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Abstract—Heterogeneous multi-core architectures, such as
Arm’s big.LITTLE and DynamIQ, feature multiple core types
with the same ISA but varied performance-energy character-
istics. These are increasingly adopted in embedded systems as
they enable dynamic application mapping, balancing perfor-
mance with energy efficiency. While Hybrid Application Mapping
(HAM) approaches have gained popularity in systems running
dynamic workloads, most solutions yield spatial mappings and
neglect application migrations in output schedules, substantially
limiting the solution space. This work introduces STEM and
FFEMS, two algorithms utilizing the temporal aspect with job
reconfigurations to generate “flexible” spatio-temporal mappings.
STEM leverages Memetic Algorithms (MAs), while FFEMS uses
fast greedy heuristics. Our evaluation on two heterogeneous
multi-core platform models demonstrates that the flexible struc-
ture of the spatio-temporal mappings significantly improves the
schedulability. On workloads from automotive and multimedia
domains, STEM finds the most energy-efficient solutions, but its
large overhead makes it unsuitable for use in runtime systems. In
contrast, FFEMS exhibits an outstanding balance between per-
formance and runtime overhead: Given similar runtime overhead
as MMKP-MDF, the state-of-the-art approach, FFEMS schedules
up to 16 % more test cases. Its “tail-switch” optimization further
improves energy efficiency, though with increased overhead,
which is still acceptable within runtime systems.

Index Terms—resource management, energy-efficiency, spatio-
temporal mapping.

I. INTRODUCTION

In today’s embedded systems, a trend towards hetero-
geneous multi-core systems is increasingly evident. Arm’s
big.LITTLE [1], for instance, includes two types of cores —
high-performance and high-efficiency ones — grouped into
two corresponding clusters. Its successor, DynamIQ [2], goes
beyond the rigid cluster structure and provides flexibility in
multi-core processor design, e.g., the recent DynamIQ Shared
Unit-120 [3] combining up to three different types in a single
cluster. The core types in such systems share the same Instruc-
tion Set Architecture (ISA), yet they differ in implementation,
and thus, in performance-energy characteristics. This allows
the system to dynamically map and migrate applications
onto resources, effectively balancing between performance
and energy efficiency, and therefore to adapt to the dynamic
workload in an energy-efficient manner.

Optimizing the mapping of applications onto heterogeneous
multi-core systems is a known NP-hard problem, with the
number of possible mappings growing exponentially with the
application and the platform sizes. Among various strate-
gies [4], Hybrid Application Mapping (HAM) approaches [5]
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Fig. 1. Overview of multi-application mapping models. Spatial mapping
selects one configuration per application, ensuring simultaneous selection.
Fixed-point spatio-temporal mapping also picks one configuration per ap-
plication and, with a specified application order, finalizes a spatio-temporal
mapping. Flexible spatio-temporal mapping designates mapping segments and
their durations, ensuring all specified configurations (with ⊥ denoting idle)
within the segment can coexist.

are most suitable for systems executing dynamic workloads
that require predictable and energy-efficient solutions simul-
taneously. HAM strategies offload compute-intensive calcu-
lations to the design time, generating a Pareto-optimal set of
mappings (called operating points) for each application. Then,
at runtime, they use pre-generated mappings of each active
application and transform them into a single consolidated
multi-application mapping. These multi-application mappings
are merged so that the applications do not share CPU resources
to ensure the predictability of their final performance and
energy consumption [6].

Conventional runtime systems in HAM are commonly based
on efficient heuristics and produce spatial mappings [7]–[9],
specifying a spatial core assignment for each active application
onto the computing resources (see Fig. 1). However, these
mappings are optimized solely for the current applications and
do not anticipate future changes. When any application exits,
processing resources are released, and a new spatial mapping
is generated. This process forms a sequence of mappings, each



optimized for a specific moment in time.
The decision model could be further enhanced by adding

a temporal component, forming a spatio-temporal mapping,
or schedule. Such schedules may take into account expected
changes in the workload (e.g., the application finishes its exe-
cution) and generate more efficient schedule plans. However,
with this temporal component, the design space also increases
exponentially. While MMKP-MDF [10], [11] does provide such
spatio-temporal mappings within the milliseconds range, it
inherently employs a fixed-point model (Fig. 1), disregarding
job migrations and thus limiting its solution space.

This paper introduces approaches that generate flexible
spatio-temporal mappings in (firm) real-time systems. These
mapping algorithms consider application reconfigurations in
their output schedule plans and, therefore, better adapt them
to dynamic workloads. We present two approaches that gen-
erate these flexible mappings. The first, STEM (Spatio-
Temporal Evolutionary Mapping), leverages Memetic Algo-
rithms (MAs) [12]. MAs combine Genetic Algorithms (GAs)
with diverse techniques such as local search and problem-
specific approaches [13]. Our motivation in choosing MAs
is twofold: first, we aim to identify near-optimal solutions to
evaluate the efficacy of the fast algorithm; second, we research
the impact of knowledge-guided heuristics in the search for
optimal spatio-temporal mappings. The second, FFEMS (Fast
Flexible Energy-Minimizing Scheduler), utilizes fast greedy
heuristics. Its basic version schedules in 10-100ms, while an
energy-optimized variant marginally increases overhead but
remains below a second.

II. RELATED WORK

The use of Hybrid Application Mapping (HAM) began in
the 2000s with pioneers like Yang et al. [14] who proposed
it for real-time systems. Typically, HAM employs Genetic
Algorithms (GAs) during Design Space Exploration (DSE)
to generate a set of partial or complete (Pareto-optimal)
mappings [15]–[17]. However, due to overhead, faster algo-
rithms for operating point selection are favored at runtime.
Some runtime algorithms iteratively map applications onto
the platform one by one [17], [18], while others select the
operating points for all applications in a joint manner [7]–
[9], often expressed via a Multiple-choice Multidimensional
Knapsack Problem (MMKP) [19].

Recently, Spieck et al. [20] put forth a notable contribution
by presenting a scenario-aware HAM methodology. They
demonstrated how DSE also classifies the input stimuli into
scenarios with similar energy-performance characteristics. The
runtime manager then identifies the scenarios and mediates
resources using the Lagrangian relaxation heuristic on MMKP.

The aforementioned runtime approaches only generate spa-
tial multi-application mappings. Mukherjee et al. [21] ex-
plored spatio-temporal job scheduling in heterogeneous data
centers. Although their algorithm SCINT, based on GAs, finds
optimal solutions, it is time-consuming and does not consider
the varying resource-performance requirements of different
application mappings. Moreover, this algorithm operates under
purely stochastic (genetic) operators, without the incorporation
of knowledge-based heuristics. In contrast, MMKP-MDF [10],
[11], a fast greedy heuristic-based algorithm (as implied by

its name, also based on MMKP), can generate spatio-temporal
schedules within a millisecond range. However, as mentioned
in the Introduction, its fixed-point decision model considerably
restricts the solution space. To the best of our knowledge,
no existing mapping algorithm works within the millisecond
range and generates flexible spatio-temporal mappings.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Hybrid application mapping splits the mapping generation
process into design-time and runtime stages. At design time,
DSE generates Pareto-optimal mappings for each application
in isolation. These spatial mappings, enhanced with non-
functional characteristics, are called operating points. At run-
time, the Resource Manager (RM) constructs a spatio-temporal
multi-application mapping using one or several operating
points for each active application, adapting them to ensure
spatial isolation at every mapping segment. In the following,
we formalize the system model and formulate the optimization
problem, partially following the notation in [10].

A. System model

Architecture model: We represent a heterogeneous platform
P with m resource types and core counts by the vector
P[Θ⃗] = (Θ1, . . . ,Θm). While all core types share the same
ISA, they each exhibit different performance-energy charac-
teristics. The platform executes (multi-threaded) applications
capable of malleable reconfigurations [22], core migration, and
preemption.

Operating point model: For each application λ, the RM
receives the set of operating points Φλ. Each operating point
ϕi ∈ Φ is denoted by required resources θ⃗, (worst-case) exe-
cution time τ , and energy consumption ξ, i.e., ϕ = ϕ⟨θ⃗, τ, ξ⟩.
Operating points are Pareto-filtered, meaning each point is
better than any other in at least one parameter, such as fewer
cores of a particular processor type θ, lower execution time
τ , or energy consumption ξ.

Workload model: Upon a new request’s arrival, the RM
activates and works with a set of requests, Σ, including new
and unfinished requests. Each job1 σ ∈ Σ is denoted by its
arrival time α, the (relative) deadline δ, the application λ, and
the remaining progress ratio ρ ∈ [0, 1], i.e., σ = σ⟨α, δ, λ, ρ⟩.

Decision model: The RM aims to construct a spatio-
temporal mapping, defined as a sequence of mapping segments
Mi, i.e., K = [M1,M2, ...,M|K|]. Each mapping segment M
has a duration M [∆] and assigns each job σ an operating
point M [σ] = ϕ∗ ∈ Φσ[λ] ∪ ⊥, where ⊥ represents no
mapping. Fig. 1 depicts an example of a flexible spatio-
temporal mapping model.

B. Optimization problem

The RM’s goal is to minimize overall energy consumption
while ensuring Quality of Services (QoS). Using the intro-
duced notation, we define the problem as follows:

minimize E(K) =
∑
M∈K

∑
σ∈Σ

M [σ][ξ] · P (M,σ) (1)

where P (M,σ) = M [∆]
M [σ][τ ] is a progress ratio of a job σ during

the mapping segment M .

1For simplicity, we use the terms “jobs” and “requests” interchangeably.
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Fig. 2. The STEM algorithm flow.

The solution must satisfy the following constraints:
1) Resource constraint ensures resources required for each

mapping segment do not exceed the available resources:

M [θ⃗] =
∑
σ∈Σ

M [σ][θ⃗] ≤ P[Θ⃗],∀M ∈ K. (2)

2) Deadline constraint ensures QoS:

∀σ ∈ Σ, ñ = max i : Mi[σ] ̸= ⊥, T ñ(K) ≤ σ[δ], (3)

where T ñ(K) =
∑ñ

i=1 Mi[∆] is the total duration of
first ñ segments Mi ∈ K.

3) Completion constraint ensures job completion:∑
M∈K

P (M,σ) = σ[ρ],∀σ ∈ Σ. (4)

Note that the problem does not account for the runtime
overhead associated with preemption and switching operating
points. While some platforms, including the one evaluated in
our study, exhibit negligible runtime overhead [6], this is not
true for all platforms. We opted for a simpler formulation
by excluding overhead. Nevertheless, overhead can be easily
considered in our proposed algorithms.

IV. SPATIO-TEMPORAL EVOLUTIONARY MAPPING

Now we introduce the Spatio-Temporal Evolutionary Map-
ping (STEM), which uses Memetic Algorithms (MAs) for
creating spatio-temporal mappings, achieving the combined
benefits of a Genetic Algorithm (GA) and knowledge-guided
heuristics. Fig. 2 illustrates the STEM algorithm flow. In
the following, we present the components of STEM, includ-
ing chromosome representation and its evaluation, population
initialization, genetic operators, local search methods, and
survival selection.

A. Chromosome Representation and Evaluation

In evolutionary algorithms, a chromosome (sometimes re-
ferred to as an individual) represents a potential solution to
the problem at hand. In the context of STEM, a chromosome
embodies a flexible spatio-temporal mapping, as depicted in
Fig. 1. During evolution, redundancies can arise, for instance,
when jobs complete execution mid-segment or when operating
points are assigned to completed jobs. To manage these
redundancies, we discard mappings post-job completion and
take any discrepancy into account during the fitness evaluation
(therefore, relaxing Eq. 4).

Fitness Evaluation: Chromosomes are classified into three
categories based on compliance with resource and deadline
constraints (Eq. 2 and 3): (1) valid chromosomes that fulfill all
constraints, (2) chromosomes that satisfy resource constraints
but violate deadlines, and (3) chromosomes that violate re-
source constraints.

Parent chromosomes Segment-wise one-point crossover Job-wise uniform crossover

Fig. 3. Crossover operators applied to parent individuals (left): segment-wise
one-point (center) and job-wise uniform (right).

Fitness is a tuple, with the first value indicating the category
and the second value measuring group-specific metrics —
lower values indicate better solutions. For valid chromosomes,
this reflects energy consumption and a genotype-to-phenotype
discrepancy. For the second category, it is the average deadline
violation as a fraction of the deadline. For the third, it reflects
both the average deadline violation and the average overuse
of processor types per schedule segment.

B. Population Initialization

STEM generates an initial population of P = 90 individuals
using a structured approach rather than a purely random
generation. This method helps to avoid the creation of an
excessive number of unfit solutions. First, we randomly de-
termine the number of segments from the range [1..2 · |Σ|].
Next, segment durations M [∆] are generated using a normal
distribution N (md, (md/2)

2), where md is the maximum
deadline divided by the number of segments (the value is
rounded up to the nearest valid duration). For each segment,
we randomly generate a number p ∈ [1..min(|Σ|, |P[Θ⃗]|)]
and randomly sample p jobs. The algorithm then randomly
selects an operating point for these jobs, while assigning ⊥ to
all others.

C. Parent selection and genetic operators

In each iteration, STEM selects a pair of parent individuals,
upon which crossover and mutation operators are applied to
produce a pair of offspring.

Parent Selection: STEM uses exponential ranking selection
for parent selection [23]. In this strategy, the population is
first sorted incrementally, placing the fittest individuals at the
beginning: fit1 ≤ fit2 ≤ · · · ≤ fits The selection probability
of indi is given by psel(indi) = f i−1/c, where f < 1 is
typically set close to 1, e.g., 0.97 in our implementation,
and c is a normalizing coefficient. We then employ stochastic
universal sampling [12] to select two individuals as parents
from the sorted population.

Crossover: The selected pair undergoes crossover with a
probability of pc = 0.7. STEM randomly chooses one of
two crossover operators shown in Fig. 3. Given l is the
smallest number of segments in the parent chromosomes,
the segment-level crossover applies a one-point crossover
technique, cutting the parent chromosome at a random point
p ∈ [1..l] and swapping subsequent segments. The job-level
crossover decides for each job randomly if its mappings should
be swapped individually (i.e., uniform crossover). If so, the
swap is performed for the first l segments.

Mutation: After crossover, each offspring undergoes muta-
tion with a probability of pm = 0.6. We define three mutation
operators for this step.



The first operator modifies the schedule structure by (a)
swapping two random segments, (b) inserting a new segment
at a random position, or (c) removing a random segment and
redistributing its duration. The other two mutation operators
alter specific chromosome values. One changes a randomly
selected segment’s duration, and the other changes the oper-
ating point index of a random job within a random segment,
selecting the ⊥ value with a p⊥ = 0.5 chance.

D. Local Search Methods

After generating a pair of offspring through genetic opera-
tors, the memetic part of the algorithm – comprising several
local search heuristics – comes into play. These heuristics,
leveraging problem-specific knowledge, accelerate the search
for optimal solutions. The selection of methods is based
on their efficiency and runtime overhead, and individuals
are subjected to different methods based on their constraint
violations.

Individuals violating resource constraints undergo the fol-
lowing refinement method with a probability pr3 = 0.5:

Resource Overuse Reduction: This method targets the seg-
ment with the highest resource overuse. It assigns the mapping
of each job to ⊥ and selects the one with the best fitness.

Other individuals undergo refinement at a probability pr1 =
pr2 = 0.8, randomly selecting one of the these methods:

Chromosome Simplification: This method reduces a
genotype-to-phenotype gap by removing false-active seg-
ments. It identifies the last active segment for each job, marks
subsequent segment mappings as ⊥, and erases idle segments.

Segment Manipulations: These methods explicitly modify
the segment count. The first method merges two segments into
one in one of two ways: either by merging two segments with
identical operating points or by removing the shortest duration
segment and adding its duration to a longer segment. The sec-
ond method splits segments where a job finishes mid-segment.
Following a split, it applies chromosome simplification and
alters job mappings in the second part of the split segment.

Segment Duration Adjustment: This method adjusts seg-
ment durations within permissible bounds, with increments or
decrements by a power of two to minimize exploration.

Front Propagation of Operating Points: This method col-
lects all operating points used in the current individual and
attempts to use them in earlier segments where the job has a ⊥
mapping. Preference is given to jobs with the most significant
deadline violation or highest energy consumption.

E. Survivor Selection and Termination

At the end of each iteration, the survivor selection strategy
determines which individuals from the merged population
can make it into the next generation. We adopt round-robin
tournament selection [12]: For each individual, the method
randomly selects q = 8 competitors, compares their fitness
levels, and assigns a score based on the number of competitors
the individual wins. The two individuals with the lowest scores
are removed from the population, with ties resolved randomly.

STEM terminates when the maximum number of iterations
is reached. However, the termination condition could be fur-
ther refined, e.g., by terminating if no significant improvement
is observed for a certain number of generations.

V. FAST FLEXIBLE ENERGY-MINIMIZING SCHEDULER

This section introduces an alternative resource manage-
ment algorithm, Fast Flexible Energy-Minimizing Scheduler
(FFEMS), which schedules jobs in an Earliest Deadline First
(EDF) manner. FFEMS ensures minimized energy consump-
tion by scheduling each job using mappings from an incre-
mentally expanding Candidate Mappings Set (CMS).

Algorithm 1 FFEMS

Input: Σ, P[Θ⃗], Φσ for each σ ∈ Σ
Output: Schedule K

1: Initialize an empty schedule K
2: Sort jobs in σ ∈ Σ by Earliest Deadline First (EDF)
3: for each job σ ∈ Σ do
4: Sort the operating points ϕ ∈ Φσ by energy
5: CMS ← INITCMS(σ, Φσ)
6: s← False
7: while ¬s ∧ CMS ̸= ∅ do
8: ts ← 0, ρ← σ[ρ], δmiss ← False
9: for each segment M ∈ K do

10: K ′ ← SCHEDULETAIL(K, σ, CMS, M , ρ)
11: if K ′ ̸= ∅ then
12: K ← K ′, ρ← 0
13: break
14: if σ[δ] ≤ ts +Mi[∆] then
15: δmiss ← True
16: break
17: ϕ∗ ← argmaxCMS{ϕ[τ ] | ϕ[θ⃗]+M [θ⃗] ≤ P[Θ⃗]}
18: M [σ]← ϕ∗

19: if ϕ∗ ̸= ⊥ then
20: ρ← ρ− M [∆]

ϕ∗[τ ]

21: if δmiss = False then
22: if ρ > 0 then
23: K ′ ← SCHEDULETAIL(K, σ, CMS, ∅, ρ)
24: if K ′ ̸= ∅ then
25: K ← K ′, ρ← 0

26: if ρ = 0 then
27: s← True
28: break
29: if CMS = Φσ then
30: CMS ← ∅
31: else
32: CMS← INCREMENTCMS(CMS, Φσ)
33: if ¬s then
34: for all segment M ∈ K do
35: M [σ]← ⊥
36: return K

Algorithms 1 and 2 detail the operation of FFEMS. Initially,
jobs are sorted in EDF order (1:2)2, with the operating
points of each job by energy consumption (1:4). The CMS is
initialized to include the first and all lower-energy mappings
that allow the job to finish within its deadline (1:5). The CMS
limits the energy consumption of the job. If the algorithm
fails to schedule the job using the current CMS, it extends

2In this section, algorithm lines are referenced as A:L, where A is the
algorithm number and L is the line number.



the CMS by including the next mapping from the sorted list,
thereby gradually increasing the energy budget of the job.

Algorithm 2 ScheduleTail

Input: Schedule K, P[Θ⃗], σ, CMS, Start segment M (or ∅
for append), Remaining ratio ρ

Output: New schedule K, or ∅ if unsuccessful
1: ϕ← FINDMAPPINGFORTAIL(K, P[Θ⃗], σ, CMS, M , ρ)
2: if ϕ = ⊥ then
3: return ∅
4: tr ← ϕ[τ ] · ρ
5: for each segment Mi ∈ [M..M|K|] ⊂ K do
6: if Mi[∆] ≤ tr then
7: Mi[σ]← ϕ, tr ← (tr −Mi[∆])
8: else
9: M ′,M ′′ ← SPLIT(K, Mi, tr)

10: M ′[σ]← ϕ, tr ← 0
11: break
12: if tr > 0 then
13: M ′ ← APPEND(K, tr), M ′[σ]← ϕ

14: return K

During scheduling, for each job and its corresponding CMS,
the scheduler iterates over the current schedule’s segments.
It first attempts to schedule the job’s “tail” (1:10), seeking
a single mapping from the CMS that can be utilized until
job completion. For each potential mapping, the scheduler
checks for sufficient free resources from the start time of
the segment to the job’s potential end time. This search
corresponds to a call to FindMappingForTail (2:1). If
a suitable mapping is found, it is used until job completion,
with segments appended (2:13) or split (2:9) as necessary.

If no suitable mapping till the job completion is found, the
scheduler selects the fastest mapping for the current segment,
anticipating a more energy-efficient switch in subsequent
segments (1:17). If the job remains incomplete at the end
of the scheduling plan, a tail mapping segment is appended
(1:23).

If the job cannot be scheduled with the current CMS, it is
extended by the next mapping (1:32). If scheduling remains
impossible after the last iteration, the job is rejected (1:34).

In a worst-case scenario, the time complexity of FFEMS is
O(|Σ| · |Φ|2 · |K|). This derives from the iterative process over
all jobs in the set Σ, each operating point in the set Φ during
the CMS incrementation, each segment of the schedule K, and
each operating point within the CMS during tail scheduling.

A. Tail-Switch Optimization

FFEMS’s energy efficiency can be improved using ”tail-
switching”. If a power-intensive configuration is initially
selected in ScheduleTail, the system can switch to a
slower but more energy-efficient mapping at a later point
This optimization entails iterating over all mapping pairs,
ϕ1 and ϕ2, determining an optimal switch point from a
power-intensive configuration (ϕ1) to an energy-efficient one
(ϕ2), ensuring deadline constraint. The pair minimizing en-
ergy use is selected. However, this adds an extra level of
computational complexity, resulting in a time complexity of
O(|Σ| · |Φ|3 · |K|).

TABLE I
BOUNDS OF FACTOR RANGES USED DURING WORKLOAD GENERATION.

Platform Deadline
Level

Factor Range Bounds
Lower Upper

4B4L
Weak 1.5 + 0.1 · |Σ| 3 + 0.1 · |Σ|
Tight 1 1 + 0.3 · |Σ|

8B8L
Weak 1 + 0.1 · |Σ| 1.5 + 0.1 · |Σ|
Tight 1 1 + 0.1 · |Σ|

VI. EVALUATION

This section provides a comparative evaluation of our pro-
posed approaches with existing state-of-the-art solutions. Each
algorithm was assessed on two heterogeneous platform models
in terms of success rate, energy efficiency, and overhead.

A. Experimental setup

Our STEM and FFEMS approaches were implemented
and evaluated in the Mocasin prototyping tool [24]. The
evaluations were conducted on two platform models: the
Odroid XU4 with an Exynos 5422 big.LITTLE chip featuring
four Cortex-A15 cores and four Cortex-A7 cores, running at
1.8 GHz and 1.5 GHz, respectively. We denote it as 4B4L. The
second, denoted 8B8L, is a larger system akin to the Odroid
XU4 but with double the cores — eight big and eight little.

Application models: In our experiments, we utilized three
dataflow applications from the automotive and multimedia
domains: speaker recognition [25], audio filter [6], and a
pedestrian recognition algorithm [10]. For the 4B4L platform,
operating points were obtained by benchmarking the real
platform, with the number of operating points ranging from
28 to 36 [10]. The 8B8L platform’s operating points were
generated using a genetic algorithm in Mocasin, with 40
operating points selected using the k-means method [26].

Workload generation: Test cases are represented as tables
of requests, each containing an application, progress ratio, and
deadline. We generated 2000 cases per platform, altering the
job number from 1 to 10 in the request table, providing 200
cases per job count. Half of these tests featured weak dead-
lines, and the other half had tight deadlines, thus facilitating
observation under more stress-intensive situations. Each test
randomly assigned an application to each job and allocated
progress ratios between 0 and 0.9 (with the first job set to 0,
emulating a newly arrived job). Deadlines were determined
by first selecting a random configuration, calculating the
remaining time, based on the configuration and remaining
progress ratio, and then multiplying it by a factor. The factor
was randomly chosen within a range defined by the deadline
level and request number, as detailed in Table I.

Evaluated algorithms: In our evaluation, we tested sev-
eral variations of the proposed algorithms. For STEM, we
considered four variations: STEM100K (100K MAs iterations),
STEM500K (500K iterations), STEM5M (5M iterations), and
STEMGA500K (omitting the memetic part of the algorithm to
assess the effect of knowledge-guided heuristics). For FFEMS,
we included a basic version, FFEMS, and its derivative,
FFEMSTS, which applies tail-switch optimization. Addition-
ally, we assessed two state-of-the-art approaches, namely
MMKP-LR [9] and MMKP-MDF [10]. The former generates



TABLE II
SCHEDULER RESULTS FOR DIFFERENT PLATFORMS AND DEADLINES.

4B4L 8B8L

Scheduler Weak Deadlines Tight Deadlines Avg. Weak Deadlines Tight Deadlines Avg.
Suc. R. Rel. Energy Suc. R. Rel. Energy Overhead Suc. R. Rel. Energy Suc. R. Rel. Energy Overhead

MMKP-LR 94.6% 1.2981 71.0% 1.2442 447.4 ms 97.9% 1.1552 81.0% 1.2103 14.4 ms
MMKP-MDF 96.8% 1.0260 75.6% 1.0755 9.3 ms 98.9% 1.0746 80.7% 1.0852 10.9 ms
STEM100K 99.8% 1.0329 88.5% 1.0341 65.6 s 99.4% 1.0261 88.4% 1.0292 68.9 s
STEMGA500K 99.2% 1.0672 80.5% 1.0696 216 s 97.9% 1.0396 78.6% 1.0494 217 s
STEM500K 100% 1.0180 91.7% 1.0220 320 s 99.8% 1.0163 92.1% 1.0213 342 s
STEM5M 100% 1.0070 94.4% 1.0071 3376 s 99.9% 1.0087 94.4% 1.0113 3671 s
FFEMS 100% 1.0376 91.6% 1.0982 4.8 ms 100% 1.0442 93.6% 1.0784 5.5 ms
FFEMSTS 100% 1.0270 91.8% 1.0649 15.6 ms 100% 1.0150 94.3% 1.0445 17.2 ms

spatial mappings using the Lagrangian Relaxation algorithm
(with 200 iterations), we use it to construct the schedule
segment-by-segment. The latter constructs fixed-point spatio-
temporal mappings.

B. Success rate and energy-efficiency

We evaluated the schedulers based on success rate, defined
by the percentage of successfully scheduled test cases, and
relative energy consumption, defined as the geometric mean
of relative energies compared to the minimum energy value
across considered schedules.

Impact of the knowledge-guided heuristics in STEM:
Table II highlights that the incorporation of knowledge-guided
heuristics in STEM greatly enhanced both the scheduling
rate and energy efficiency. This improvement is especially
prominent in test scenarios with tight deadlines, on which
STEM500K scheduled up to 13.5 % more test cases than its
counterpart, STEMGA

500K. Noteworthy, STEM with just 100K
MA iterations yields outperforms the version with 500K GA
iterations.

However, in spite of the inclusion of the local search heuris-
tics, STEM still requires a substantial number of iterations.
Specifically, STEM100K trails FFEMS in terms of success
rate by as much as 5 %. Given its enormous overhead, it
is evident that deploying STEM at runtime is not feasible.
In the following, we focus on STEM5M, as this version is
most indicative of the algorithm’s peak potential in discovering
optimal solutions.

Impact of the mapping decision model: The choice of
decision model determines the efficiency of scheduling al-
gorithms. The MMKP-LR approach, which solely generates
spatial mappings, often yields suboptimal solutions in both
success rate and energy efficiency. Its performance varies with
platform size and worsens under increased resource pressure:
under tight deadlines, it achieves a similar success rate as
MMKP-MDF on 8B8L, but underperforms by 4 % on the
smaller 4B4L.

In contrast, MMKP-MDF, utilizing the fixed-point spatio-
temporal mapping model, exhibits a notable improvement in
energy efficiency, overshadowing MMKP-LR by a significant
26.5 % on 4B4L.

Nevertheless, the peak of performance is achieved by our
novel methods, FFEMS and STEM, which harness the full
flexibility of spatio-temporal mappings. As depicted on Ta-
ble II, FFEMS significantly outperform the state-of-the-art

approaches: under weak deadlines, it schedules all test cases,
and under tight ones, FFEMS schedules 16 % more test cases
on 4B4L and 12.9 % on 8B8L. As Fig. 4 depicts, the differ-
ence in success rate grows with the number of applications,
peaking at 25 % with ten applications on 4B4L. The FFEMSTS

variant, with the tail-switch optimization, shows a comparable
success rate but improves on energy efficiency, saving up
to 3.4 % more energy than FFEMS. Interestingly, FFEMS
algorithms even outperform STEM5M on 8B8L in terms of
success rate, particularly with a bigger number of applications,
as shown in Fig. 4. This observation might indicate that STEM
performance declines with the platform and application sizes.

Fig. 4 (bottom left) presents the relative energy consumption
across test scenarios using a monotonic curve layout. In this
figure, relative energy values for all test cases are arranged
in ascending order. The curve’s rightmost endpoint indicates
the success rate, and its contour provides insights into the
distribution of relative energy values. These curves illustrate
the differences between the decision models.

The curve corresponding to MMKP-LR (employing the
spatial mapping model) reveals that for most test cases, it fails
to select the most energy-efficient configurations for spatial
mapping. This behavior can be attributed to MMKP-LR’s
inability to consider postponing certain job executions, leading
it to opt for less energy-efficient configurations. In contrast,
MMKP-MDF’s curve is more aligned with the ideal energy
values, showing a slight improvement in the success rate.
This improvement is explained by a more relaxed constraint,
allowing the selection of the configurations otherwise infeasi-
ble within a single mapping segment. Lastly, the adoption of
flexible spatio-temporal mappings significantly improves the
success rate. This improvement is attributed to the flexible
decision structure, which permits jobs to be dynamically
reconfigured to meet their deadlines.

C. Scheduling overhead

Fig. 4 (bottom right) illustrates the execution times of
different algorithms through box plots. The results indicate an
increase in scheduling overhead with the number of applica-
tions for all schedulers. MMKP-LR exhibits a higher overhead
on the smaller platform where resource pressure is increased,
possibly due to its inability to converge until the final iteration.
MMKP-MDF and FFEMS display similar execution times,
both capable of scheduling ten applications within 100 ms.
Given that FFEMS schedules significantly more test cases than
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Fig. 4. Performance comparison of schedulers across two heterogeneous platforms concerning success rate (top left), relative energy consumption (top right),
and scheduling time (bottom right). The bottom left plot showcases the monotonic curves of the relative energies.

MMKP-MDF, it emerges as the superior option. As expected,
the time complexity of FFEMSTS is higher, scheduling 10 jobs
within 100 ms – 1 s, a trade-off for improved energy efficiency.

VII. CONCLUSION

In this study, we investigated the impact of the mapping
decision model, especially the temporal component of the
spatio-temporal mappings, on both schedulability and energy
efficiency in real-time systems. We introduced two novel
algorithms, STEM and FFEMS, designed for flexible spatio-
temporal mappings for heterogeneous multi-core systems. The
results indicate that employing fixed-point spatio-temporal
mapping models enhances the energy efficiency of the found
solutions, while the flexible variant of this model significantly
improves the schedulability. Among the presented algorithms,
STEM finds the most energy-efficient solutions. However, its
enormous overhead makes it unsuitable for use in runtime
systems. In contrast, FFEMS exhibits an outstanding balance
between performance and runtime overhead: Given similar
runtime overhead as the state-of-the-art MMKP-MDF (up to
100 ms for 10 jobs), FFEMS schedules up to 16 % more
test cases. Moreover, its “tail-switch” optimization further
improves energy efficiency, albeit with an increase in runtime
overhead, which is nonetheless acceptable in runtime systems.
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