generic, which means that it is shared by all language integrations. However,
the back-end of the compiler may require certain information from the original input code, such as data type
annotations in the case of the Rust integration. To facilitate this, the intermediate representation of the middle-
end is designed to encapsulate such information and allow its transfer into back-end code generation.

3.2.3.2 IR for Kernel Compilation

The use cases that we have already explored with Ohua in the EVEREST project are written in Rust.
However, the kernel compilation flow invoked via Bambu is unable to work with this language. Therefore, we
are using LLVM IR as interfacing layer between both tools, as the Rust compiler builds on top of LLVM and is
therefore natively able to emit this IR. With this glue layer in place, ohuac does not have to touch the code to be
off-loaded, as it is directly fed to rustc. Nonetheless, the function in question needs to be annotated with the
#[no_mangle] macro to allow Bambu to actually find this specific piece of code. Additionally, a few restrictions
are placed on the LLVM IR to be generated by rustc:
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• No panic unwinding – When a Rust program encounters an unrecoverable error, a panic is triggered,
which normally results in the executing thread being halted and the stack being unwound, calling de-
structors for all data types. This behavior needs to be disabled. Instead, a program must abort on a
panic.

• No overflow checks – rustc adds a number of overflow checks to the code to provide more safety at
runtime. This functionality is not required when off-loading the code to an accelerator.

• No loop vectorization and Superword Level Parallelism (SLP) – Since Bambu will transform the input
code itself, it makes no sense to run performance optimizations like vectorizations beforehand.

As mentioned before, future work will be aimed towards moving to a fully integrated MLIR infrastructure
where this flow may also emit kernel specification code in this unified IR.

3.2.4 Machine Learning

The EVEREST project decided to use another machine-learning community framework, TVM [26, 4], for high-
level optimizations and to reuse it’s IR, RelayIR [21]. RelayIR is a functional intermediate representation for
ML tasks, developed by the TVM community and based on HalideIR [19] and we decided to use RelayIR
within EVEREST due to several considerations: First, TVM has an active community around Deep Neuronal
Networks (DNN), it is actively developed, and has connections to the FPGAs community [16]. Second, a
being a functional language, Relay is well suited to be hardware and platform agnostic. Third, TVM contains
already a lot optimization passes for Relay IR and finally, Relay IR is able to also represent the training phase
of DNNs. For further discussions around the usage of TVM within EVEREST, we refer the reader to Section
3.3 of Deliverable D4.1.

After importing the network description via an ONNX file, the network is converted into a RelayIR module
and subsequently optimized using built-in optimization passes, such as constant folding or operator fusion.
The optimized RelayIR module of the ONNX representation in Listing 1 is shown in Listing 2.

def @main(%input .1: Tensor [(1, 3, 32, 32), float32 ]) -> Tensor [(1, 10), float32] {
%3 = fn (%p03: Tensor [(1, 3, 32, 32), float32], %p11: Tensor [(36, 3, 5, 5), float32], %p21: Tensor [(36), float32], Primitive =1) -> Tensor [(1, 36, 28, 28), ←↩

float32] {
%1 = nn.conv2d (%p03 , %p11 , Tensor [(1, 3, 32, 32), float32], Tensor [(36, 3, 5, 5), float32], padding =[0, 0, 0, 0], channels =36, kernel_size =[5, 5]) /* ty=←↩

Tensor [(1, 36, 28, 28), float32] */;
%2 = nn.bias_add (%1, %p21 , Tensor [(1, 36, 28, 28), float32], Tensor [(36), float32 ]) /* ty=Tensor [(1, 36, 28, 28), float32] */;
nn.relu(%2, Tensor [(1, 36, 28, 28), float32 ]) /* ty=Tensor [(1, 36, 28, 28), float32] */

};
%4 = %3(% input.1, meta[relay.Constant ][0] /* ty=Tensor [(36, 3, 5, 5), float32] */, meta[relay.Constant ][1] /* ty=Tensor [(36), float32] */) /* ty=Tensor [(1, ←↩

36, 28, 28), float32] */;
%5 = fn (%p02: Tensor [(1, 36, 28, 28), float32], Primitive =1) -> Tensor [(1, 36, 7, 7), float32] {

nn.max_pool2d (%p02 , Tensor [(1, 36, 28, 28), float32], pool_size =[4, 4], strides =[4, 4], padding =[0, 0, 0, 0]) /* ty=Tensor [(1, 36, 7, 7), float32] */
};
%6 = %5(%4) /* ty=Tensor [(1, 36, 7, 7), float32] */;
%7 = fn (%p01: Tensor [(1, 36, 7, 7), float32], Primitive =1) -> Tensor [(1, 1764), float32] {

nn.batch_flatten (%p01 , Tensor [(1, 36, 7, 7), float32 ]) /* ty=Tensor [(1, 1764), float32] */
};
%8 = %7(%6) /* ty=Tensor [(1, 1764), float32] */;
%9 = fn (%p0: Tensor [(1, 1764), float32], %p1: Tensor [(10, 1764), float32], %p2: Tensor [(10), float32], Primitive =1) -> Tensor [(1, 10), float32] {

%0 = nn.dense(%p0 , %p1, Tensor [(1, 1764), float32], Tensor [(10, 1764), float32], units =10) /* ty=Tensor [(1, 10), float32] */;
add(%0, %p2, Tensor [(1, 10), float32], Tensor [(10), float32 ]) /* ty=Tensor [(1, 10), float32] */

};
%9(%8, meta[relay.Constant ][2] /* ty=Tensor [(10, 1764), float32] */, meta[relay.Constant ][3] /* ty=Tensor [(10), float32] */) /* ty=Tensor [(1, 10), float32] ←↩

*/
}

Listing 2 – Optimized RelayIR with type annotations of Convolution example shown in Listing 1.

The RelayIR module is extended by additional annotations in order to be useful for FPGA architecture gen-
eration within the EVEREST ML tool chain, called Dosa. The first important annotation consists of performance
characteristics for each (fused) operation. Using the type annotations of RelayIR a custom Relay pass calcu-
lates the Operational Intensity (OI) of each operation. The OI is calculated in two versions: One is calculated
taking the parameters and the input data into account, the second is calculated with just the input data. These
two different OIs are used for architectural decisions later. The OIs for function %3 of the example in Listing 2
would be:

• OI of function %3 for data+parameters: 181.02

• OI of function %3 for just data: 342.24
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The second important type of annotations are implementation options. After optimizations of the AST
and the performance annotations are done, each operation gets annotated with a list of it’s implementation
possibilities. This implementation options refer to HLS or Hardware Description Language (HDL) libraries
that are re-used by Dosa and could implement this particular operation. Further details for this approach are
explained in Section 4.3.
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4 High-Level Transformations and DSE

This section describes how the compiler framework leverages the IRs described in Section 3.2. The section
starts by describing the optimizations that the framework includes at the kernel level (Section 4.1), including
a prototype of the multi-variant generation flow. The dataflow transformations for performance and to enable
seamless offloading to accelerators are described in Section 4.2. Section 4.3 describes the transformations
applied to ML workloads. This section closes with general remarks on the code generation flow after the middle
end in Section 6.

4.1 Kernel Transformations and Optimizations

Using the MLIR infrastructure, we have implemented / have access to a set of kernel transformations applicable
to our higher abstraction levels.

• Expression canonicalization: MLIR supports a canonicalization mechanism that repeatedly applies a
set of rewrite rules until a fixpoint is reached. In our abstract cfdlang and teil dialects, we use this
extensively to simplify the kernel programs. As a result of using abstract number types, this allows us to
reason about expression equality for all our DSL’s statements.

• Tensor expression rewriting: The teil dialect was designed with implicit tensor elements in mind such
that algebraic identities could be exploited easily. Our tensor expression rewrite patterns make use of
this, reducing the time complexity by exploiting, e.g., associativity and distributivity. Aside from algebraic
transformations, such as factorization of tensor contractions, we support platform-specific implementation
choices. In an approach similar to [22], we can use tensor rewrites to establish different forms that map
to specific hardware, such as systolic arrays or Single Instruction Multiple Data (SIMD) execution units.
Currently, we can rewrite contractions into TTGT [15] for use with accelerators that offer efficient general
matrix-matrix multiply (GEMM) implementations.

• Operator scheduling: For efficient implementation on FPGA devices, careful consideration of the memory
architecture is needed. A first step is to optimize streams for the available throughput of the system
memory banks, which is especially important for our High Bandwidth Memory (HBM) targets. In MLIR,
we can establish the required pipeline structure on a high abstraction level before proceeding to sub-
kernel implementation.

• Scalar type implementation: Since cfdlang and teil use abstract scalar types, we defer the concrete
implementation to target-aware lowerings. We plan on adding quantization hints to cfdlang, which will be
used in teil to guide the placement of precision boundaries. Currently, these are placed explicitly, and
are then lowered onto synthesizable target types using the base2 dialect.

• Bufferization: Another part of memory optimization is the size, layout and lifetime of buffers for interme-
diary results. We currently rely on MLIR’s built-in reasoning, extended by our previous efforts to reduce
buffer usage through after-scheduling sharing. We plan to merge these steps into one, potentially inside
MLIR, allowing more back-end flows to make use of these optimizations.

Outside of MLIR, we support a Mnemosyne-enabled flow (cf. Section 5.2) powered by in-MLIR kernel
analyses exported from our compiler. In addition, we use our new MLIR infrastructure to facilitate MLIR-to-DSL
conversions, which provide interactive feedback to the domain expert. An example of this was also featured in
our 4th webinar, and is also included in Deliverable D4.3.

Our current method for guided HLS still relies on low-level abstraction IRs, such as polyhedral descriptions
in the affine dialect. During our higher level MLIR transforms, we can establish resource estimates in terms
of memory bandwidth. On the polyhedral level, we use this to reschedule sub-kernel regions for HLS, inserting
annotations. This means that we output vendor-specific pragmas, such as Xilinx’s #pragma HLS <?>, into an
interchange format, such as C99. Flows with better MLIR integration, such as Bambu, remove the interchange
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(a) As control flow graphs. (b) As loop structure graph. (c) As memory sharing graph.

Figure 8 – Different implementation variants of the kernel in Figure 2. Each cell in a matrix is a variant, with cells at the same location corresponding to the
same variant.

format in favor of passing this information directly in MLIR. We are working towards further improving these
capabilities.

We perform DSE at two different abstraction levels. The first is the selection of alternative formulations in
expression rewriting, such as systolic arrays, and the second is during the HLS lowering step. In this last step,
polyhedral scheduling alone introduces a huge flexibility in terms of possible implementation, as illustrated by
Figure 8. In addition to software enabled variance through tunable hyperparameters, this adds a dimension of
hardware kernel variants that need to be ahead-of-time compiled.

In Deliverable D5.1, we present mARGOt as a runtime autotuner to implement both scenarios. Currently,
we have the ability to estimate performance indicators for the variants we are able to generate, and classify
them, all within our IR. We plan on extending this classification to certain plausible runtime scenarios, i.e.
conditions under which the optimal trade-off between resources, accuracy, performance and other varying
properties changes. We will include a set of variants for each of these classes into the compiled artifact, which
mARGOt is then capable of selecting from at runtime. For instance, in our simplest demonstration scenario,
this includes providing a variant for each target (e.g. CPU + bus attached FPGA + cFPGA), selecting based
on availability.

4.2 Dataflow Transformations and Optimizations

Ohua conducts a number of dataflow transformations that have been outlined in Deliverable D4.1 already.
These are mainly concerned with improving performance of the algorithm independently of the target architec-
ture. Additionally, some transformations are necessary to nodes that are to be deployed to an FPGA.

4.2.1 Performance-Related Transformations

Naturally, a dataflow graph exposes task-level parallelism (nodes with no data dependencies between one an-
other may execute in parallel) and pipeline parallelism. The first and perhaps simplest transformation therefore
is to also enable data parallelism. Data parallelism arises from an implicit (in-)dependence between the same
stateless function call across loop iterations. As such, every stateless function call inside a loop is an oppor-
tunity for data parallelism, but introducing data parallelism into a static dataflow graph as shown in Figure 9a
leads to suboptimal performance. This is due to the assumption that all n nodes f1

SL . . . f
n
SL perform exactly the

same computation which is often not the case. Instead, inputs often dictate how long a function will run. As
such the deterministic merge in the collect node stalls waiting for straggling work [12].

To mitigate this effect without sacrificing determinism, we integrate dynamic dataflow into our static dataflow
graph. In a dynamic dataflow graph, nodes are created at runtime. A node is a task such as executing a
stateless function call that gets spawned(/forked) on demand and executes once. Spawning a task creates a
handle to its future value, i.e., the result of the stateless functionc call. This handle provides a get method to
join the forked and the current task by blocking until the call completed and the result is available. Tasks are
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Figure 9 – Static vs. dynamic data parallelism in the dataflow graph.

processed by a pool of threads. Whenever a thread is idling, it may steal tasks from other threads to reduce
idle time. In case of the PTDR algorithm, a thread that already finished its delay computation may steal queued
computations from a thread with a long-running delay computation.

The transformation in Figure 9b integrates dynamic dataflow to data-parallelize nodes with stateless func-
tion calls and uses the static dataflow to preserve the data value order, i.e, determinism and the semantics of
the algorithm. Instead of replicating the stateless function call fSL node, we lift it into a spawn<fSL> node. For
every received input, when normally a stateless function call would be executed, the spawn<fSL> node submits
this computation as a task to a work-stealing runtime system and emits corresponding future. The downstream
get node retrieves the value from the future. No reordering takes place because both spawn<fSL> and get are
stateless function call nodes in the static datalfow graph connected via a FIFO channel.

When applications evolve around manipulating a large piece of shared state, they are called irregular.
Parallelizing such computations often yields amorphous data parallelism. This means that the order in which
elements from the input worklist are processed will dictate, how the remaining elements will be processed
and whether new work elements may be created by processing an element. Hence, updates of the data
structure not only depend on the input data, but also on the current state of the data structure itself. This
direct loop-carried dependency means that parallelizing a loop operating on such a piece of state may not be
parallelized in a straightforward manner. Existing approaches such as Software Transactional Memory allow
the parallelization of these loops by wrapping them in transactions: Small code blocks which detect conflicting
accesses to shared state and issue recomputations where necessary. However, these conflicts are an implicit
side-effect that can significantly impact performance.

We provide a data parallelism transformation that makes these implicit effects explicit in the dataflow graph
and exposes a knob to fine-tune runtime performance. The transformation targets irregular algorithms that
(tail-)recurse over a worklist wl to evolve a complex data structure, i.e., a state s. We distinguish between
two patterns: One, where the update to the state s happens inside of a loop and one where the state update
happens after the loop has completed. The idea of this transformation is to limit the number of possible conflicts
by running only a small number of computations from the worklist in parallel before updating the state. This
ensures that the state is updated more frequently and following computations run on the updated state. Doing
so exposes an inherent trade-off because smaller batch sizes lead to more iterations, which generate more
overhead. At the same time, too big batch sizes lead to more conflicts, because more computations have
been executed on the same state snapshot, leading to stale data that’s no longer applicable. We depict our
transformation that extracts amorphous data parallelism in Figure 10. In both cases, the take_n-node extracts
the first N data items from the worklist wl and concatenates the rest with the recomputations after the s was
updated.

4.2.2 Transformations for Offloaded Kernels

Since Ohua regards the functions that algorithms are composed of as black boxes anyway, offloading single
functions onto a hardware accelerator only affects the generation of the wrapper around the node. Instead of
actually calling the function associated with the node, the wrapper becomes shallow. It merely forwards any
incoming data to the FPGA and pipes computation results back to the output arcs of the node.

It is also conceivable to split the node into two parts, where the first will transmit the input data to the
accelerator while the second one receives the computation results. This would enable pipelining the data
transmissions for a possibly small performance gain.
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Figure 10 – Transformation for amorphous data parallelism

4.3 Machine Learning

Before describing the DSE that are applied to the imported RelayIR module of Section 3.2.4, we briefly elabo-
rate on the motivation to do those transformations:

4.3.1 Engine and Streaming type of ML architectures

For over a decade, the FPGA community researches the acceleration potential of AI applications. The re-
cent publicity and promotion of AI in the industry lead to a “Cambrian explosion”[9] of new architectures and
products for accelerating DNNs on FPGAs, scaling from Edge to Cloud and for a wide variety of applications.
Despite this variety, all existing frameworks can be sorted in two categories: Engine-type or streaming-type
of acceleration (micro-)architectures, as depicted in Figure 11.

The first, engine-type, often also referred to as NPU or xPU, and shown in Figure 11a, consists of one or
multiple custom designed processing units (i.e. engines) that can execute domain specific instructions. These
processing engines often contain dedicated units for matrix multiplication, vector processing, and non-linear
functions, since this are the mathematical foundations for today’s DNNs. Consequently, a DNN is broken-
down by a compiler into instructions that can be handled by those processing engines. These instructions
are issued by a control unit at run-time and scheduled based on memory dependencies and processing unit
availability. Although this pattern is simple, the design-space is huge: The processing elements can contain a
variety of different specialized units, with different data sizes or types. In addition, the control unit and memory
management can be either quite stupid, which means scheduling must mostly be decided by a compiler before
run-time, or more intelligent with out-of-order execution or dynamic memory management. Examples for this
type of acceleration architecture is TVM’s VTA [16], Xilinx’s Vitis AI [34], and Microsoft’s Brainwave [9].

The second architecture template, the streaming-type, depicted in Figure 11b, bakes the application spe-
cific operations into the FPGA logic, so that at run-time the data just streams through the logic. This type of
accelerator can achieve higher throughput with lower latencies, at the cost of a higher resource usage, com-
pared to the engine-type. Despite this fixed principle, the design-space of this template is also huge: Starting
with different data precision per operation to a large variety of loop-unrolling approaches. Example frameworks
for this type of accelerators are hls4ml [5], Haddoc2 [1], or FINN [2].

4.3.2 Leveraging Existing ML-tools for FPGAs

There are already a lot of DNN-to-FPGA tools available in public literature. Each of these tools solves a partic-
ular challenge in a good, thought-through and efficient way, so why not reuse these efforts of the community?
For example, if a user needs a solution for low-latency inference with small kernels on Xilinx FPGAs, there is an
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Figure 11 – Two major types of NN accelerator architectures (Based on [32]).

actively developed framework available (hls4ml [5]). For Intel FPGAs, the user may choose another framework
with engine-type [3]. In another situation, if the user has to solve a problem that requires extreme throughput,
but could maintain it’s accuracy with binary weights, LogicNets would be a solution [30].

However, for choosing this options, the user must be aware of their existence and also the trade-offs be-
tween them. With Dosa, we try to provide a holistic DNN-to-FPGA solution by automatically taking these
decisions, but without “re-inventing the wheel” by re-implementing already proven solutions from the research
community. Hence, we try to re-use existing (third-party) open source frameworks as much as possible and
Dosa will offload a particular problem to another tool, if it detects this tool can solve this particular problem
efficiently for the desired target device.

Following this path, Dosa needs a hardware-agnostic application-independent unified description of the
DNN to be able to decide to offload which part to which tool. We decided to use RelayIR, as justified in
Section 3.2.4.

4.3.3 DSE for MLWorkload

Both architecture templates, streaming and engine, as discussed in the previous subsections are well justified
for different reasons. The streaming template is best if used for smaller DNNs that require high-throughput
and/or low latencies. Engine-type accelerators are better for larger DNNs, resource or cost constrained use-
cases, or latency-relaxed environments. To decide which architecture is best for a particular network, perfor-
mance characteristics and the targeted performance are required.

Alongside the input .onnx, the user of Dosa must provide target constraints, as also described in Deliverable
D4.1. Those constraints state the resource budget, in terms of how many devices of which type are available,
or the desired throughput in samples-per-second. After annotating the OI of each operation in the AST as
described in Section 3.2.4, the required performance as well as bandwidth requirements are calculated for
each operation and compared to the available bandwidth for a particular hardware. This analysis can best be
visualized using a Roofline diagram, as shown in Figure 12. This analysis is performed for each operation
twice: Once as streaming-type and once as engine-type, using the two types of OI annotations described in
Section 3.2.4.

As can be seen in Figure 12, the OI for dense and convolution differs strongly for the different architecture
templates, while max pool is indifferent. In this case, the dense operation in an engine-type accelerator would
be heavily limited by the network or DRAM bandwidth, while the streaming-type accelerator would perform
nearly optimal. In contrast to this, the difference of the OI of the two 2D-convolutions are with half-a-magnitude
less significant and unimportant, since all versions are “only” compute-bound. But “baking-in” the two convolu-
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Figure 12 – Per-operation roofline analysis of the example convolution of Listings 1 and 2.

Figure 13 – Bandwidth and parameter requirements per operation for the example convolution of Listings 1 and 2. (ArchBrickId is roughly the layer
number)

tions in the FPGA logic, would consume twice the resources than if both would use the same engine. Following
this path, it would make sense to create an accelerator where the first layers are executed on an engine type
and the dense layers at the end on a streaming architecture. This would achieve the same performance like
an all-streaming approach, but would save resources. On the contrary, the required bandwidth for data be-
tween layers within a DNN tends to decrease throughout the network, as shown in Figure 13. Looking at this
figure, one can get the opposite impression and could argue for a streaming-architecture in the beginning and
engine-types in the end, to accommodate the high-bandwidth requirements of the first layers.

Both previous described proposals profit from the combination of streaming and engine templates. But
which one is the “correct” or “better” one is only possible to tell after analyzing every operation of a given DNN,
based on performance goals provided by the user. Based on this performance requirements, a compiler could
decide if the engine-type accelerators in the beginning would be sufficient. Consequently, asking the user for
performance targets, has two positive effects: First, it allows for a holistic analysis and DSE. And second, it
enables early feedback to the user if the available hardware and architectures would meet this goals.

Based on this analysis, the best possible architecture for the available hardware is selected and forwarded
to hardware generation. This step is described in Section 5.
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5 Hardware Generation Flow

The EVEREST compilation flow includes a flow to automate the generation of complex hardware architectures
on FPGA. Our hardware generation flow aims at optimizing the computation of the kernel implementations
produced by the fronted compilers and the data transfers with local and remote memories. Also, it supports
multiple backends due to the different types of nodes envisioned in the EVEREST target platform. The EVER-
EST hardware generation flow is shown in Figure 14.

Figure 14 – EVEREST hardware generation flow.

The flow starts from the code produced by the frontend compiler, metadata for on-chip memory optimization,
and a json file that includes platform details (e.g., type of the target FPGA, available resources, number and
bandwidth of memory channels). It also requires a preliminary system level description that includes the
minimal connectivity of the kernel. The flow performs the following steps:

• it applies hardware-oriented optimizations and produces the hardware description of the kernel obtained
from the compiler (Section 5.1);

• it optimizes the on-chip memories by searching for sharing opportunities (Section 5.2);

• it creates the system-level description of the hardware architectures by replicating the kernels to operate
in parallel and coordinate the associated data transfers based on the characteristics of the target platform
(Section 5.3). In this step, it also creates the necessary files to interface with the proper synthesis tools
and generate the bitstreams.

• it generates the specific implementations of the host code functions that reflect the transformations ap-
plied during the creation of the hardware architecture, along with interfaces with the runtime (Section 6)

In particular, this flow allows us to decouple the optimizations of the kernel and the system. The high-level
description of the kernel is produced by the compiler and the flow supports different HLS tools (e.g., Xilinx
Vivado/Vitis HLS or Bambu) to create the corresponding hardware description. The system specification and
the corresponding HLS is instead dependent on the synthesis flow used to target the specific target node. For
examples, we use Vivado HLS 2019.2 for IBM cloudFPGA nodes and Vitis HLS 2021.1 for the Xilinx Alveo
nodes (see Section 5.3 for more details).

5.1 Hardware-Oriented Optimizations and Kernel Generation

The EVEREST SDK uses a combination of HLS tools and hardware generators to create the hardware descrip-
tions of the kernels identified by the compiler. As input, the kernel generation part supports C/C++ (synthesized
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with commercial HLS tools or Bambu), LLVM bitcode (supported by Bambu), and convolutional models (cur-
rently supported by Dosa through 3rd-party libraries). Each of these flows include specific hardware-oriented
optimizations to improve the hardware generation.

When the compiler flow emits C/C++, we currently use Xilinx HLS tools to synthesize the corresponding
hardware descriptions. The ap_fixed library is used to specify custom data types so that they can be automat-
ically synthesized.

The PandA Bambu HLS tool is used within the EVEREST SDK to experiment with new features within the
HLS flow. The HLS flow starts from an high-level description of the application and is able to generate an
equivalent RTL design for a given target FPGA. The only constraints on the input description are about recur-
sive functions and memory allocation. Only tail recursive functions are allowed for the HLS flow to complete
successfully. Furthermore, dynamic memory allocation is supported but strongly discouraged, since it is quite
inefficient when implemented on an FPGA target. The input formats accepted by the HLS tool are both C/C++
descriptions and LLVM IR descriptions. This is possible since Bambu exploit as front-end of the HLS flow stan-
dard compilers such as GCC and Clang whose intermediate representation is then converted to the internal
Bambu IR. This means any input description which is supported by the exposed front-end compilers can be
fed to the HLS flow of PandA Bambu. The EVEREST SDK supports two main flows: one starting from an
MLIR description and the other from a Rust application description. The former case takes as input the MLIR
description generated after the optimizations covered in previous sections. MLIR is then lowered into the LLVM
IR dialect and mapped to an equivalent LLVM IR description which is supported as an input description for
the HLS flow. As well, the latter case takes as input a Rust application description which is compiled through
the Ohua compiler. It generates a parallel dataflow runtime with the necessary glue code to interface with an
off-loaded kernel. The Rust compiler is then used to generate LLVM IR in ways compatible with the down-
stream HLS flow. Apart from the application description, the HLS flow also requires as inputs some metadata
to guide the hardware generation process. A top level interface has to be defined to specify how parameters
are exchanged between the accelerator and the host and specific memory interface types may be defined too,
such as AXI interfaces. A target board and clock frequency must be set, so that the back-end of the HLS flow is
able to generate a target specific RTL description and a proper scheduling of the operations to accommodate
the required clock period. This information is extracted from the platform description file and passed to the
tool. Finally, as a result of the HLS flow, an RTL description equivalent to the input application description is
generated. The accelerator design will expose the required I/O interface and will implement a target optimized
architecture to run the input application. The generated RTL description can be then passed to the subsequent
system integration step as a custom black-box.

Besides PandA Bambu, the EVEREST SDK can also invoke 3rd-party tools or use domain-specific libraries
to generate HDL code, especially for ML applications, if the ML compilation flow detects that the usage of such
libraries would produce the better result (cf. Section 4.3.2) . One example is the usage of the Haddoc library [1]
for specific convolutions. In this case, Dosa generates the required Tool Command Langauge (TCL) scripts or
meta-data represented in JavaScript Object Notation (JSON) to invoke those domain-specific 3rd-party tools.

In the following, we detail how the computation-related optimizations described in Deliverable D3.2 are
integrated into the EVEREST compilation flow.

5.1.1 Loop Pipelining

The proposed approach aims to leverage high-level code optimizations to provide a hardware-oriented input
description to the HLS. Figure 15 shows the main steps and tools involved. The input MLIR code, which
may contain loops to be pipelined, is first passed to a scheduler to obtain a loop iteration schedule. Code
transformations are applied to the input code to reorganize the by improving the instructions parallelism. The
resulting code is finally passed to the HLS tool to generate an accelerator description in Verilog/VHDL.

As previously mentioned, loop pipelining requires a scheduling phase and a code generation phase. A
single iteration of a loop may contain many operations which must be serialized because of data dependencies,
thus they can not be run in parallel. Loop pipelining allows to schedule operations from different original
iterations together: as these operations would not depend on each other, they could be executed in parallel
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Figure 15 – Overview of the optimization flow for synthesis-oriented loop pipelining starting from MLIR description.

without constraints. By overlapping original iterations, loop pipelining eliminates the parallelization constraints:
all operations within the same iteration are independent now, since they belong to different iterations of the
loop, so they can be executed in parallel.

Within the proposed flow, scheduling is performed by HatSchet, and code generation is implemented as a
set of transformations in MLIR; the pipelined loop is then passed to Bambu to obtain an HDL implementation.
It represents an alternative to other loop pipelining approaches that delegate scheduling and pipelining to the
HLS tool itself. Bringing loop pipelining (and possibly other optimizations) outside the scope of the HLS tool has
significant advantages: for example, the developer is more in control of the applied techniques, as their effects
are visible in the transformed IR. Moreover, applying transformations on a specialized, higher-level abstraction
increases flexibility, portability, and requires less time than implementing and exploring different techniques
within the HLS tool. Finally, MLIR is built to allow easy integration between different optimizations: this means
that loop pipelining may be combined with other techniques to create inputs to the HLS tool that are more
appropriate to generate efficient hardware accelerators.

5.1.2 Custom Precision Floating-point Data Types

Custom floating-point data types are available within the EVEREST SDK and are implemented by the PandA
Bambu HLS framework. They may be used by feeding specific flags to the HLS tool along with the input
description of the application or they can be used directly within the application description language as a
library through a C API.
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Figure 16 – Sample flow of custom floating-point application implementation through PandA Bambu HLS starting from generic input representation

The former case does not require any modification of the input description which is using standard floating-
point data types. These types will be converted by the HLS tool following function-scope directives fed to the
tool as command line options: each directive may require a custom floating-point format to be applied to a
single function or function tree (a top function and all those called by it). Conversion from and to custom data
types is handled internally by the synthesis flow in this case, providing fully automated translation of the input
description, as shown in Figure 16. Conversely, the latter case leaves complete freedom to the upper levels
of the EVEREST SDK to exploit the templatized floating-point functional units offered by the HLS component
library. This is the case for the base2 dialect introduced in Section 3.2.2. The input application is converted to
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base2 dialect and custom data types are integrated at MLIR-level into the intermediate representation. Stan-
dard floating-point types are converted to custom types before the IR is fed into the HLS tool and operations
involving these custom types are converted into function calls to corresponding templatized functions from
the Bambu HLS library. Anyhow, both cases will benefit from the rich set of inter-procedural transformations
and optimizations offered by the HLS flow. Custom floating-point support is enabled by an internal C library
available within the PandA Bambu HLS tool: the library implements templatized floating-point functional units
for basic arithmetic operations, comparisons, and standard-to-custom and custom-to-custom type conversion.
Since templatized cores have been implemented as a library, separately from the HLS tool, they can be in-
tegrated into a generic application at any level without issues. These operators are then integrated, following
one of the two flows just defined, into the application description that is then further optimized along the syn-
thesis flow. The end result is thus featuring custom floating-point functional units for each of the required data
types. Furthermore, floating-point cores, both standard or custom precision, are commonly implemented by
state-of-the-art approaches as generic functional units from an RTL component library, thus they cannot be
considered by the HLS flow nor optimized during its execution. Conversely, the offered implementation inte-
grates the actual functional units IR into the input application IR enabling a fine grained optimization of their
design. With this novel approach, the architecture of the floating-point functional units is optimized along with
the whole application description resulting in ad-hoc improvements on the standard functional units design. The
resulting accelerator design then features custom precision floating-point computation with application-specific
implementations of the required arithmetic operators and mathematical functions.

Adoption of custom floating-point data types may result in many benefits for the generated hardware accel-
erator such as lower computational latency, lower resource usage and power consumption, and faster memory
access due to the reduced bitwidth, as already discussed in Deliverable D3.1.

5.2 Memory-Related Optimizations

In this section, we describe how the data management techniques described in Deliverable D3.2 are imple-
mented and included into the EVEREST SDK. Such optimizations and the associated hardware generation
process can be easily adapted to many tensor-based kernels like the ones present in the EVEREST use
cases. Also, the same optimizations are valid for all variants of the target architecture, only with different
parameters (e.g., the number of memory channels, the number of FPGA resources, the bus bit-width, etc.)

On-Chip Memory Sharing. We run Mnemosyne on the metadata produced by the compiler to generate
the RTL of the on-chip memory architecture associated with each kernel. In particular, Mnemosyne uses
the buffer compatibility graph to identify opportunities for sharing the physical on-chip memory banks without
performance overhead [18]. Sharing opportunities can be exploited when distinct internal buffers have no
overlapping lifetime and so they can share the same physical banks. Such memory architecture implements
the logic to access the same memory banks from different kernel interfaces [10, 18]. Mnemosyne wraps the
RTL kernel description (produced by HLS) with the resulting RTL description of the kernel memory architecture
to expose only input and output ports to the computational units. This conceptual interface is then used for
integration of the kernel into the Computational Unit (CU) in a transparent way.

Host-FPGA Double Buffering. This optimization requires changes in the CU wrapper to determine on
which memory channel the CU should operate at each time. Based on the type of target architecture, it may
be required to change also the configuration file (e.g., in the case of the Alveo boards) to specify how to attach
more channels to the same CU. Finally, the host code must be updated to target the proper channel in each
data transfer. Additionally, since we use two channels to implement double buffering, this can limit the number
of outstanding memory transactions and, in turn, the maximum number of parallel CUs. However, in case of
many channels and few CUs, Olympus (cf. Section 5.3) also separates input and output channels to simplify
the control logic and improve logic connectivity of the FPGA resources.

Bandwidth Optimization. In the case of large channel busses, the hardware generation flow modifies
the host code to interleave the input for the multiple elements before sending it to channels and de-interleave
the output after receiving the results. The optimization only needs information on the bus bitwidth (e.g., 256
bits for the AXI links of the Alveo) and the data type bitwidth (i.e., 32, 64, or custom bits based on the data
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types). Both parameters are available from the user-supplied board specification and the compiler-supplied
array information, respectively. From this, Olympus generates the CU Read and Write functions to split and
aggregate the data into the appropriate number of lanes. The overall CU structure is then created by composing
the Read/Write functions with multiple instances of the kernels. Similarly, the data reorganization portion of
the host code can be generated with the same information by specializing the allocation functions of the host
application.

Dataflow Optimization. This optimization is enabled by the compiler generating a kernel using subfunc-
tions using streams, instead of one flat kernel function. The exact scheduling of the stages may not be straight-
forward, as the compiler has freedom to optimize the grouping for the best performance. Olympus then creates
data streams among the subkernels for data communication. In order to stream data between the subkernels,
data must be buffered when the subkernel does not operate on it in the same order that it is streamed or when
the same values are reused multiple times inside the same subfunction. In most cases, this means that data
streamed in gets stored in an internal buffer, then the data can be operated on using random access, and
as each result is computed, it is streamed out. Data structures that are reused across multiple blocks must
be streamed through these blocks and buffered inside them to keep a consistent structure and avoid multiple
hardware modules accessing the same data concurrently. This optimization does not require any changes
in the host code. All optimizations are implemented as graph transformations on a connectivity graph that is
extracted, optimized, and implemented inside Olympus.

Interface Modification for Supporting Custom Precision. Using the data representation that is defined
in the previous HLS steps of EVEREST as an input, the data types are automatically changed in the imple-
mentation. Based on the HLS tools used for the kernel generation, there are different ways to specify custom
data types. For example, in the case of Xilinx Vivado/Vitis, fixed-point implementations only require a redefini-
tion of the data types before HLS using the given arbitrary-precision libraries. In the case of Bambu, custom
floating-point implementations are specified in the exchange format between the compiler and the tool, and
automatically synthesized by the tool. The conversion from/to double is generally implemented in the host
code to save hardware resources. However, this requires to adapt the data allocation functions, which receive
the input values in double but need to write fixed-point values in the FPGA buffers, and the functions to retrieve
the results that must implement the opposite conversion.

5.3 System Integration

The overall system architecture produced by the EVEREST system integration part is described in C++. The
description wraps the kernels directly described in HDL, which are inserted as black-boxes. This C++ wrapper
is later synthesized with platform specific tools. The flow also produces the platform configuration file based
on the number of CUs that can be instantiated (if needed) and all script files for running the backend tools.
Note that the configuration file specifies also the proper connections to the memory channels. These files are
generated for each of the target nodes. Olympus reads the kernel interface to specify how to connect the
input/output ports to the rest of the system. Data ports are connected to memory channels via AXI Master
interfaces, while configuration ports are connected to the host via AXI-Lite, memory-mapped interfaces. Data
exchanged with the memory channels are buffered on-chip to allow fast, fixed-latency access during the kernel
execution.

The generation of the system architecture proceeds through an exploratory and optimization phase that
requires information about the specific target platform. Figure 17 shows an overview of the flow. After the kernel
level HLS, we can obtain an estimate of the resources needed to implement the kernel on the target FPGA
device. Olympus generates the C++ description of the memory architecture around the kernel description,
where each kernel description is integrated as custom RTL (blackbox). Since the hardware cost of the kernel
may limit the number of parallel units, the Olympus exploratory phase is essential to understand which of the
optimizations described above can be applied given the FPGA available resources. Indeed, we characterize
each optimization with an estimation of the extra resources. With this information, Olympus assists the designer
in selecting the most suitable optimizations and automatically generating the corresponding CU description
around the HLS-generated code of the kernel and the system configuration file for interfacing with the synthesis
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Figure 17 – Olympus hardware generation flow

tools. Each CU can feature multiple kernels, each of them connected to a lane to fully utilize the AXI bandwidth.
The wrapper implements data-movement optimizations and are designed accordingly with changes to the host
application and the configuration file. For example, the kernel may benefit from a change in the way data is
written to and read from global memory and therefore the host application must adapt to this type of behavior
(see Deliverable D3.1 for more details). The configuration file, instead, defines how each CU interfaces with the
memory. By modifying the configuration file, Olympus optimizes how each CU is connected to the individual
channels. The resulting components are then passed to the synthesis tool. Olympus implements abstract
classes to specify the common structure of the backend, which is then specialized based on the specific target
node. For example, we support Vivado for cloudFPGA and Vitis for the Alveo-based servers. The synthesis
tools automatically generate the bitstream required for board configuration. Supporting a new target platform
only requires to create the proper specialization of the backend.

5.4 Integration Test: The Case of Computational Fluid Dynamics

In this section, we show a prototype flow that we used to evaluate the integration of our methods in the
generation of several implementations of the CFD application (Inverse Helmholtz operator). Our DSL-to-FPGA
combines the frontend compiler, one of the HLS tools, some memory optimizations, and the system integration
step (cf. [23]). As discussed in Deliverable D4.3 and Deliverable D4.4, CFDlang is implemented on top of the
MLIR infrastructure, Mnemosyne is an open-source tool1, and Olympus is a new in-house prototype. Olympus
is built in Python on top of the Pyverilog library [25] for hardware generation (i.e., the generation of the kernel
wrappers around Mnemosyne artifacts) and the Pycparser library2 for code generation. With our flow, we
aimed at targeting a Xilinx Alveo U280 card (one of the possible FPGA targets in EVEREST – see Deliverable
D6.2. We used Xilinx Vitis 2021.1 for synthesis generation and bitstream creation. Unless otherwise specified,
we target a synthesis frequency of 450 MHz for both the platform and the CU description.

In the following, we evaluate the cumulative benefits introduced by each optimization, we discuss the major
challenges in the implementation of CFD applications, and we compare our results with Intel ones [20] in
terms of performance and energy efficiency by using the GFLOPS and GFLOPS/W metrics, respectively. In
particular, given the polynomial degree p, we assume that each contraction is composed of three loops that
execute two floating-point operations (one addition and one multiplication) for p×p×p×p times each. Similarly,
the Hadamard product requires p×p×p multiplications. So, the entire Inverse Helmholtz operator the following
number of floating-point operations:

Nel
op = 2 · [2 · (p · p · p · p) + 2 · (p · p · p · p) + 2 · (p · p · p · p)] + (p · p · p) = (12 · p+ 1) · (p · p · p) (1)

We tested the flow by creating the systems for two polynomial degrees, i.e., p = 11 and p = 7. So, a single

1https://github.com/chrpilat/mnemosyne
2https://github.com/eliben/pycparser
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Figure 18 – Performance of each optimization implemented with 1 CU and p = 11.

element requires to execute Nel
op=177,303 floating-point operations when p = 11 and Nel

op=29,155 floating-point
operations when p = 7. The total number of floating-point operations for a CFD simulations can be obtained
as:

Nop = Neq ×Nel
op (2)

We executed all experiments with Neq = 2, 000, 000, i.e., we simulated 2,000,000 elements. The GFLOPS
metric is then obtained by dividing this number for the application execution time, while the GFLOPS/W metric
is obtained by dividing the GFLOPS metric by the average power consumption of the system. To get accurate
information about power consumption, we profiled the power consumption during the system execution with
Xilinx XRT.

We executed our CFDlang on the DSL description in Figure 2 to generate the C kernel for hardware op-
timization and HLS. We first performed experiments to evaluate the effects of optimizations with p = 11. In
particular, we progressively added the following optimizations:

• Baseline: No optimizations are used. The code executes the kernels and data transfers in series, while
each compute unit contains only one kernel and it is connected to the HBM with 64-bit AXI channels.

• Host-HBM Double Buffering: We introduce double buffering to hide CPU-FPGA communication latency.

• Bus Optimization: We evaluate the effect of widening the bus to 256 bits, with only one kernel unit (and
serializing the data) and with multiple lanes feeding parallel kernel units.

• Dataflow optimization: We create several variants of the compute functions with one, two, three, and
seven subkernels. We indeed evaluate the performance vs. resources trade-off.

• Resource Optimization: We apply on-chip memory sharing (only in the case of dataflow implementations
with one block inside the compute part) and fixed-point data types (with 64- and 32-bit implementations).

For each of these implementations, we measured total and kernel execution times, maximum and average
power consumption, and cost in terms of hardware resources. Figure 18 shows the performance (in terms of
GFLOPS) achieved in each experiment when adding the specific optimization on top of the previous ones. In
each experiment, the left red bar shows the GFLOPS of the CUs on their own, without considering host-FPGA
data transfers, while the right blue bar includes the entire application. Comparing the two bars allows us to
evaluate the peak performance of the kernels and the effects of data transfers.

The Baseline case achieves only 3 GFLOPS while Intel implementations are around 16 GFLOPS. Also, the
difference between the CU performance and the overall system performance is significant. This is due to the
serial nature of the implementation where data is transferred from the host to the HBM, then processed by the
CU and sent back to the host before starting a new batch.
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Figure 19 – Resource utilization for each optimization implemented with 1 CU and p = 11. Highlighted in red is any value over 25% utilization, indicating
possible issues when instantiating more than one CU.

After the Double Buffering optimization, the CU performance remains similar, with a small degradation
due to overhead, while the system performance is now exactly the same as the CU performance. This is an
improvement over the Baseline implementation, because now the host to HBM data transfers are happening
in parallel to and are entirely hidden behind the CU execution.

We then executed two experiments for evaluating Bus Optimization. In the Serial version, we attempt to
utilize the full bandwidth of the 256-bit bus by packing four doubles. The CU reads them in parallel but then
it serializes them when it needs to access its own local buffers. While this optimization is supposed to speed
up data reads from the HBM, its implementation in the CU leads to a performance degradation of about 3×.
This is mostly due to the complexity of the logic for aligning the data that is not well handled by HLS tools. To
mitigate this, but still use the full bus bandwidth, this optimization was replaced with the Parallel implementation
where four kernels are instantiated in the CU and the data for each “lane” is stored in separate buffers, one
for each kernel. This led to a 3.52× speedup over the Double Buffering optimization. This is close to the ideal
speedup of four when using four kernels in parallel, and the discrepancy can be attributed to the additional
hardware complexity that slightly decreases the execution frequency. This Parallel implementation is used in
the following experiments.

Next, we tested various forms of the Dataflow Optimization. Each implementation of this optimization
separated the kernels into read, compute, and write modules and streams were used to pass data between
them, allowing a pipelined structure. When using one compute subkernel (Dataflow (1 Compute)) test, the
speedup was 1.29× due to the overlapping execution of the read, compute, and write modules. However, the
compute module was dominating the execution time so it was further split into 2, 3, and 7 modules. All three
of these tests gained speedup over the 1-Compute version by breaking the total execution time of a single
module down further. However, 3-Compute modules was slower than 2-Compute modules. Indeed, in each
case, the module with the longest latency was the same, but the extra modules and control routing caused the
tools to frequency scale the 3-Compute case to execute at 266 MHz whereas the 2-Compute case executed
at 292 MHz. When this is taken into account, the performance of both tests is approximately the same. The
7-Compute test, however, performed the best because each of the compute modules was much smaller than
the previous tests. In this case, the latencies of these modules were now slightly shorter than the latency of
the read module, meaning that this is the limit of the performance increase by dividing the compute portion.
The 7-Compute test gained a total speedup of 4.03× over the Bus Opt Parallel implementation.

At this point, we want to replicate the CUs using the remaining area available in the FPGA fabric to maximize
parallelism. We first evaluate the hardware cost of each implementation. The numbers of LUT, FF, BRAM,
URAM, and DSP used by each case for p = 11 are shown in Figure 19. In general, each test from Baseline
to Dataflow (7 Compute) showed an increase in resource utilization. Any utilization value over 25% is shown
in red. These are the resources most likely to cause placement and routing issues when instantiating multiple
CUs. We tested a few methods to reduce resource utilization and increase the number of instantiated CUs.

In this circumstance, the Mem Sharing optimization does not apply to the Dataflow 7-Compute implemen-
tation, because each compute module only uses arrays which cannot be shared, as they are always in use
during the execution of the module. Instead, it can be applied only to the Dataflow 1-Compute implementation
where several arrays are used in the compute module. Mnemosyne generated an architecture to internally
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Figure 20 – Power usage and energy efficiency of the Dataflow (7 Compute) optimization with each datatype, p = 11 or p = 7, and 1-CU or multiple-CU.

share arrays based on their liveness intervals. This decreased the BRAM utilization by 14.5% and the URAM
utilization by 48.3% while the LUT and FF utilization only increased minimally and the DSP utilization remained
the same. Also, the execution time was only slightly reduced (a slowdown of 0.98×). This optimization is ben-
eficial when on-chip memory inside the compute unit is the limiting factor and replicating the CUs can bring
more improvements than dataflow execution.

Another method to reduce resources is to change the numerical representation. All of the previous tests
used the floating-point format with double precision. In general, fixed-point representations utilize fewer re-
sources than floating-point ones. We tested 64- and 32-bit fixed-point representations by modifying the
Dataflow 7-Compute implementation. The 64-bit implementation uses 24 bits for the integer portion and 40
bits for the fractional portion. The 32-bit implementation uses 8 bits for the integer portion and 24 bits for the
fractional portion. These values are provided by the user after an analysis of the algorithm. Because the 32-bit
data is half the size, we instantiate 8 kernels per CU and divide the 256-bit bus into 8 lanes. In the Fixed
Point 64 test, the LUT utilization reduced by 46.3%, the FF utilization reduced by 53.4%, the RAM utilization
remained the same, and the DSP utilization increased to 44.8%. In the Fixed Point 32 test, with respect to the
Fixed Point 64 test, the LUT and FF utilization remained roughly the same. The DSP utilization was nearly
halved. The BRAM increased by about four times while the URAM decreased to zero. This is because the data
representation is half as long, so the overall size of the data structures are half as big. The arrays representing
the tensors are no longer big enough for the tool to decide it is efficient to use URAM to store them. When
taking into account the size of the physical memories, the total memory space is approximately halved. The
performance of the Fixed Point 64 test had a slight speedup of 1.19× due to the simplification of the logic allow-
ing the frequency to be higher. The Dataflow 7-Compute test with double format was scaled to 199 MHz while
the Fixed Point 64 test was scaled to 234 MHz. The performance of the Fixed Point 32 test had a speedup
over the double format of 2.37× and it reaches up to 103 GFLOPS. This represents a speed up of more than
35× over the Baseline version. The Fixed Point 64 test exhibited a mean square error of 9.39× 10−22 while the
Fixed Point 32 test had a mean square error of 3.58 × 10−12. It is up to the application designer to determine
what an acceptable error is and decide on an appropriate number format, and our flow can help facilitate a
design space exploration of these parameters.

Figure 20 shows the power consumption of the different implementations and a comparison of the energy
efficiency (GFLOPS/W or GOPS/W depending on the data format) with the Intel implementation. The bars re-
ported the average power consumption measured with the XRT infrastructure. The dashed red line represents
the power efficiency estimation (0.16 GFLOPS/W) of the Intel platform which is the performance obtained in
[20] (16 GFLOPS) divided by the thermal design power of the CPU (100W – conservative estimate). Since the
results available in [20] refer to a vectorized implementation on a single thread, the fair comparison is with the
1-CU implementation for fair comparison. We also include the results of the multiple-CU implementations, to
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show the effects of replication on both power consumption (W bars) and energy efficiency (G(FL)OPS/W bars).
As expected, the fixed-point implementations are more efficient than the floating-point ones. Also, reducing the
bitwidth from 64 to 32 bits allows us to achieve the maximum efficiency. This is because these implementa-
tions are much faster and use less hardware resources. The p = 7 implementations have lower average power
consumption than their p = 11 counterparts, due to their smaller resource utilization. However, in most cases
the efficiency of the p = 7 cases is lower due to their longer overall execution time. The multiple-CU imple-
mentations are generally less efficient than their single-CU counterparts, both because of the increased work
occurring in parallel, yielding a higher average power, and because of longer execution times from frequency
scaling. While all implementations are far more efficient than Intel ones, the most efficient cases are Fixed
Point 32 with p = 11 and 1 CU and the same case with p = 7. These cases are about 25× and 15× more
efficient than the Intel estimate, respectively.
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6 Code Generation and Runtime Integration

Sections 4.1-4.3 partly described how code can be generated for the different classes of applications or ker-
nels. In general, and as depicted in Figure 1, there are multiple possible paths after the middle-end into the
downstream compilation process. For every type of kernel, the compiler framework can generate standalone
implementations that run on CPUs. This is achieved via source-to-source compilation (e.g., DSL-to-C, exper-
imental MLIR-to-C, Ohua(Rust)-to-Rust), by using the default TVM code generation for CPUs, or by using the
LLVM compiler to process LLVM-IR.

A large focus of the EVEREST project is on interfacing with HW generation flows (cf. Section 5). As shown
in Figure 1, we currently support multiple paths to this end, including C code with pragma annotations and
direct interfacing via compiler IR. As described before, and illustrated in Figure 4, we see great potential in rich
interfaces via MLIR as we do with the Bambu HLS tool.

For the runtime integration, different versions of a kernel or application can be generated, as illustrated in
Figure 8 for instance. With this deliverable we thus describe provide an initial way forward to interfacing with
the runtime and auto-tuning support described in Deliverable D5.1.
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Figure 21 – Application integration workflow.

Figure 21 shows an overview of how the compiler toolchain integrates an application for the EVEREST
platform. Following the observations from Figure 4, we place an MLIR-unified front-end component at the start
of the flow, which extracts the relevant sources. It also fulfills the role of language and build system integration
with the original application – it must analyze and describe the kernel interfaces to later stages, while offering
a mechanism to rebuild the app with their changes. We then move on to one of the middle-ends described in
Section 4. This component accepts the problem definition from the front-end, and is expected to produce a set
of code variants that integrate with mARGOt. This assumes that the middle-end can consume and produce
platform descriptors , and discover variants automatically. In a simplified flow, mARGOt is not used and only
one artifact is generated using a static platform description, such as described in Section 4.3. The middle-end
depends on a back-end to generate the platform-specific artifact, which could be an LLVM toolchain, or our
hardware flow described in Section 5.

An implicit dependency on a platform description and the deployment infrastructure is represented by the
orchestrator component in Figure 21. The components of this flow are reflected in a chain of dependencies that
are added to the application. These libraries are provided by the EVEREST SDK or built by the compiler flow,
and together they constitute the application runtime. Following the terminology from Figure 21, the following
layers of dependencies are found:

Interop layer. At the most abstract level, the application needs to be rebuilt using the modified kernel
implementations. This requires glue code to connect the extracted parts back to the original application with
as little manual labor as possible. In this interop layer, there are static, language-specific libraries distributed
with the EVEREST SDK, and application-specific sources. The latter contains code that is generated by the
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front-end to achieve interoperability with its extracted interface, and in some cases user-provided changes to
the original application.

mARGOt variants. The main output of our flow are the actual kernel implementations, which are called
from the interop layer. In the simplest case, mARGOt is not used, and a single variant is compiled and
referenced directly. In all other scenarios, which include those that can adapt to the hardware configuration
present at runtime, mARGOt is used to implement a single entry-point per kernel. The mechanism for bundling
this variant set is described in Deliverable D5.1.

mARGOt runtime. Whenever the application runs with mARGOt, mARGOt’s runtime and autotuning facili-
ties need to be made available to the variant bundle. Thus, a multi-variant flow adds an implicit dependency to
the statically distributed mARGOt library itself.

Platform runtime. At the bottom level of these transitive dependencies, a platform-specific runtime library
must be statically distributed for every EVEREST platform. This library allows the kernel implementation, which
contains both the host and device code for the generated replacement, access to the hardware. The platform
runtime is therefore specific to the hardware configuration that is used, and in the case of HPC environments,
depends on the resource management facilities. In our case, the latter are implemented by the orchestrator,
which controls access to the devices that kernels will be deployed to at runtime.
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7 Conclusions

In this deliverable we described the current status of the compilation framework, explaining how we have thus
far implemented the definition from Deliverable D4.1. We explained how multiple different components (cf.
Figure 1) interoperate to provide support for the challenging landscape of languages and requirements of
the EVEREST use cases. The extension to tools, IRs and the novel compilation and hardware generation
flows demonstrated a promising initial compiler framework with which efficient HW-SW implementations of
key components from the use cases can be generated. This deliverable also show how data-related design
decisions from Deliverable D3.1 are implemented (e.g., data allocation and number representations) and an
initial proof-of-concept of the connection to the runtime system described in Deliverable D5.1. We have shown
how we can generate code to the different types of nodes of the EVEREST platform, with focus on FPGA
acceleration. The details on the usage of the tools are however relegated to Deliverable D4.3.

Moving forward, the compilation framework will evolve into full support of end-to-end use cases, as opposed
to isolated software components. With the runtime system in place, the interaction with WP5 will be intensify
in the second half of the project. As already alluded at the start of this deliverable and in the project proposal
itself, we will continue the efforts towards integration of the analysis and synthesis flows.
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Acronyms

API Application Programming Interface. 6, 37

AST Abstract Syntax Tree. 9, 18, 37

CFD Computational Fluid Dynamics. 6, 8, 30, 31, 37

CU Computational Unit. 28–34, 37

DFG Dataflow Graph. 10, 11, 37

DNN Deep Neuronal Networks. 17, 22–24, 37

DSE Domain-Space Exploration. 4, 19, 20, 22–24, 37

DSL Domain-Specific Language. 6, 8, 9, 11, 13, 14, 19, 30, 31, 35, 37

FFI Foreign Function Interface. 9, 37

FPGA Field Programmable Gate Array. 6, 7, 11, 17, 19–26, 28–32, 37

GEMM general matrix-matrix multiply. 19, 37

HBM High Bandwidth Memory. 19, 31, 32, 37

HDL Hardware Description Language. 18, 26, 27, 37

HLS High-Level Synthesis. 5–7, 11, 14, 18–20, 25–32, 35, 37

HPC High-Performance Computing. 5–8, 36, 37

IR Intermediate Representation. 11, 13, 14, 16, 19, 20, 26–28, 35, 37

JSON JavaScript Object Notation. 26, 37

ML Machine Learning. 4, 11, 17, 19, 22, 23, 26, 37

MLIR Multi-Level Intermediate Representation. 4, 6–9, 11, 13–15, 17, 19, 20, 26, 27, 35, 37

OI Operational Intensity. 17, 37

ONNX Open Neural Network eXchange. 11, 17, 37

PLM Private Local Memory. 37

RRTMG Rapid Radiative Transfer Model for GCM Solvers. 9, 37

RTL Register Transfer Level. 7, 26, 28, 29, 37

SIMD Single Instruction Multiple Data. 19, 37

SLP Superword Level Parallelism. 17, 37

TCL Tool Command Langauge. 26, 37

UB Undefined Behavior. 8, 37
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