- Chair of Compiler Construction
- Chair of Emerging Electronic Technologies
- Chair of Knowledge-Based Systems
- Chair of Molecular Functional Materials
- Chair of Network Dynamics
- Chair of Organic Devices
- Chair of Processor Design
Hamid Farzaneh |
||
![]() |
Phone Fax Visitor's Address |
+49 (0)351 463 43729 +49 (0)351 463 39995 Helmholtzstrasse 18,3rd floor, BAR III55 01069 Dresden |
Hamid Farzaneh received his bachelor's degree in Computer Engineering from Shiraz University in August 2019, and his master's degree in Computer Systems and Architecture from Shahid Beheshti University in November 2021.
In August 2022, he joined the chair as a research assistant. He works on high-level compiler frameworks (like MLIR) and optimization for data and computation mapping onto highly heterogeneous systems with mainstream CPUs, FPGAs, SRAM, DRAM, and emerging NVMs and accelerators.
The volume of data processing in these applications has skyrocketed in recent years and demands significantly higher off-chip memory bandwidth. However, increasing the off-chip bandwidth is becoming increasingly expensive and is strictly constrained by the chip package and system models. To overcome the memory wall and capacity and power walls, computer architects are moving to non-Von-Neumann system models like near-memory and in-memory computing. However, The programmability aspect of these systems has received relatively less attention. Using the power of compilers, I tackle issues in high performance, energy efficiency, and hardware/software cooperation of these systems.
In that regard, my current main topics are:
- Working on high-level compiler frameworks (like MLIR) and optimizing data and computation mapping for data and computation mapping onto heterogeneous systems
- Developing models for managing workloads in heterogeneous systems
Possible student topics include:
- Front-ends for MLIR Computing-in-Memory(CIM) Compiler
End-to-end compilation flows for CIM-capable systems exist, but interfaces to high-level languages are missing (limited). The goal of this project is to design and implement front-ends to enable lowering high-level languages/descriptions to the CIM compilers.
- Heterogeneous Systems: Mapping and Optimizations

Also, if you have a related topic in mind, please feel free to reach out.
2024
- João Paulo C. de Lima, Asif Ali Khan, Hamid Farzaneh, Jeronimo Castrillon, "Full-Stack Optimization for CAM-Only DNN Inference" (to appear), Proceedings of the 2024 Design, Automation and Test in Europe Conference (DATE), IEEE, pp. 1-6, Mar 2024. [Bibtex & Downloads]
Full-Stack Optimization for CAM-Only DNN Inference
Reference
João Paulo C. de Lima, Asif Ali Khan, Hamid Farzaneh, Jeronimo Castrillon, "Full-Stack Optimization for CAM-Only DNN Inference" (to appear), Proceedings of the 2024 Design, Automation and Test in Europe Conference (DATE), IEEE, pp. 1-6, Mar 2024.
Abstract
The accuracy of neural networks has greatly improved across various domains over the past years. Their ever-increasing complexity, however, leads to prohibitively high energy demands and latency in von-Neumann systems. Several computing-in-memory (CIM) systems have recently been proposed to overcome this, but trade-offs involving accuracy, hardware reliability, and scalability for large models remain a challenge. This is because, even in CIM systems, data movement and processing still require considerable time and energy. This paper explores the combination of algorithmic optimizations for ternary weight neural networks and associative processors (APs) implemented using racetrack memory (RTM). We propose a novel compilation flow to optimize convolutions on APs by reducing the arithmetic intensity. By leveraging the benefits of RTM-based APs, this approach substantially reduces data transfers within the memory while addressing accuracy, energy efficiency, and reliability concerns. Concretely, our solution improves the energy efficiency of ResNet-18 inference on ImageNet by 7.5x compared to crossbar in-memory accelerators while retaining software accuracy
Bibtex
@InProceedings{delima_date24,
author = {Jo{\~a}o Paulo C. de Lima and Asif Ali Khan and Hamid Farzaneh and Jeronimo Castrillon},
booktitle = {Proceedings of the 2024 Design, Automation and Test in Europe Conference (DATE)},
title = {Full-Stack Optimization for CAM-Only DNN Inference},
location = {Valencia, Spain},
pages = {1-6},
publisher = {IEEE},
series = {DATE'24},
abstract = {The accuracy of neural networks has greatly improved across various domains over the past years. Their ever-increasing complexity, however, leads to prohibitively high energy demands and latency in von-Neumann systems. Several computing-in-memory (CIM) systems have recently been proposed to overcome this, but trade-offs involving accuracy, hardware reliability, and scalability for large models remain a challenge. This is because, even in CIM systems, data movement and processing still require considerable time and energy. This paper explores the combination of algorithmic optimizations for ternary weight neural networks and associative processors (APs) implemented using racetrack memory (RTM). We propose a novel compilation flow to optimize convolutions on APs by reducing the arithmetic intensity. By leveraging the benefits of RTM-based APs, this approach substantially reduces data transfers within the memory while addressing accuracy, energy efficiency, and reliability concerns. Concretely, our solution improves the energy efficiency of ResNet-18 inference on ImageNet by 7.5x compared to crossbar in-memory accelerators while retaining software accuracy},
month = mar,
year = {2024},
}Downloads
No Downloads available for this publication
Permalink
2023
- Jörg Henkel, Lokesh Siddhu, Lars Bauer, Jürgen Teich, Stefan Wildermann, Mehdi Tahoori, Mahta Mayahinia, Jeronimo Castrillon, Asif Ali Khan, Hamid Farzaneh, João Paulo C. de Lima, Jian-Jia Chen, Christian Hakert, Kuan-Hsun Chen, Chia-Lin Yang, Hsiang-Yun Cheng, "Special Session – Non-Volatile Memories: Challenges and Opportunities for Embedded System Architectures with Focus on Machine Learning Applications" (to appear), Proceedings of the 2023 International Conference on Compilers, Architecture, and Synthesis of Embedded Systems (CASES), Sep 2023. [Bibtex & Downloads]
Special Session – Non-Volatile Memories: Challenges and Opportunities for Embedded System Architectures with Focus on Machine Learning Applications
Reference
Jörg Henkel, Lokesh Siddhu, Lars Bauer, Jürgen Teich, Stefan Wildermann, Mehdi Tahoori, Mahta Mayahinia, Jeronimo Castrillon, Asif Ali Khan, Hamid Farzaneh, João Paulo C. de Lima, Jian-Jia Chen, Christian Hakert, Kuan-Hsun Chen, Chia-Lin Yang, Hsiang-Yun Cheng, "Special Session – Non-Volatile Memories: Challenges and Opportunities for Embedded System Architectures with Focus on Machine Learning Applications" (to appear), Proceedings of the 2023 International Conference on Compilers, Architecture, and Synthesis of Embedded Systems (CASES), Sep 2023.
Abstract
This paper explores the challenges and opportunities of integrating non-volatile memories (NVMs) into embedded systems for machine learning. NVMs offer advantages such as increased memory density, lower power consumption, non-volatility, and compute-in- memory capabilities. The paper focuses on integrating NVMs into embedded systems, particularly in intermittent computing, where systems operate during periods of available energy. NVM technologies bring persistence closer to the CPU core, enabling efficient designs for energy-constrained scenarios. Next, computation in resistive NVMs is explored, highlighting its potential for accelerating machine learning algorithms. However, challenges related to reliability and device non-idealities need to be addressed. The paper also discusses memory-centric machine learning, leveraging NVMs to overcome the memory wall challenge. By optimizing memory layouts and utilizing probabilistic decision tree execution and neural network sparsity, NVM-based systems can improve cache behavior and reduce unnecessary computations. In conclusion, the paper emphasizes the need for further research and optimization for the widespread adoption of NVMs in embedded systems presenting relevant challenges, especially for machine learning applications.
Bibtex
@InProceedings{henkel_cases23,
author = {J\"{o}rg Henkel and Lokesh Siddhu and Lars Bauer and J\"{u}rgen Teich and Stefan Wildermann and Mehdi Tahoori and Mahta Mayahinia and Jeronimo Castrillon and Asif Ali Khan and Hamid Farzaneh and Jo\~{a}o Paulo C. de Lima and Jian-Jia Chen and Christian Hakert and Kuan-Hsun Chen and Chia-Lin Yang and Hsiang-Yun Cheng},
booktitle = {Proceedings of the 2023 International Conference on Compilers, Architecture, and Synthesis of Embedded Systems (CASES)},
title = {Special Session -- Non-Volatile Memories: Challenges and Opportunities for Embedded System Architectures with Focus on Machine Learning Applications},
location = {Hamburg, Germany},
abstract = {This paper explores the challenges and opportunities of integrating non-volatile memories (NVMs) into embedded systems for machine learning. NVMs offer advantages such as increased memory density, lower power consumption, non-volatility, and compute-in- memory capabilities. The paper focuses on integrating NVMs into embedded systems, particularly in intermittent computing, where systems operate during periods of available energy. NVM technologies bring persistence closer to the CPU core, enabling efficient designs for energy-constrained scenarios. Next, computation in resistive NVMs is explored, highlighting its potential for accelerating machine learning algorithms. However, challenges related to reliability and device non-idealities need to be addressed. The paper also discusses memory-centric machine learning, leveraging NVMs to overcome the memory wall challenge. By optimizing memory layouts and utilizing probabilistic decision tree execution and neural network sparsity, NVM-based systems can improve cache behavior and reduce unnecessary computations. In conclusion, the paper emphasizes the need for further research and optimization for the widespread adoption of NVMs in embedded systems presenting relevant challenges, especially for machine learning applications.},
month = sep,
numpages = {10},
year = {2023},
}Downloads
No Downloads available for this publication
Permalink
- João Paulo C. de Lima, Asif Ali Khan, Hamid Farzaneh, Jeronimo Castrillon, "Efficient Associative Processing with RTM-TCAMs", In Proceeding: 1st in-Memory Architectures and Computing Applications Workshop (iMACAW), co-located with the 60th Design Automation Conference (DAC'23), 2pp, Jul 2023. [Bibtex & Downloads]
Efficient Associative Processing with RTM-TCAMs
Reference
João Paulo C. de Lima, Asif Ali Khan, Hamid Farzaneh, Jeronimo Castrillon, "Efficient Associative Processing with RTM-TCAMs", In Proceeding: 1st in-Memory Architectures and Computing Applications Workshop (iMACAW), co-located with the 60th Design Automation Conference (DAC'23), 2pp, Jul 2023.
Bibtex
@InProceedings{lima_imacaw23,
author = {Jo{\~a}o Paulo C. de Lima and Asif Ali Khan and Hamid Farzaneh and Jeronimo Castrillon},
booktitle = {1st in-Memory Architectures and Computing Applications Workshop (iMACAW), co-located with the 60th Design Automation Conference (DAC'23)},
title = {Efficient Associative Processing with RTM-TCAMs},
location = {San Francisco, CA, USA},
pages = {2pp},
month = jul,
year = {2023},
}Downloads
2307_deLima_iMACAW [PDF]
Permalink
- Asif Ali Khan, Hamid Farzaneh, Karl F. A. Friebel, Clément Fournier, Lorenzo Chelini, Jeronimo Castrillon, "CINM (Cinnamon): A Compilation Infrastructure for Heterogeneous Compute In-Memory and Compute Near-Memory Paradigms", arXiv, Jan 2023. [doi] [Bibtex & Downloads]
CINM (Cinnamon): A Compilation Infrastructure for Heterogeneous Compute In-Memory and Compute Near-Memory Paradigms
Reference
Asif Ali Khan, Hamid Farzaneh, Karl F. A. Friebel, Clément Fournier, Lorenzo Chelini, Jeronimo Castrillon, "CINM (Cinnamon): A Compilation Infrastructure for Heterogeneous Compute In-Memory and Compute Near-Memory Paradigms", arXiv, Jan 2023. [doi]
Bibtex
@Article{khan_arxiv23,
author = {Khan, Asif Ali and Farzaneh, Hamid and Friebel, Karl F. A. and Fournier, Clément and Chelini, Lorenzo and Castrillon, Jeronimo},
title = {CINM (Cinnamon): A Compilation Infrastructure for Heterogeneous Compute In-Memory and Compute Near-Memory Paradigms},
doi = {10.48550/ARXIV.2301.07486},
url = {https://arxiv.org/abs/2301.07486},
copyright = {Creative Commons Attribution 4.0 International},
month = jan,
publisher = {arXiv},
year = {2023},
}Downloads
No Downloads available for this publication
Permalink