
Design Space Exploration for CNN Offloading to
FPGAs at the Edge

Guilherme Korol∗, Michael Guilherme Jordan∗, Mateus Beck Rutzig†,
Jeronimo Castrillon‡§, Antonio Carlos Schneider Beck∗

∗Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
†Electronics and Computing Department, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil

‡ Center for Advancing Electronics Dresden, TU Dresden, Dresden, Germany
§ Center for Scalable Data Analytics and Artificial Intelligence, Dresden, Germany

∗{gskorol,mgjordan,caco}@inf.ufrgs.br,†mateus@inf.ufsm.br,‡jeronimo.castrillon@tu-dresden.de

Abstract—AI-based IoT applications relying on heavy-load deep
learning algorithms like CNNs challenge IoT devices that are
restricted in energy or processing capabilities. Edge computing
offers an alternative by allowing the data to get offloaded to so-
called edge servers with hardware more powerful than IoT devices
and physically closer than the cloud. However, the increasing
complexity of data and algorithms and diverse conditions make
even powerful devices, such as those equipped with FPGAs,
insufficient to cope with the current demands. In this case,
optimizations in the algorithms, like pruning and early-exit, are
mandatory to reduce the CNNs computational burden and speed
up inference processing. With that in mind, we propose ExpOL,
which combines the pruning and early-exit CNN optimizations
in a system-level FPGA-based IoT-Edge design space exploration.
Based on a user-defined multi-target optimization, ExpOL delivers
designs tailored to specific application environments and user needs.
When evaluated against state-of-the-art FPGA-based accelerators
(either local or offloaded), designs produced by ExpOL are more
power-efficient (by up to 2×) and process inferences at higher
user quality of experience (by up to 12.5%).

Keywords—Edge Computing, IoT, Offloading, CNN, FPGA.

I. INTRODUCTION

AI-powered applications are one of the main drivers behind

the Internet of Things (IoT). Deep Neural Networks, especially

Convolutional Neural Networks (CNNs), have successfully deliv-

ered high-quality results for applications ranging from language

to video processing. However, deploying such computationally

expensive algorithms to IoT devices is a challenge. Usually

constrained in power or processing capabilities, IoT devices are

not guaranteed to scale up to the demand created by modern

AI applications. Moreover, optimizing for metrics like power

efficiency becomes a must to deal with modern CNNs, requiring

over a billion multiply-accumulate (MAC) operations for a single

input (e.g., 15.5G MACs in the VGG-16 model [1]).

In this context, edge computing is a system paradigm that

proposes a multi-layered architecture, where the IoT devices

can either process locally or offload their raw data over the

network to more capable edge servers (sometimes called IoT

gateways). These edge servers are placed physically close to

the IoT devices, avoiding the long latency of the cloud and

increasing security with less data exposure. To accelerate the

CNN processing at reasonable power levels both IoT devices

(when processing locally) and edge servers can make use of

dedicated accelerators. In such scenario, FPGA platforms are

one of the most popular alternatives, due to their performance,

energy costs, and reconfigurability [2–4].

Figure 1. (a) Available 4G/LTE bandwidth (BW) and the BW required to
offload 50, 100, and 200 IPS. (b) IPS for the CNVW2A2 CNN from 0 to 85%
pruning running on the FINN [11] FPGA accelerator (CIFAR-10 dataset).

On top of that, IoT-Edge scenarios are highly heterogeneous,

with multiple concurrent applications, variable workloads, and

diverse environments. For instance, the user may experience

a highly volatile bandwidth due to factors like signal strength

fluctuation and changes in network load [5]. Figure 1(a) shows

the available bandwidth (black curve) recorded on a 4G/LTE

client [6] over 20 seconds (x-axis). The figure also shows three

horizontal lines giving the minimum bandwidth required to

offload 50, 100, or 200 inferences per second (IPS) to an

edge server. From this example, it is clear that designing a

system in charge of processing CNN inferences should take into

account the expected application environment (e.g., bandwidth

availability and workload). However, state-of-the-art has shown

that relying on hardware improvements alone will not satisfy

the efficiency levels demanded by modern CNNs in such

environments, respecting the given power and energy constraints

[7–10]. Therefore, the CNNs lying on top of the hardware layer

must be optimized as well.

At the CNN algorithmic level, state-of-the-art optimizations

aim at reducing the computational load in exchange for some

controlled losses in accuracy. Early-exit [12] and pruning [13]

are two popular techniques enabling the accuracy-resource trade-

off. Early-exit exploits the fact that some inputs are easier to

process than others (e.g., a cat in a clean background picture is

easier to classify than one hiding in the bush). In an early-exit

CNN, these easy inputs are output at earlier layers, producing

faster inferences. Pruning, on the other hand, works by removing

redundant parts of a CNN, from particular neurons to whole

layers. By making the CNN smaller, pruning saves MAC

operations and the storage required to run a CNN inference.

As an example, Figure 1(b) shows the throughput (in terms



of IPS, y-axis) for a CNN from 0 to 85% pruning (x-axis)

running on an FPGA (early-exit was not depicted in the figure

for the sake of simplicity). Figure 1(b) also shows the same

three sample workloads of 50, 100, and 200 IPS as horizontal

lines. Naturally, changing CNN optimization parameters like

pruning to, for example, deliver 50, 100, or 200 IPS, will impact

the quality of the delivered inferences (i.e., accuracy) as well as

the power dissipation. Therefore, one can match the inference

processing to the working environments of each application

considering the full IoT-Edge spectrum (e.g., high workload

tasks, requiring maximum performance, or scenarios constrained

by energy or bandwidth).

To support the design of inference processing systems with

such tight constraints and diverging goals, we propose ExpOL.

ExpOL is a framework for Exploring the design space of

Offloaded and Local FPGA-based inference processing for the

IoT-Edge. Based on user-defined multi-target goals, ExpOL

delivers FPGA designs at the pareto front for processing

inferences on pruned early-exit CNNs running either locally, at

the IoT device, or at the edge server.

Concretely, this work makes the following contributions:

• Presents a novel design space combining offloading and

the CNN optimizations of pruning and early-exit to explore

the accuracy-performance-power trade-off;

• Proposes ExpOL that leverages this design space to deploy

optimized solutions to accelerate inference processing on

FPGAs;

• Under an IoT-Edge application, ExpOL improves by up to

2× the power efficiency and 12.5% the user experience over

locally or offloaded state-of-the-art FPGA-based inferences.

II. BACKGROUND AND RELATED WORK

Two approaches are commonly used to handle the computa-

tional load of deep learning. One approach involves new system-

level paradigms like the edge that moves data to be processed

elsewhere and architectures that accelerate inference exploiting

deep learning properties, such as their heavy dependence on

matrix multiplications. The other approach is to optimize the

algorithms by refining or creating techniques to trade off

accuracy per computation. Next, we detail both approaches.

A. Offloading CNNs - Edge Computing

Edge computing allows offloading the inference (e.g., by send-

ing images, audio samples, etc.) over the network from resource-

limited devices to servers equipped with high-performance

architectures. Examples of such systems include DjiNN [14]

and Clipper [15]. DjiNN uses a multi-GPU system for scala-

bility and low latency across multiple applications and DNN

models. Clipper, on the other hand, employs a model selection

mechanism to fuse the output of parallel CNNs based on the

application feedback.

FPGA-based accelerators have been proposed as alternatives

to energy-hungry GPU boards since they can increase power

efficiency at small or no drops in accuracy [11, 16, 17]. Scylla

[3] employs an FPGA for serving CNN inferences at the Edge. It

exploits the reconfigurability capabilities of FPGAs for Quality

of Experience (QoE) optimization. In [4], the authors propose

a policy for allocating and scheduling multiple accelerators on

Pruned

C
O

N
V1

Po
ol

in
g

C
O

N
V2

Po
ol

in
g

FC
 1

FC
 2 Early

CO
N

V
1

Po
ol

in
g

CO
N

V
2

FC
 1

FC
 2

Po
ol

in
g

FC
CO

N
V

Exit

CO
N

V
1

Po
ol

in
g

CO
N

V
2

FC
 1

FC
 2

Po
ol

in
g

multiple
output
vectorspruned filters 

in CONV 1

Figure 2. A sample CNN (yellow) with its pruned and early-exit versions.

a Xilinx ZCU104 board for particular workload levels, latency

requirements, and available resources.

B. Optimizing CNNs - Pruning and Early-Exit

A CNN is a Deep Neural Network (DNN) like the one

pictured over the yellow background in Figure 2. The goal of

a CNN is to read an input and predict from within a finite set

of problem-defined classes which one correctly describes that

image. To do so, the first step is the definition of the CNN

topology (i.e., the CNN model), which specifies the number and

type of layers and their parameters. As in the example from

Fig. 2, the Convolutional (CONV), Fully Connected (FC), and

pooling are the three main CNN building blocks. CONV and FC

layers process inputs with their weights and biases, producing

multi-dimensional matrices called feature maps. During training,

these weights are updated through iterations until a certain

quality threshold is reached. Once training is complete, the

model can predict new inputs (that were not seen during training).

This phase is called inference and is the focus of our work.

At inference, the feature map received by a CONV layer is

convolved with weights (organized as 3D filters). These filters

act as “feature extractors” as they slide over the input feature

map. The features or patterns will support the inference in

following CONV and FC layers. FC layers can be viewed as

matrix-vector multiplications between their input and weights.

They are usually used for flattening the output of CONV layers

and calculate the probabilities of each class (output vector).

CONV and FC layers require extreme amounts of computation

and memory transfers. Compression methods, like pruning, have

proven to be effective in reducing such requirements while only

incurring small accuracy costs. Pruning reduces the memory

and computation required by a CNN. This work focuses on

filter pruning [13] (see a pruned CNN in Figure 2 with removed

filters). The percentage of CONV filters to be removed on

each layer is defined as the Pruning Rate. Also note that

removing filters from a CONV layer also reduces its number of

output feature map channels (each filter generates one output

channel), granting a roughly quadratic effect on reducing the

CNN memory footprint and its respective computations.

Either on GPUs [18, 19] or on FPGAs [20, 21], pruning

has been used to improve inference processing. ReForm [18]

provides a resource-aware mechanism reconfiguring a CNN

according to the device’s resources. DMS [19], on the other hand,

prunes CNN filters for Quality-of-Service (QoS) optimization.

Targeting FPGAs, authors in [21] propose a framework that

adapts the inference processing by switching the pruned model



Dataflow-Aware
Pruning

CNNs

Datasets

Folding
Config.

Early-Exit Training

E.E.
Config.

FPGA Synthesis
Design Space

Alpha
Beta

Gama

Library

Workflow Steps
User Inputs
User Opt. Goals

Each cfg. holds
an FPGA bitstream
with specified location,
pruning, and early-exit 

cfg
0

cfg
1

cfg
2

Configuration
Selector

Acc. Th.

Figure 3. ExpOL’s workflow.

at runtime. In [20], a toolflow that statically customizes the

CNN pruning to the underlying FPGA accelerator is proposed.

While pruning is typically applied statically, early-exit [12]

is a dynamic optimization that exploits the ease of processing

certain inputs. Early-exit allows the CNN to finish processing

earlier (i.e., in a layer before the last) on exits connected to the

original CNN layers (called backbone layers) - see an early-

exit CNN with two exits in Figure 2 (with the branch from

backbone to early exit highlighted). During inference, the early-

exit CNN must decide whether to take early exits or not based

on the confidence that the input has been correctly classified

with the layers processed so far. The Confidence Threshold

is used to make this decision, and when an exit outputs a

confidence above this threshold, the inference is completed.

Lowering the confidence threshold allows more inputs to be

classified earlier, relaxing the expected confidence. The softmax

function of the exit output vector is a popular method for

measuring confidence. It can be calculated from the exits output

as σ(y)i = eyi/
∑K

j=1
eyj for the output vector y of K classes.

Early exits have been used by many works, such as FlexDNN

[7] and Hapi [8], that design and deploy early-exit models on

embedded GPUs focusing mainly on performance improvements.

SPINN [22] proposed using early-exit to help offload inferences

from devices with limited processing capabilities. In SPINN, a

not-taken early exit can be followed by the offloading of that

feature map that would otherwise continue onto the backbone

layers. To coordinate exits and offloading, SPINN uses a

scheduler that tunes early-exit and offloading policies. For

FPGAs, [9] reconfigures the FPGA at each not-taken exit to

load the next set of layers. In [10], early exits are placed in

ResNets targeting the accuracy-computational cost trade-off.

Wrap-up and Our Contributions. Some works optimize

the CNNs with pruning only [18–21], early-exit only [7–10],

focus on the system-level offloading only [3, 4, 14, 15], or even

leverage the early exits as feedback to tune the offloading [22].

In this work, however, we propose ExpOL to combine all of

those approaches into a single design space. And, in contrast

to the state-of-the-art, ExpOL enables an automatic multi-target

search so that it can adapt the inference processing to the highly

diverse environments and applications of the IoT-Edge.

III. EXPOL

ExpOL is a fully automatic multi-target optimization tool for

deploying FPGA-based CNN accelerators in IoT-Edge systems.

ExpOL works before deployment to output a library of tuned

design configurations generated based on a set of user goals. An

ExpOL configuration specifies the location of deployment (IoT

device or edge) with the corresponding FPGA bitstream and

CNN model (with defined pruning and early-exit parameters).

This section will take our use case to help with the explanation

of ExpOL. The use case consists of an IoT device with a

small footprint FPGA board, the PYNQZ1, while the edge

server holds a more powerful board, the ZCU104, that can hold

wider accelerators and larger CNN models. The offloading is

considered over a wireless communication channel.

A. Workflow

Figure 3 presents the workflow. It starts by receiving the

user inputs: original CNN models, training datasets, folding and

early-exit (E.E.) configuration files, an accuracy threshold, and

the user optimization goals. Optimization goals are specified

as a tuple of α, β, and γ weights for combining the designs

accuracy, performance, and power (“User Opt. Goals” in Figure

3). The inputs are, first, sent to the “Early-Exit Training” before

they get pruned in the “Dataflow-Aware Pruning” step, creating

multiple versions of the original CNNs. Those versions are

then input to the “FPGA Synthesis” step to build the design

space. Finally, the “Configuration Selection” searches for the

best-scoring configurations according to the user optimization

goals. Below, we detail these steps.
1) Early-Exit Training: The first step is the addition of early-

exits to the user-supplied CNNs (defined in pytorch/Brevitas

[23]). To that end, configuration files (E.E. Config. in Figure

3) set in ExpOL where and how the exits should be added.

Exits can be any combination of convolutional, pooling, and

fully-connected layers. These layers are appended as modules

to the original CNN. After all exits have been added, the early-

exit CNN can be trained. ExpOL follows the training proposed

in [12] to train CNNs with multiple exits. In [12], all exits

are trained simultaneously by combining their loss in a Joint

Loss Function: Jloss =
∑N

n=1
wnL(ŷexitn , y, θ), where N is

the number of exits, wn the exit’s weight, and L the traditional

loss function accepting the exit’s softmax ŷexitn , ground-truth

y, and the weights θ. Early-Exit steps are carried out as python

scripts.

In our use case, we take the CNV, a VGG-like CNN,

quantized and tuned for FPGA execution [11]. This model has

six convolutional layers followed by three fully-connected ones.

For the CNV, we have set two early-exit configurations: one

for the IoT device that adds a single early exit after the second

convolutional layer. The exit consists of another convolutional

layer with the same parameterization (stride, kernel size, etc.)

of the previous layer, a max-pool layer with a kernel size of

k = ⌊DIM
2

⌋, where DIM is the dimension of the feature map,

and two fully-connected layers with the same parameterization

of the original fully-connected layers in the original model. For

the edge server with a larger FPGA, we set two exits to be

added: after the second and fourth convolutional layers. Both

exits follow the same configuration described above.
2) Dataflow-Aware Pruning: Once the early-exit CNNs have

been trained, they can be pruned. ExpOL does that by ranging

the pruning rate at fixed intervals. At each pruning rate, ExpOL

creates a CNN with a different accuracy-resource trade-off. To

prune the CNNs that will later run on the FPGA, the “Dataflow-

Aware Pruning” is used [21]. It consists of a filter pruning

technique that, besides the CNN, considers the properties of

the FPGA accelerator. In general lines, this pruning method



guarantees that the final number of filters (and, consequently, of

convolutional channels) is compatible with the parallelization

set on the accelerator. After pruning, the CNNs are retrained and

can be exported as Open Neural Network Exchange (ONNX)

files suitable for FPGA synthesis. Pruning is also performed as

python scripts.

3) FPGA Synthesis: To synthesize these CNNs into FPGA

accelerators, ExpOL uses the FINN framework from AMD/X-

ilinx [11]. FINN accelerators are called dataflow or streaming

accelerators since they rely on a pipelined architecture. FINN

compiles and synthesizes CNNs to hardware modules imple-

mented as a set of High-Level Synthesis (HLS) parameterizable

template classes. On top of FINN, ExpOL adds the ability

to compile CNN models with early exits. When synthesizing

an early-exit model, branches are added at the specified exit

locations so the data (i.e., feature maps) can be split into two,

feeding both backbone and early exit.

In FINN, the user can tune the parallelism of every HLS

module through a JSON folding configuration file (Folding

Config. in Figure 3). By increasing the parallelism in the folding

configuration, it is possible to increase the accelerator throughput

without changing the CNN models, trading FPGA resources

(and power) per performance. In our case study, we have input

two folding configurations: one to synthesize accelerators for

the IoT FPGA and another file to set the parallelism on the

larger, edge server, FPGA. The folding used for the IoT FPGA

is 4× narrower than the one for the edge server (given the

lower parallelism configured across the HLS layers). As will be

shown in Section V, this lower parallelization already requires

almost all slices of the FPGA on the IoT Device. During

synthesis, reports on power dissipation (from Vivado synthesis)

and performance (from RTL simulations) are produced and

stored to support the configuration search.

4) Configuration Selector: The Configuration Selector per-

forms the last step in the framework (Figure 3). It will

exhaustively navigate the design space looking for the best

configuration. The search is based on a profit equation configured

by the user with three weights for combining accuracy (α),

throughput (β), and power (γ) as

profiti = α · configiaccuracy+

β · configi
throughput + γ · (1− configi

power)
(1)

where configi
throughput, configipower, and configiaccuracy are the i-

th configuration’s throughput, power dissipation, and accuracy

normalized w.r.t all configurations in the design space (min-max

normalization).

The search starts by filtering out all design points with

accuracy below the minimum specified by the user (Acc. Th.

in Figure 3). After that, ExpOL evaluates the profit equation

on all design points left. These design points are then sorted,

so the Configuration Selector outputs the configuration of the

highest profit. In case the user inputs more than one tuple, a

library of optimal design points is generated by outputting one

configuration for each tuple. These configurations represent the

pareto front for the specified optimization goal and are ExpOL

main product. It is the user responsibility to make the best

use of the ExpOL library. For example, ExpOL can enable

different “operating modes”. Assuming a battery-powered IoT

Table I
OPTIMIZATIONS TUPLES AND THEIR GENERATED CONFIGURATIONS.

Opt. Tuple Tuple Description Name ExpOL Configurations

{0.5,0.5,0.0} Acc. and Throughput Cfg. 0 Edge 20% P.R. 60% C.T.

{0.0,1.0,0.0} Throughput Cfg. 1 Edge 20% P.R. 65% C.T.

{0.5,0.0,0.5} Acc. and Power Cfg. 2 IoT Device 15% PR. 50% C.T.

{0.0,0.0,1.0} Power Cfg. 3 IoT Device 20% P.R. 30% C.T.

{0.3,0.3,0.3} All important Cfg. 4 IoT Device 20% P.R. 45% C.T.

device, the ExpOL library can be used to switch to a low-power

configuration (e.g., one generated for a tuple with a high γ
value) when the battery level approaches a critical value.

IV. METHODOLOGY

Accelerators used across our experiments were synthesized

within the FINN design flow [11] with Vivado targeting an

XCZU7EV FPGA for the edge server and an XC7Z020 for the

IoT device, both at 100MHz. We used Xilinx Vivado for resource

usage and power extraction and Verilator RTL simulations for

performance. We adopted the CNV CNN from FINN with 2-bit

quantization (CNVW2A2) on the CIFAR-10 dataset (3x32x32

images). ExpOL generates 18 models for the early-exit CNN

with pruning rates from 0% (not-pruned) to 85% (5% steps).

Each model generates a specific FINN accelerator. Each pruned

CNN’s confidence threshold vary from 0 to 100% at 5% steps.

Accuracy results are reported on Brevitas TOP-1 test accuracy.

The early-exit training procedure follows [12], weighting the

first exit at 1.0 and the remaining at 0.3. Pruned early-exit

CNNs are retrained for 40 epochs [13], with standard data

augmentation and a learning rate of 0.001 with decay of 0.1.

Training was performed on Intel Xeon E5-2640 with NVIDIA

Tesla K20m GPU.

We base our evaluation on an IoT smart video application

that can request inferences to an edge server or process it locally.

Evaluations are 15 seconds long. The IoT device produces 30,

60, and 90 Inferences per Second (IPS) during the first 5, 10,

and 15 seconds, respectively. The 4G/LTE Bandwidth Logs

dataset [6] is used to model the communication channel. It

provides the measured quality of 4G/LTE connections recorded

along different routes in a city while downloading a large file

over HTTP. Two traces were chosen for evaluation, representing

two scenarios: a stable one recorded on a walking person and

a unstable one recorded on a moving tram. For the evaluation,

we have two baselines: Original-IoT Device, the original CNV

running locally on the IoT FPGA; and, Original-Edge when all

inferences are offloaded to the edge FPGA running the original

CNV. The user can set any combination of search parameters

in ExpOL tuples. However, here we illustrate its capability with

five combinations presented in Table I (with descriptions and

their generated configurations). The accuracy threshold to search

configurations is set to 10%.

V. RESULTS

In this section, we start by analyzing the design space created

with optimized inference processing at the local or the offloaded

FPGA. We then present the configurations generated by ExpOL

according to the optimization goals in Table I. Lastly, we

compare ExpOL to the two baselines under the aforementioned

application scenarios.



Figure 4. Inferences per Second or IPS (left plots) and Power (right plots) for
the IoT device (upper plots) and edge (bottom plots) on the CIFAR-10 dataset
with CNVW2A2 model (note the different x-axis ranges).

A. Design Space

Figure 4 presents the accuracy versus Inferences per Second

(IPS) and versus Power for the FPGAs at the IoT device

(a PYNQZ1 board, upper plots) and at the edge server (a

ZCU104 board, bottom plots). The size and color of the design

points represent their pruning rate and confidence threshold,

respectively. We start by highlighting performance and efficiency

differences between the two platforms. The larger edge server

FGPA delivers the highest throughput levels, achieving more

than 1500 IPS (at the highest pruning rate and the lowest

confidence threshold). The IoT device, in turn, achieves a

maximum of 683 IPS. However, the lower throughput delivered

by the smaller IoT FPGA comes with a significantly lower power

dissipation, and a higher power efficiency for most design points.

Table II shows the resource usage for the baselines and ExpOL

generated configurations. For instance, when comparing two

configurations with an equal pruning rate of 20% (configurations

0, running at the edge and 3 in the IoT), we see that the

larger parallelization at the edge consumes almost 50% more

LUTs and 55% more FFs than the same pruning rate on the

IoT. Due to small FPGAs at IoT devices, accelerators quickly

exhaust their resources. For example, the largest accelerator in

the design space (not presented in Table II) occupies 96.07%

of the available BRAMs and over 97% of the slices in the IoT

FPGA. Such a design leaves no room for more parallelism. Also

noticeable is the overhead of the early-exit layers in terms of

resource usage. If we compare the Original-Edge to ExpOL

configuration 0, we see an increase of LUT (34.86%) and FF

(38.78%) utilization due to early-exits - despite configuration

0 being synthesized for a 20% pruned model. In summary,

ExpOL creates a design space that ranges from fast and power-

consuming to slower but more efficient inference processing. In

this space, ExpOL can generate configurations covering a wide

range of optimization targets.

B. ExpOL configurations

Figure 4 also shows the five configurations generated by

ExpOL according to the optimization tuples from Table I. The

horizontal line (Acc. Th.) gives the 10% accuracy threshold

Table II
FPGA RESOURCE USAGE OF SELECTED CONFIGURATIONS AND BASELINES.

Configuration FPGA LUTs FFs BRAMs

Cfg. 0 Edge (XCZU7EV) 42898 (18.62%) 54167 (11.75%) 111 (35.58%)

Cfg. 1 Edge (XCZU7EV) 42898 (18.62%) 54167 (11.75%) 111 (35.58%)

Cfg. 2 Device (XC7Z020) 30135 (56.64%) 35990 (33.83%) 98 (70.36%)

Cfg. 3 Device (XC7Z020) 29106 (54.71%) 34842 (32.75%) 93 (66.79%)

Cfg. 4 Device (XC7Z020) 29106 (54.71%) 34842 (32.75%) 93 (66.79%)

Original-IoT Device Device (XC7Z020) 26051 (48.97%) 30730 (28.88%) 140 (83.93%)

Original-Edge Edge (XCZU7EV) 31807 (13.81%) 39029 (08.47%) 102 (32.69%)

used throughout our evaluation. By setting the weights of

the optimization tuple, the user can trade-off accuracy for

performance and power. For instance, tuples that consider

performance (e.g., tuples 0 and 1) get allocated at the edge since

its larger FPGA can deliver higher throughput levels. In contrast,

for tuples targeting power only (tuple 3) or a compromise

between power and accuracy (tuple 4), ExpOL deploys solutions

that processes inferences locally. From Figure 4, we note that

the user could increase gains by allowing a lower accuracy

threshold, as a lower line would enable more design points to

be selected. In summary, by tuning the optimization parameters

in ExpOL, the user can tune the design according to any goal,

allowing it to match the inference processing characteristics to

the application demands.

C. Evaluation

We now evaluate the configurations generated by ExpOL

under the two IoT-Edge application scenarios from Section

IV. First, the stable scenario where the available bandwidth

(49.2 Mbps on average) has fewer variations and stays at all

times above the minimum required to offload the inferences

(49.1 Mbps at the highest load). The configurations generated

by ExpOL are compared to the baselines in Figure 5 on

the Power Efficiency (inferences per Watt) and the total of

Processed Inferences. Figure 5 also presents results on Quality

of Experience1 (QoE, right y-axis). Each configuration (ExpOL

and baselines) in Figure 5 represents one whole execution under

the same scenario. Power Efficiency and Processed Inferences

(bars) are normalized w.r.t Original-IoT Device baseline.

In this scenario, we notice a significant performance differ-

ence between the edge (Original-Edge baseline and ExpOL

configurations 0 and 1) and IoT device (Original-IoT Device

and configurations 2-4). Since the network can accommodate

all frames offloaded from the IoT device, it does not harm the

final throughput and all inferences can be fed to the edge. Also,

because of such high bandwidth and the accelerators deployed

by the edge configurations having enough throughput, there is

no difference in the number of processed inferences between

Original-Edge baseline and ExpOL configurations 0 and 1 in

Figure 5. The high performance also led to high QoE levels with

a slight advantage of Original-Edge over configurations 0 and 1.

This is due to the original CNN running on the baseline having

accuracy higher than the ones deployed by ExpOL configurations

0 (4.64% accuracy loss) and 1 (4.7% loss). We note that in case

of heavier workloads (e.g., from multiple IoT clients) we would

see the Original-Edge performance (and QoE) decrease. For

such heavier workloads, the throughput can only be improved

with the ExpOL optimized models.

1Defined as the product of accuracy by the percentage of processed inferences,
it measures the user experience demanding fast inferences at high quality.



Figure 5. Power Efficiency and Total of Processed inferences w.r.t Original-IoT
Device (bars, left y-axis) and QoE (right y-axis) under stable network scenario.
Higher is better.

Figure 6. Power Efficiency and Total of Processed inferences w.r.t Original-
IoT Device (bars, left y-axis) and QoE (right y-axis) under unstable network
scenario. Higher is better.

Regarding efficiency in Figure 5, the power-oriented configu-

ration, ExpOL configuration 3, is 1.4× and 1.35× more power-

efficient than Original-Edge and Original-IoT Device baselines,

respectively. However, the smaller IoT accelerators cannot

process the full workload. The Original-IoT Device baseline

showed an inference loss of 55% throughout the evaluation.

While ExpOL configurations 2, 3, and 4 improved it to 42.2%,

32.2%, and 34.4% of inference losses, respectively. Considering

those system configurations running inferences locally, ExpOL

overcomes the Original-IoT Device baseline thanks to the

pruning and early-exit optimizations. Such examples show that

optimizations at the CNN level can alleviate the performance

losses for power-oriented goals. As we are going to see next,

local and optimized configurations will also be helpful when

the network shows a not-so-stable behavior.

Similar to the previous plot, Figure 6 shows the results

under the unstable scenario. The lower average bandwidth

of this scenario (6.93 Mbps) represents a more challenging

environment for edge offloading. Over the 15 seconds of

evaluation, 287 frames were lost, representing 31.89% inference

loss for edge-based configurations (Original-Edge baseline and

ExpOL configurations 0 and 1). For those configurations, the

inference loss is also perceived as a significant drop in the

delivered Quality of Experience (QoE). In this scenario, the

ExpOL configurations running inferences locally achieve QoE

and power efficiency levels higher than both baselines. It

becomes clear that tuning the design decisions of the inference

processing is crucial for IoT-edge applications and the pruning

and early-exit optimizations help navigate the design space when

offloading inferences is not beneficial.

VI. CONCLUSIONS

We showed that combining the CNN optimizations to system-

level design decisions can deliver efficient designs and improve

the users’ quality of experience (QoE). From a multi-target

search on the design space, ExpOL delivers designs at the

pareto front with power efficiency up to 2× and QoE up to

12.5% better than SoTA solutions either local or at edge servers.

ACKNOWLEDGMENTS

This work was financed in part by the Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES)

– Finance Code 001, São Paulo Research Foundation (FAPESP)

grant #2021/06825-8, FAPERGS, CNPq, by the AI competence

center ScaDS.AI Dresden/Leipzig (01IS18026A-D), and by the

BMBF programme “Souverän. Digital. Vernetzt.”, joint project

6G-life (16KISK001K).

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR, 2015.

[2] E. Nurvitadhi, G. Venkatesh, J. Sim et al., “Can fpgas beat gpus in
accelerating next-generation deep neural networks?” in FPGA. ACM,
2017, pp. 5–14.

[3] S. Jiang et al., “SCYLLA: QoE-aware Continuous Mobile Vision
with FPGA-based Dynamic Deep Neural Network Reconfiguration,” in
INFOCOM. IEEE, 2020.

[4] H. Ting et al., “Dynamic sharing in multi-accelerators of neural networks
on an FPGA edge device,” in ASAP. IEEE, 2020.

[5] A. Bokani et al., “Comprehensive mobile bandwidth traces from vehicular
networks,” in MMSys. ACM, 2016, pp. 1–6.

[6] J. van der Hooft et al., “HTTP/2-Based Adaptive Streaming of HEVC
Video Over 4G/LTE Networks,” IEEE Communications Letters, vol. 20,
no. 11, pp. 2177–2180, 2016.

[7] B. Fang et al., “FlexDNN: Input-Adaptive On-Device Deep Learning for
Efficient Mobile Vision,” in SEC. IEEE, 2020, pp. 84–95.

[8] S. Laskaridis, S. I. Venieris et al., “HAPI: hardware-aware progressive
inference,” in ICCAD. IEEE, 2020, pp. 91:1–91:9.

[9] M. Farhadi, M. Ghasemi, and Y. Yang, “A novel design of adaptive and
hierarchical convolutional neural networks using partial reconfiguration
on FPGA,” in HPEC. IEEE, 2019, pp. 1–7.

[10] M. Wang et al., “Dynexit: A dynamic early-exit strategy for deep residual
networks,” in SiPS. IEEE, 2019, pp. 178–183.

[11] M. Blott et al., “Finn-R: An end-to-end deep-learning framework for fast
exploration of quantized neural networks,” ACM TRETS, vol. 11, no. 3,
pp. 16:1–16:23, 2018.

[12] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in ICPR. IEEE,
2016, pp. 2464–2469.

[13] H. Li et al., “Pruning filters for efficient convnets,” in ICLR. OpenRe-
view.net, 2017.

[14] J. Hauswald et al., “DjiNN and Tonic: DNN as a service and its
implications for future warehouse scale computers,” in ISCA. ACM,
2015, pp. 27–40.

[15] D. Crankshaw, et al., “Clipper: A low-latency online prediction serving
system,” in USENIX-NSDI, 2017, pp. 613–627.

[16] C. Baskin et al., “Streaming architecture for large-scale quantized neural
networks on an fpga-based dataflow platform,” in IPDPS, 2018.

[17] G. Korol et al., “Synergistically exploiting cnn pruning and hls versioning
for adaptive inference on multi-fpgas at the edge,” ACM Trans. Embed.
Comput. Syst., vol. 20, no. 5s, 2021.

[18] Z. Xu et al., “Reform: Static and dynamic resource-aware DNN reconfig-
uration framework for mobile device,” in DAC. ACM, 2019.

[19] W. Kang, D. Kim, and J. Park, “DMS: dynamic model scaling for quality-
aware deep learning inference in mobile and embedded devices,” IEEE
Access, vol. 7, pp. 168 048–168 059, 2019.

[20] J. Faraone et al., “Customizing low-precision deep neural networks for
fpgas,” in FPL, 2018.

[21] G. Korol et al., “Adaflow: A framework for adaptive dataflow CNN
acceleration on fpgas,” in DATE. IEEE, 2022, pp. 244–249.

[22] S. Laskaridis et al., “SPINN: synergistic progressive inference of neural
networks over device and cloud,” in MobiCom. ACM, 2020, pp. 1–15.

[23] A. Pappalardo, “Xilinx/brevitas,” https://doi.org/10.5281/zenodo.3333552.

https://doi.org/10.5281/zenodo.3333552

	Introduction
	Background and Related Work
	Offloading CNNs - Edge Computing
	Optimizing CNNs - Pruning and Early-Exit

	ExpOL
	Workflow
	Early-Exit Training
	Dataflow-Aware Pruning
	FPGA Synthesis
	Configuration Selector


	Methodology
	Results
	Design Space
	ExpOL configurations
	Evaluation

	Conclusions

