
Modelling linear algebra kernels as polyhedral volume
operations

Karl F. A. Friebel
Technische Universität Dresden

Dresden, Germany
karl.friebel@tu-dresden.de

Asif Ali Khan
Technische Universität Dresden

Dresden, Germany
asif_ali.khan@tu-dresden.de

Lorenzo Chelini
Intel Switzerland

lorenzo.chelini@intel.com

Jeronimo Castrillon
Technische Universität Dresden

Dresden, Germany
jeronimo.castrillon@tu-dresden.de

Abstract
Linear algebra de-facto dominates an entire branch of cur-
rent hard- and software design efforts focused on bringing
faster and more efficient machine learning and signal pro-
cessing kernels. For many years, compilers have leveraged
the well-defined semantics of linear algebra operations for
optimization, with lots of recent research around machine
learning. Due to the structure of the operations the polyhe-
dral model is an ideal fit for reasoning about linear algebra
programs. In this paper, we present a related model in which
such programs are represented as sequences of operations
on indexed volumes characterized by their element-wise de-
pendencies. We show how this model opens a way towards
efficiently implementing compound kernels by partitioning
and specializing over index domains. We demonstrate how
memory layout, partitioning (e.g., tiling) and compile-time
sparsity are exploited using this model.

ACM Reference Format:
Karl F. A. Friebel, Asif Ali Khan, Lorenzo Chelini, and Jeronimo
Castrillon. 2022. Modelling linear algebra kernels as polyhedral
volume operations. In Proceedings of 13th International Workshop on
Polyhedral Compilation Techniques (IMPACT ’23). ACM, New York,
NY, USA, 10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Linear algebra computations are central to many application
domains, including scientific computing, data analytics, and
machine learning. These kernels are well understood, and as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
IMPACT ’23, January 16, 2023, Toulouse, France
© 2022 Association for Computing Machinery.
ACM ISBN XXX-X-XXXX-XXXX-X/XX/XX. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

a result, hardware vendors have developed highly efficient
hand-optimized libraries for them. For dense linear alge-
braic kernels, several highly efficient implementations exist
that are built around the basic linear algebra subroutines
(BLAS) [11], LAPACK [2] or similar libraries [22]. However,
these libraries are complex and are constrained on input
sizes and interfaces.

A large body of work leverages the polyhedral model [7]
to optimize linear algebra kernels [5, 9]. Depending on the
optimization target, polyhedral compilers often implement
complex transformations on the iteration space to improve
data locality, maximize parallelism and optimize data and
memory layouts [3, 8, 13, 16, 18]. The linalg dialect [1]
in the recent multi level intermediate representation (MLIR)
compiler infrastructure [10] enables reasoning about linear
algebra kernels at a higher abstraction, supports dense and
sparse data types and empowers specializing over them [4].
It also accounts for mapping to efficient library implementa-
tions when available, simplifying code generation.
Both polyhedral and MLIR-based compilers essentially

operate on multidimensional arrays. These also serve as
descriptors for the memory structure, linking memory to
computations on values. We generalize over arrays and de-
fine a volume 𝑉 as an aggregate value comprising indexed
element values (scalars). A volume is characterized by an
index domain dom𝑉 , which is a polyhedron of all element
indices. Elements in a volume are referred to by index tuples
i ∈ dom𝑉 into the volume 𝑉 [i] = 𝑉 [𝑖1, . . . , 𝑖𝑁] where 𝑁 is
the rank of the volume. Volumes permit arbitrary polyhe-
dral index domains and are intended to model the structural
properties of data, as well as memory when needed.
In this paper, we leverage volumes and propose a model

that simplifies the data flow analysis of the polyhedral model
by specializing it for tensor programs. Compared to the poly-
hedral model, which mainly targets schedule and layout
optimizations, the proposed model targets a) performing
dynamic shape inference of input/output/intermediate vol-
umes, b) affine pattern matching to identify regions of in-
terest (e.g., sparse regions in a volume) and specialize over

https://orcid.org/0000-0001-9534-3978
https://orcid.org/0000-0002-5130-9855
https://orcid.org/0000-0002-5007-445X
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

IMPACT ’23, January 16, 2023, Toulouse, France Karl F. A. Friebel, Asif Ali Khan, Lorenzo Chelini, and Jeronimo Castrillon

them, and c) separating computation from memory. The lat-
ter is enabled by an operational semantics based on general
affine volumes as opposed to strictly hyperrectangular ones.
We also describe how the proposed model can be used on
the MLIR linalg abstraction to generalize tiling and other
partitioning transformations to arbitrary tensor programs.

2 Background
This section provides a short summary of closely related
works and the concerns they share. It also provides back-
ground on the polyhedral model and the MLIR infrastructure
for tensor algebra applications.

2.1 Polyhedral compilers
In polyhedral compilers, a program is modeled using state-
ments and a schedule. A statement is defined over an itera-
tion domain, with each tuple naming one statement instance.
The schedule assigns schedule tuples to statement instances,
defining a total lexicographical ordering. It encodes the order
of execution of the statement instances.
Every input program has a default execution schedule

called the reference schedule. The interaction of statement
instances with memory accesses is modeled with access rela-
tions that map statement instances to array accesses. Access
relations are used to determine whether a given schedule,
after certain transformations, is valid or not, i.e., whether or
not it respects the program data dependencies. A polyhedral
scheduler is an ILP solver that finds schedules that optimize
some metrics (e.g., parallelism, locality) while respecting
program’s true data dependencies in the reference schedule.
The polyhedral dataflow analysis can use the read and write
memory access relations to compute RAW, WAW and RAR
dependencies for a given schedule.

2.2 The MLIR infrastructure
MLIR is a compiler infrastructure that supports multiple in-
termediate representations operating at different abstraction
levels [10]. It has similarities to traditional SSA representa-
tions like LLVM IR, but hosts first-class concepts via dialect
extensions, e.g., polyhedral modelling. Values in MLIR are
defined by assignment and remain immutable. Assignments
come from operations, which combine operands and state
into results. Side-effect-free operations do not manipulate
any state, and so they are (pure) functions of their operands.
The tensor and linalg dialects are amongst the major

MLIR dialects that can model tensor programs as graphs of
pure functions. No loop structure or other control flow is
explicit in any of their primitives. Instead, each operation
has an implicit iteration domain and is defined by a point-
wise output expression. The most general form of this is
the linalg.generic operation, which models all possible
linalg operations using index maps and an element-wise
body.

2.3 Related work
Many new compilers use polyhedral optimization techniques
to improve a program’s interaction with the memory hierar-
chy of the target device. Such tools [9, 14, 25] exploit cache
hierarchies and shared memory usage to improve through-
put. Polyhedral techniques can also be applied when these
memory subsystems are generated as part of the compilation
process [16]. This work does not present such an end-to-end
compiler, but a reasoning framework.

ISL [19] remains the state-of-the-art framework in terms
of solver latency and schedule quality for general polyhedral
programs. It achieves this by using heuristics that perform
very well on loosely constrained problems. For a complex
set of constraints, e.g., for library matching, it can become
prohibitively slow [17]. This is the result of the heuristics fail-
ing, which causes a fallback to the Feautrier scheduler [21].
Consequently, different compilers have opted to implement
their own heuristics to address their specific concerns.
Among the shared concerns of these tools is the applica-

tion of transform patterns such as fusion and tiling, which
directly target memory access patterns. MLIR linalg [1]
already offers limited (see section 3) support for both. How-
ever, these transforms are not order-independent [24]. In
sequences of such transforms, e.g., to infer the tile shapes
of intermediaries [14], polyhedral modelling can reach its
limits [23]. In [24], an alternative output-to-input polyhedral
code-generation strategy is proposed, which is a subset of
the framework presented in this paper.
Languages such as TensorComprehensions [18] provide

an expression-centric view of tensor programs, closer to SSA
form. Here, alternative terminology establishes a connection
between assignments and memory. A physical tensor is one
which will have all of its elements stored in memory, as
opposed to a virtual tensor, which is not stored at all [15].
Compilers such as TVM [6] use this to separate transient
values from memory. The ordering problem of fusion with
other transforms thus takes the form of a modified CSE
problem. In this paper, we assume purely virtual expressions,
which leads to the same traversal as in [24].

Views, which are index reassociations on tensors that
never require recomputation, are commonly modelled as
virtual tensors. Only special types of views are commonly
in use, such as offset-size-stride views, receiving special op-
timizations. In our proposed framework, we offer higher
generality without special handling.

3 Motivation
Figure 1 is an example snippet of a convolutional layer writ-
ten in the MLIR linalg dialect. Its consists of an asymmet-
rical padding 1 , a strided convolution 2 and a leaky ReLU
activation function 3 .

In this program, we can derive additional facts about struc-
tural sparsity at compile-time. We know that %pad0 in 1

Modelling linear algebra kernels as polyhedral volume operations IMPACT ’23, January 16, 2023, Toulouse, France

^krnl0 (%ifm : t en so r <1 x3x512x512x f32 >) :

1 %pad0 = t e n s o r . p a d %ifm low [0 , 0 , 1 , 1] h igh
↩→ [0 , 0 , 2 , 2] {

^bb0 (%i0 : index , %i1 : index , %i2 : index , %i3 :
↩→ i ndex) :

t e n s o r . y i e l d %cst0 : f 3 2
} : t en so r <1 x3x512x512x f32 > to t enso r <1

↩→ x3x515x515x f32 >

2 %conv0 = l ina lg . conv_2d_nchw_fchw {
d i l a t i o n s = dense <1> : t en so r <2 x i64 > ,
s t r i d e s = dense <2> : t enso r <2 x i64 >

}
i n s (%pad0 , %wgt0 : t en so r <1 x3x515x515x f32 > ,

↩→ t en so r <8 x3x5x5xf32 >)
ou t s (%conv0 . ini t : t en so r <1 x8x256x256x f32 >)
−> tenso r <1 x8x256x256x f32 >

3 %act0 = l i n a l g . g e n e r i c # e l em e n tw i s e _ t r a i t s
i n s (%conv0 : t en so r <1 x8x256x256x f32 >)
ou t s (%ac t 0 . i n i t : t en so r <1 x8x256x256x f32 >) {

^bb0 (%a : f 32 , %b : f 3 2) :
%0 = a r i t h .m a x f %a , %cst0 : f 3 2
%1 = a r i t h . m u l f %0 , %cst0_01 : f 3 2
%2 = a r i t h . a d d f %a , %1 : f 3 2
l i n a l g . y i e l d %2 : f 3 2

} −> tenso r <1 x8x256x256x f32 >

Figure 1. A convolutional layer in MLIR linalg (excerpt).

inserts a sparse boundary. Figure 2a graphically shows how
the convolution function in 2 will observe %pad0 while
performing the convolution.

%c
st
0 %cst0

%cst0

%cst0

Sp1
Sp2

D

%ifm

(a) From Figure 1.

𝐼𝑐

𝑐

𝑐

𝑐
St

Sp1

Sp2

D

(b) In general.

Figure 2. Sparsity regions in a padded convolution.

In general (cf. fig. 2b), we expect every output element of
a padded convolution to belong to one of the following spar-
sity regions: D for dense (assuming 𝐼 is dense), St for static
(constants 𝑐 only), Sp1 for sparse edges, and Sp2 for sparse
corners. Prior research has demonstrated that, if identified
correctly, region-specific optimizations in such scenarios can
lead to considerably faster convolution implementations [4].
However, to generate efficient code that combines all these

optimizations, computations have to be partitioned based on
facts inferred from the data (sparse or dense).
State-of-the-art compilers are limited in detecting and

optimizing for regions at this fine granularity for various
reasons as outlined below.

MLIR: In MLIR linalg, the TilingInterface implements
a codegen strategy that extracts a tile loop from an opera-
tion. However, it can only do this for an individual operation,
and only if its index maps are permuted identities, i.e., the
loops are directly correlated with output dimensions. The
tile-and-fuse strategy attempts to remedy this, but is lim-
ited to a single producer-consumer pair at a time, whichmust
also exhibit permuted identity mapping between produced
and consumed indices. For example, this strategy is still in-
capable of fusing a pad producer with a generic consumer.
Our model aims to directly remedy this. linalg was de-

signed around a future affine abstraction, which MLIR Pres-
burger is now set to become. Similarly, we reproduced some
of our results using a modified version of this library, in
anticipation of future feature completeness.

Polyhedral compilers: A generic polyhedral compiler such
as PET [20] can schedule each instance of a statement for
every iteration index tuple separately. As a result, it is per-
fectly capable of performing tiling and fusing for not just
tensor programs, but all that can be modeled by SCoPs. At
the same time, this vastly increases the search space, and
makes it more difficult to generate code comprised of fixed
building blocks, e.g., required for library-based offloading.
Our model provides a more lightweight alternative to

full-blown polyhedral rescheduling. Specialized for tensor
programs, it requires less effort while still producing results
exploitable by rescheduling. In future work, we intend to
use general rescheduling for smaller subprograms guided by
information gathered at the volume model.

We propose a volume-centric approach to modelling ten-
sor programs to address these issues. Adopting an expression-
based view of tensor programs, as opposed to a loop-based
one, is not only natural in linalg, but can also simplify trans-
formation ordering problems. In side-effect free form, these
programs allow us to use a single common value abstraction
throughout, regardless of how compute and memory will
be arranged later. To support a variety of shapes while still
being able to fall back on readily available mathematical and
software frameworks, we limit these to unions of paramet-
ric integer polyhedra. To avoid confusion and overloading
existing terminology, we call these values volumes.

4 Volume-based dataflow analysis
Our goal is to detect sparsity and other structural proper-
ties, and act on them by partitioning computations. Since
computation implicitly follows the volumes, the underlying

IMPACT ’23, January 16, 2023, Toulouse, France Karl F. A. Friebel, Asif Ali Khan, Lorenzo Chelini, and Jeronimo Castrillon

problem is how properties transfer between volumes via
operations. We approach this using a specialized but simpli-
fied version of polyhedral dataflow analysis. We call this the
volume model of a tensor program.

For integer sets and relations, and operations on them, the
following definitions adopt the terminology and semantics of
ISL [19]. This includes the usage of union sets and relations,
which can have multiple disjuncts, thus extend operational
semantics. With respect to SSA programs, our notation and
semantics are consistent with MLIR [10].

4.1 Volumes
All values in our SSA programs are tensors, which in simpli-
fied terms are hyperrectangular indexed families of scalars
(multidimensional arrays). In our volume model, their di-
rect equivalents are the arrays (cf. def. 4.7), which are a
specialization of the more general volumes (cf. def. 4.1). We
characterize every volume using a unqiue identifier and an
index domain set.

Definition 4.1 (Volume). A volume 𝑉 is an indexable aggre-
gate of values with a polyhedral index domain dom𝑉 ⊂ Z𝑁 ,
where 𝑁 is the rank of the volume.

Definition 4.2 (Element). An element 𝑉 [𝑖1, . . . , 𝑖𝑁] = 𝑉 [i]
is the value of volume 𝑉 at index i ∈ dom𝑉 .

The index spaces of different volumes are distinguished
by their respective volume identifiers. Consequently, all ele-
ments are also uniquely identified by their index tuple. Values
without structure (scalars) are also modeled as volumes.

Lemma 4.3. Given a volume 𝑉 with a rank of 0, it follows
that dom𝑉 = {∅}, i.e., it is indexed only by the 0-tuple.

Definition 4.4 (Scalar). A scalar 𝑆 is a volume of rank 0.
We abbreviate 𝑆 = 𝑆 [] = 𝑆 [∅].

Volumes permit arbitrary polyhedral index domains. They
are intended to model structural properties of data. Multidi-
mensional arrays serve as descriptors for data organization
in memory.

Definition 4.5 (Hyperrectangle). A set 𝑆 ⊂ Z𝑁 that is
congruent with its box hull {s : lexmin 𝑆 ≤ s ≤ lexmax 𝑆}
is called hyperrectangular.

Lemma 4.6. A hyperrectangle 𝑅 is uniquely defined by its
offset ∆0 𝑅 = lexmin𝑅 and size ∆□ 𝑅 = lexmax𝑅 − ∆0 𝑅 + 1.
Definition 4.7 (Array). An array 𝐴 is a volume with a hy-
perrectangular index domain such that ∆0 dom𝐴 = 0.

Indexing operations can be generalized via affine maps.
These views and their special cases play an important role
in partitioning data, and consequently computations.

Definition 4.8 (View). A view Π : dom𝑉sub → dom𝑉sup is
an affine map that defines a subvolume 𝑉sub [i] = 𝑉sup [Π(i)]
of the supervolume 𝑉sup.

Definition 4.9 (Slice). A slice Ξ : i ↦→ ∆0 Ξ + i ⊙ ∆i+1 Ξ is a
view defined by an offset ∆0 Ξ and a stride ∆i+1 Ξ vector.

4.2 Operations
The volume model is intended to transpose facts from vol-
umes to other volumes via operations. These operations
derive result elements (cf. def. 4.2) from operand elements,
which we can model using element-wise data dependencies.

Definition 4.10 (Operation). An operation 𝑋 is a side-effect
free function producing 𝑀 result values from 𝑁 operand
values

𝑋 (𝑂1, . . . ,𝑂𝑁) ↦→ 𝑅1, . . . , 𝑅𝑀

Definition 4.11 (Volume element map). A volume element
map is a union of affinemaps between volume index domains.
The volume element mapM𝑋 of an operation𝑋 encodes the
dependencies of its result elements on its operand elements

M𝑋 :
⋃
𝑗

⋃
𝑘

{
𝑅 𝑗 → 𝑂𝑘

}
Lemma 4.12. Volume element maps have an implied context

M𝑋 ⊆
⋃
𝑗

dom𝑅 𝑗 ×
⋃
𝑘

dom𝑂𝑘

and can thus be defined by their gist, i.e., a map that has the
same intersection with the context as the subset.

To allow for shape inference, in the following we will
assume that dom𝑅 𝑗 is unknown, and thus exclude it from
the context.

4.2.1 LinalgOp. An MLIR operation X implementing the
LinalgOp interface associates each operand and result 𝑉
with an indexing map I𝑉 : Z𝐿 → dom𝑉 . Z𝐿 is the iteration
space of the operation, where 𝐿 is the number of loops.
The iteration domain dom X of this operation is implicit,

and is given by

dom X =
⋂
𝑗

dom
(
I𝑅 𝑗
∩
rg

dom𝑅 𝑗

)
1

where 𝑅 𝑗 enumerates all result values.
To compute the volume element mapMX, all results must

be put in relation to all operands

MX :=
⋃
𝑗

⋃
𝑘

((
I−1
𝑅 𝑗
∩
rg

dom X

)
◦ I𝑂𝑘

)
Note that we intersect with the iteration domain, so that
bounds not in the implicit context are explicit.

X might use SSA values 𝑈 that are not operands of X,
inside its element-wise body. For each

(
𝑅 𝑗 ,𝑈

)
, a pessimistic

disjunct
{
dom𝑅 𝑗 ↦→ dom𝑈

}
needs to be added.

1𝐴∩
rg
𝐵 is the intersection of 𝐴 with {dom𝐴 ↦→ 𝐵}

Modelling linear algebra kernels as polyhedral volume operations IMPACT ’23, January 16, 2023, Toulouse, France

4.3 Programs
Our model uses the SSA form to represent programs that
manipulate volumes. Additionally, we disallow control flow
in programs. In common terminology, a program must be a
single basic block. As a result, the volume-wise dependencies
are directly encoded in the use-def DAG of operations.

Definition 4.13 (Assignment). An assignment is an SSA
statement that defines one or more values by applying an
operation

𝐷1, . . . , 𝐷𝑀 ← 𝑋 (𝑈1, . . . ,𝑈𝑁)
where 𝐷𝑖 are the definitions and𝑈 𝑗 are the uses.

Definition 4.14 (Program). A program 𝑃 is an unordered
sequence of assignments, plus a set of incoming definitions
and exiting uses. It is well-formed iff the graph associating
each use with its unique definition is acyclic.

Assignments can be associated volume element maps
through their operations. A well-formed program with live-
ins 𝐼 and live-outs 𝑂 is also an operation 𝑂1, . . . ,𝑂𝑀 ←
𝑃 (𝐼1, . . . , 𝐼𝑁), and has a volume element mapM𝑃 .

Definition 4.15 (Lenient composition). The lenient compo-
sition 𝐴 ◦id 𝐵 extends composition of unions of affine maps

𝐴 ◦id 𝐵 = 𝐴 ◦ (𝐵 ∪ id(range𝐴 \ dom𝐵))
where id𝑋 is the identity over 𝑋 .

Using the lenient composition, we can exploit the SSA
property to compute the volume element map of a program
in a single pass over the DAG in use-def order, instead of
having to compute a transitive closure (cf. lemma A.5).

5 Usage
In this section we demonstrate the use of the volume model
bymeans of the example in Figure 1. In summary, the steps in-
volved in our example are 1) building the dependency model,
2) applying patterns and facts, 3) projecting to volumes of
interest and 4) inspecting the sets and relations.

5.1 Building the dependency model
In our running example, see Figure 1, %act0 is the output,
and %ifm is the input. Hence, we are interested inMkrnl0 :
dom act0→ dom ifm.

dom act0 := {act0[i] : 0 ≤ i < [1, 8, 256, 256]}
dom ifm := {ifm[i] : 0 ≤ i < [1, 3, 512, 512]}

We also observe thatMkrnl0 = M3 ◦ M2 ◦ M1. In other
words, we can construct the program’s dependency map
from the per-operation maps (cf. lemma A.5).
Inspection of 3 shows us that it is an embarassingly

parallel element-wise operation

M3 := {act0[i] ↦→ conv0[i]}

Operation 2 is a convolution (cf. appendix A.2.7). Since
there are batch and channel dimensions, not all dimensions
are treated equally and the resulting map depends on the
organization of the volume, i.e., the semantics of the dimen-
sions. In linalg, this is not encoded in the type of the value,
but in the operation name: conv_2d_nchw_fchw. Via the
LinalgOp interface, we infer (cf. section 4.2.1)

M2 := { conv0[𝑛, 𝑓 ,𝑦, 𝑥] ↦→ pad0[𝑛, 𝑐, 2𝑦 + 𝑎, 2𝑥 + 𝑏]
: 0 ≤ 𝑎 < 5 ∧ 0 ≤ 𝑏 < 5}

∪ {conv0[𝑛, 𝑓 ,𝑦, 𝑥] ↦→ wgt[𝑓 , 𝑐, 𝑎, 𝑏]}
Operations like tensor.pad perform an element-wise se-

lection between operands, based on the result index. In the
case of 1 , we construct (cf. appendix A.2.6)

M1 := { pad0[𝑛, 𝑐, ℎ,𝑤] ↦→ ifm[𝑛, 𝑐, ℎ − 1,𝑤 − 1]
: 1 ≤ ℎ < 513 ∧ 1 ≤ 𝑤 < 513}

∪ { pad0[𝑛, 𝑐, ℎ,𝑤] ↦→ cst0

: ℎ < 1 ∨𝑤 < 1 ∨ ℎ ≥ 513 ∨𝑤 ≥ 513}
Entering all this into ISL [19], we obtainMkrnl0 as

{ act0[n, f, h, w] -> ifm[n, c, y, x]
: y >= 2h - 1 and 0 <= y <= 511 and y <= 3 + 2h

and x >= 2w - 1 and 0 <= x <= 511
and x <= 3 + 2w;

act0[n, f, h, w] -> cst0[]
: h >= 255 or w >= 255 or h <= 0 or w <= 0 }

5.2 Applying facts
A fact takes the form of some predicate we assign to elements
of volumes. For example, we know that %cst0 is a compile-
time constant. We now want to ask what elements of %act0
are also compile-time constant, or derived from them, i.e.,
we want to know its sparsity.

In this example, we simply range-intersectMkrnl0 with
dom cst0, which gives us the second disjunct. By taking the
domain of that disjunct, we transfer the fact onto %act0

𝐼𝑐 = 𝐼Sp1 ∪ 𝐼Sp2
= {act0[𝑛, 𝑓 , ℎ,𝑤] : ℎ ≥ 255 ∨𝑤 ≥ 255 ∨ ℎ ≤ 0 ∨𝑤 ≤ 0}

Recalling Figure 2a, we see that this is the union of 4 half-
spaces that form a boundary with radius 1, which is what
we expect for the output (stride = 2).

We can also useMkrnl0 to apply partitionings. A tiling of
ℎ and𝑤 with tile sizes 𝑇ℎ and 𝑇𝑤 respectively reads

M𝑇 := { act1[𝑛, 𝑓 , 𝑞ℎ,𝑚ℎ, 𝑞𝑤,𝑚𝑤] ↦→
act0[𝑛, 𝑓 ,𝑇ℎ𝑞ℎ +𝑚ℎ,𝑇𝑤𝑞𝑤 +𝑚𝑤]

: 0 ≤ 𝑚ℎ < 𝑇ℎ ∧ 0 ≤ 𝑚𝑤 < 𝑇𝑤}
where𝑞𝑥 is the quotient or tile index, and𝑚𝑥 is the remainder
or in-tile index. By computingM𝑇 ◦Mkrnl0, we effectively
compute the volume elementmap of the tiled program. These
tile sizes can be arbitrary, but are assumed to be fixed. For

IMPACT ’23, January 16, 2023, Toulouse, France Karl F. A. Friebel, Asif Ali Khan, Lorenzo Chelini, and Jeronimo Castrillon

variable 𝑇𝑥 and 𝑞𝑥 , the expression 𝑇𝑥𝑞𝑥 is no longer affine,
but quasipolynomial. For reasons stated in section 3, we stick
to Presburger algebra.

5.3 Inspecting the result
One very basic use of the model is to perform feed-forward
shape inference. In that case, the facts we apply are the
domains of the operands, which may even involve dynamic
size parameters. The domain of the volume element map
gives us the index domain of the result. From there, we can
apply a number of techniques, e.g., compute the box hull.

In our example in fig. 1, shapes are not an issue, but spar-
sity is. To generate code specialized for sparsity, we first
compute the domains of the sparsity regions. We already
determined 𝐼𝑐 as the subset of dom act0 that involves %cst0

𝐼D = dom act0 \ 𝐼𝑐
= {act0[𝑛, 𝑓 , ℎ,𝑤] : 0 < ℎ ≤ 254 ∧ 0 < 𝑤 ≤ 254}

𝐼St = 𝐼𝑐 \ dom act0 = ∅
To separate 𝐼Sp1 and 𝐼Sp2 from 𝐼𝑐 , we can inspect its disjuncts.
All elements of 𝐼Sp2 are contained within two boundary half-
spaces, and thus two disjuncts. Figure 3a shows the resulting
partitions, i.e., projecting fig. 2a from %pad0 onto %act0.

Algorithm 1 outlines how code can be generated for hyper-
rectangular partitions using this information. We split %act0
into subvolumes by intersecting the domain ofMkrnl0 with
any of the 𝐼𝑥 domains. The range of the result will tell us
what subvolumes of the operands are needed to compute
the result subvolume. For hyperrectangular partitions, op-
erations like linalg.generic can simply be cloned for the
new operands.

Algorithm 1: Generating code for hyperrectangular
partitions.
%res′← Uninitialized(dom %res);
foreach disjoint hyperrect out_rect in 𝐼𝑥 do

in_rects← range
(
M ∩

dom
out_rect

)
2;

%op:N′← ExtractSlice(%op:N,in_rects);
%part← CloneOps(%op:N′);
%res′← InsertSlice(%part,%res′,out_rect);

end
return %res′;

Suppose we want to compute 𝐼𝐷 using a tiled implemen-
tation. Using the tiled volume element map we constructed
earlier, we change the tile indices 𝑞𝑖 into parameters
[QH, QW] -> { act1[n, f, qh = QH, mh, qw = QW, mw]

-> ifm[n, c, y, x]

2𝐴 ∩
dom

𝐵 is the intersection of 𝐴 with {𝐵 ↦→ range𝐴}

: 0 <= mh <= 15 and 0 <= mw <= 15
and y >= 32QH + 2mh - 1 and 0 <= y <= 511
and y <= 3 + 32QH + 2mh
and x >= 32QW + 2mw - 1 and 0 <= x <= 511
and x <= 3 + 32QW + 2mw }

We reject all tiles using 𝐼𝑐 , i.e., all tiles on the edge. This
becomes a bound on the parameter domain
[QH, QW] -> { : 0 < QH < 15 and 0 < QW < 15 }

If the parameter domain has multiple disjuncts, we can re-
cursively apply the partitioning techniques. Figure 3b shows
the new coordinate system and the tiles in each partition.
𝑤

ℎ

%act0

(a) Element-wise

𝑄𝑤

𝑄ℎ

𝑚𝑤

𝑚ℎ

%act1

(b) Tiled

Figure 3. Output of the convolutional layer from fig. 1.

Algorithm 2 outlines how code can be generated for such
a tiling. The parameters 𝑄𝑖 are the induction variables of
our tile loops, which are constant within an iteration. As a
result, we can match index domains inM to offset, stride
and size of slices (cf. def. 4.9)In our example, the slice offset
in %ifm is [0, 0, 32𝑄ℎ − 1, 32𝑄𝑤 − 1]. The InsertSlice and
ExtractSlice functions are simply constructors for these
MLIR tensor ops, which take place at runtime.

Algorithm 2: Generating tiled loops.
M ′← tile_map ◦M ;
%res′← Uninitialized(dom %res);
foreach tile dim pair 𝑞𝑖 ,𝑚𝑖 in tile_map do

iv← CreateAndEnterLoop(min𝑄𝑖 to max𝑄𝑖);
iv_dom← [𝑄𝑖 = iv] → {[. . . , 𝑞𝑖 = 𝑄𝑖 , . . .]};
M ′←M ′ ∩

dom
iv_dom;

end
in_rects← MatchSlice(rangeM ′);
out_rect← MatchSlice(domM ′);
%op:N′← ExtractSlice(%op:N,in_rects);
%tile← CloneOps(%op:N′);
%res′← InsertSlice(%tile,%res′,out_rect);
return %res′;

The advantage of the volume approach is that it enables
reasoning about arbitrarily large fused programs. However,

Modelling linear algebra kernels as polyhedral volume operations IMPACT ’23, January 16, 2023, Toulouse, France

since the model does not carry information about the oper-
ations that are performed on volume elements, generating
fused code requires additional work. linalg operations offer
great simplicity through their implicit iteration domains, and
their bodies define polyhedral model statements. To support
fusion with operations like tensor.pad without partition-
ing, a polyhedral scheduling algorithm can be used.

5.4 Pitfalls
Following the directions given in section 4.2.1,M1 would
contain a disjunct {act0[i] ↦→ cst0[]}. This leads to an un-
desirableMkrnl0, in which the use of %cst0 in 3 shadows
the one that defines the sparsity in 1 . In other words, the
choice of def-use subgraph matters, and it depends on the
pattern to be applied, implying that it must be already known.

This problem is an artifact of treating all volumes as assumed-
virtual tensors (cf. section 2.3). This was done so that we
might potentially achieve a model usable independent of this
ordering problem. Indeed, this can be achieved by splitting
the SSA values. Conceptually, we rewrite the SSA program
such that each definition has up to one use only. Alterna-
tively, this happens virtually, by assigning each def-use edge
a unique volume identifier. However, this breaks the pre-
vious 1 : 1 correspondence between volume elements and
statement instances, making reuse in code generation harder.
Alternatively, the behavior of other virtual tensor compilers
can be replicated by cloning only those values that do not
entail recomputation, e.g., the constants as above.

5.5 MLIR Presburger
As stated earlier, a focus of this work was to reuse exist-
ing software frameworks to perform the reasoning. While
lacking in features compared to ISL, the Fast Presburger Li-
brary, which is the implementation of MLIR Presburger, is
readily accessible in an MLIR project. To perform the oper-
ations described in this section, only minor modifications
were needed. This is mostly due to the API being incomplete
or restricting access to some required internals, and MLIR
specializations overriding behavior by shadowing.

One example of an extension implemented on top of MLIR
Presburger is the previously mentioned MatchSlice func-
tion. Given an affine set as coefficients 𝐶 of its constraint
system, algorithm 3 attempts to recover the offset and stride
vectors of the slice it represents. In a typical application, local
invariants such as tile indices are promoted to parameter
constants. The MatchSlice then attempts to recover affine
expressions for each dimension describing the start offset
constant, uniform stride between elements and number of
elements.

6 Conclusion and future work
Volumes generalize over array and tensor structures. In
this paper, we show how volumes simplify the polyhedral

Algorithm 3:Matching offset and stride of a slice.
foreach set dimension 𝑑 of C do

of← lower bound on 𝑑 ;
eq← single equality involving 𝑑 ;
if no eq found then

sd← 1;
end
else

of← constant part of eq;
loc← single local var in eq;
if no loc found then

sd← 0;
end
else

sd← coeff on loc in eq;
locOf, locSd← GetOfSd(domain of loc);
of← of + sd · locOf;
sd← sd · locSd;

end
end

end

data flow analysis. We describe how dynamic shape infer-
ence, fine-grained affine pattern matching and generalized
tiling and fusing of operations in the input program can
use this information. For a simple convolutional layer exam-
ple with asymmetric padding, we describe how state-of-the-
art compilers struggle to separate the different regions of
the program, which may lead to sub-optimal performance.
We demonstrate that our model can conveniently identify
all kernel regions, i.e., dense, sparse, constant, and corners.
This empowers specializing over these regions, e.g., by using
sparse compiler optimizations for sparse regions or offload-
ing them to a sparsity-aware hardware target and mapping
dense regions to external library calls. In future work, we
plan to use theMLIR presburger arithmetic [12] to implement
our model in an MLIR compiler that targets heterogeneous
systems. The hierarchical abstractions of the compiler will
utilize the application (sparsity, shape) and system (CPU,
GPU, accelerators) information to map regions to the most
suited hardware targets.

Acknowledgments
We thank the anonymous reviewers for their invaluable in-
put towards the placement and improvement of this research.
This work is partially funded by the EU Horizon 2020 Pro-
gramme under grant agreement No 957269 (EVEREST) and
the German Research Council (DFG) through the HetCIM
project (502388442) under the Priority Program on ‘Disrup-
tive Memory Technologies’ (SPP 2377).

IMPACT ’23, January 16, 2023, Toulouse, France Karl F. A. Friebel, Asif Ali Khan, Lorenzo Chelini, and Jeronimo Castrillon

References
[1] [n. d.]. MLIR linalg dialect. https://mlir.llvm.org/docs/Dialects/Linalg/.

Accessed: 2022-11-23.
[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,

J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D.
Sorensen. 1999. LAPACK Users’ Guide (third ed.). Society for Industrial
and Applied Mathematics, Philadelphia, PA.

[3] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele
Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana,
Shoaib Kamil, and Saman Amarasinghe. 2019. Tiramisu: A polyhedral
compiler for expressing fast and portable code. In 2019 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO).
IEEE, 193–205.

[4] Aart Bik, Penporn Koanantakool, Tatiana Shpeisman, Nicolas Vasi-
lache, Bixia Zheng, and Fredrik Kjolstad. 2022. Compiler Support for
Sparse Tensor Computations in MLIR. ACM Trans. Archit. Code Optim.
19, 4, Article 50 (sep 2022), 25 pages. https://doi.org/10.1145/3544559

[5] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayap-
pan. 2008. A Practical Automatic Polyhedral Parallelizer and Locality
Optimizer. In Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Tucson, AZ, USA)
(PLDI ’08). Association for Computing Machinery, New York, NY, USA,
101–113. https://doi.org/10.1145/1375581.1375595

[6] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, et al. 2018. {TVM}: An automated {End-to-End} optimizing
compiler for deep learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). 578–594.

[7] Paul Feautrier and Christian Lengauer. 2011. Polyhedron Model. 1581–
1592. https://doi.org/10.1007/978-0-387-09766-4_502

[8] Tobias Grosser, Albert Cohen, Justin Holewinski, Ponuswamy Sadayap-
pan, and Sven Verdoolaege. 2014. Hybrid hexagonal/classical tiling for
GPUs. In Proceedings of Annual IEEE/ACM International Symposium
on Code Generation and Optimization. 66–75.

[9] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger,
Armin Größlinger, and Louis-Noël Pouchet. 2011. Polly-Polyhedral op-
timization in LLVM. In Proceedings of the First International Workshop
on Polyhedral Compilation Techniques (IMPACT), Vol. 2011. 1.

[10] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infras-
tructure for Domain Specific Computation. In 2021 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO). IEEE,
Seoul, Korea (South), 2–14. https://doi.org/10.1109/CGO51591.2021.
9370308

[11] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. 1979. Basic
Linear Algebra Subprograms for Fortran Usage. ACM Trans. Math.
Softw. 5, 3 (sep 1979), 308–323. https://doi.org/10.1145/355841.355847

[12] Arjun Pitchanathan, Kunwar Shaanjeet Singh Grover, Michel Weber,
and Tobias Grosser. [n. d.]. Bringing Presburger Arithmetic to MLIR
with FPL. ([n. d.]).

[13] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Co-
hen, Jagannathan Ramanujam, Ponnuswamy Sadayappan, and Nicolas
Vasilache. 2011. Loop transformations: convexity, pruning and opti-
mization. ACM SIGPLAN Notices 46, 1 (2011), 549–562.

[14] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A Lan-
guage and Compiler for Optimizing Parallelism, Locality, and Recom-
putation in Image Processing Pipelines. SIGPLAN Not. 48, 6 (jun 2013),
519–530. https://doi.org/10.1145/2499370.2462176

[15] Norman A. Rink and Jeronimo Castrillon. 2019. TeIL: A Type-Safe
Imperative Tensor Intermediate Language. In Proceedings of the 6th
ACM SIGPLAN International Workshop on Libraries, Languages and
Compilers for Array Programming - ARRAY 2019. ACM Press, Phoenix,

AZ, USA, 57–68. https://doi.org/10.1145/3315454.3329959
[16] Stephanie Soldavini, Karl F. A. Friebel, Mattia Tibaldi, Gerald Hempel,

Jeronimo Castrillon, and Christian Pilato. 2022. Automatic Creation
of High-Bandwidth Memory Architectures from Domain-Specific Lan-
guages: The Case of Computational Fluid Dynamics. ACM Trans. Re-
configurable Technol. Syst. (sep 2022). https://doi.org/10.1145/3563553
Just Accepted.

[17] Mahdi Soltan Mohammadi, Kazem Cheshmi, Ganesh Gopalakrishnan,
Mary Hall, Maryam Mehri Dehnavi, Anand Venkat, Tomofumi Yuki,
and Michelle Mills Strout. 2018. Sparse matrix code dependence anal-
ysis simplification at compile time. ArXiv e-prints (2018), arXiv–1807.

[18] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. 2018. Tensor comprehensions: Framework-
agnostic high-performance machine learning abstractions. arXiv
preprint arXiv:1802.04730 (2018).

[19] Sven Verdoolaege. 2010. Isl: An Integer Set Library for the Polyhedral
Model. InMathematical Software – ICMS 2010, David Hutchison, Takeo
Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C.
Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard
Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y.
Vardi, Gerhard Weikum, Komei Fukuda, Joris van der Hoeven, Michael
Joswig, and Nobuki Takayama (Eds.). Vol. 6327. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 299–302. https://doi.org/10.1007/978-3-
642-15582-6_49

[20] Sven Verdoolaege and Tobias Grosser. 2012. Polyhedral extraction tool.
In Second International Workshop on Polyhedral Compilation Techniques
(IMPACT’12), Paris, France, Vol. 141.

[21] Sven Verdoolaege and Gerda Janssens. 2017. Scheduling for PPCG.
https://doi.org/10.13140/RG.2.2.28998.68169

[22] Field G. Van Zee, Ernie Chan, Robert A. van de Geijn, Enrique S.
Quintana-Ortí, and Gregorio Quintana-Ortí. 2009. The libflame Library
for Dense Matrix Computations. Computing in Science & Engineering
11, 6 (2009), 56–63. https://doi.org/10.1109/MCSE.2009.207

[23] Jie Zhao and Albert Cohen. 2019. Flextended Tiles: A Flexible Exten-
sion of Overlapped Tiles for Polyhedral Compilation. ACM Trans.
Archit. Code Optim. 16, 4, Article 47 (dec 2019), 25 pages. https:
//doi.org/10.1145/3369382

[24] Jie Zhao and Peng Di. 2020. Optimizing the Memory Hierarchy by
Compositing Automatic Transformations on Computations and Data.
In 2020 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). 427–441. https://doi.org/10.1109/MICRO50266.
2020.00044

[25] Jie Zhao, Bojie Li, Wang Nie, Zhen Geng, Renwei Zhang, Xiong Gao,
Bin Cheng, Chen Wu, Yun Cheng, Zheng Li, Peng Di, Kun Zhang,
and Xuefeng Jin. 2021. AKG: Automatic Kernel Generation for Neural
Processing Units Using Polyhedral Transformations. In Proceedings
of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (Virtual, Canada) (PLDI 2021).
Association for ComputingMachinery, New York, NY, USA, 1233–1248.
https://doi.org/10.1145/3453483.3454106

A Volume model
A.1 Volumes
Example. A volume𝑈 representing an𝑀 × 𝑁 upper-right
triangular matrix can be represented by

dom𝑈 := {[𝑖, 𝑗] : 0 ≤ 𝑖 < 𝑀 ∧ 𝑖 ≤ 𝑗 < 𝑁 }

which encodes its sparsity property by definition.

https://mlir.llvm.org/docs/Dialects/Linalg/
https://doi.org/10.1145/3544559
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1007/978-0-387-09766-4_502
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1145/3315454.3329959
https://doi.org/10.1145/3563553
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.13140/RG.2.2.28998.68169
https://doi.org/10.1109/MCSE.2009.207
https://doi.org/10.1145/3369382
https://doi.org/10.1145/3369382
https://doi.org/10.1109/MICRO50266.2020.00044
https://doi.org/10.1109/MICRO50266.2020.00044
https://doi.org/10.1145/3453483.3454106

Modelling linear algebra kernels as polyhedral volume operations IMPACT ’23, January 16, 2023, Toulouse, France

We could define a dense array 𝐴 as

𝐴

[
𝑖𝑁 − 1

2
(𝑖 − 1) 𝑖 + 𝑗

]
= 𝑈 [𝑖, 𝑗]

but not without involving a quasipolynomial expression.
This precludes further reasoning using Presburger algebra.

Suppose 𝑅 ← 𝑈 ⊙𝑉 3, where𝑉 is an upper-left triangular
matrix of the same shape, then Presburger algebra can infer
the sparsity of the result 𝑅

dom𝑅 = dom𝑈 ∩ dom𝑉

= {[𝑖, 𝑗] : 0 ≤ 𝑖 < 𝑀 ∧ 𝑖 ≤ 𝑗 < (𝑁 − 𝑖)}

A.2 Operations
A.2.1 View. The extraction of a subvolume from a super-
volume has already been defined

Mext,Π := Π

The insertion of a subvolume𝑉sub into a supervolume𝑉sup
is an index-based selection

Mins,Π :=
{
𝑅 [r] ↦→ 𝑉sup [r] : r ∉ ImΠ

}
∪

{
𝑅 [r] ↦→ 𝑉sub

[
Π−1 (r)

]
: r ∈ ImΠ

}
where ImΠ = Π(domΠ), and Π−1 is the inverse of Π.

A.2.2 Reduction. A reduction 𝑅 ← red⊕, 𝑗 𝑂 reduces the
rank of volume 𝑂 by applying a reduction ⊕ along an axis 𝑗

𝑅 [r] =
⊕
𝑘

𝑂
[
𝑟1, . . . , 𝑟 𝑗−1, 𝑘, 𝑟 𝑗 , . . . , 𝑟𝑁

]
Mred, 𝑗 :=

{
𝑅 [r] ↦→ 𝑂

[
𝑟1, . . . , 𝑟 𝑗−1, 𝑘, 𝑟 𝑗 , . . . , 𝑟𝑁

]
: 𝑘 ∈ Z

}
A.2.3 Diagonal. The 𝑠, 𝑡 : 𝑠 < 𝑡 diagonal 𝑅 of a volume 𝑂
is a view into 𝑂 where the indices at 𝑠 and 𝑡 are equal

Mdiag,𝑠=𝑡 := {𝑅 [r] ↦→ 𝑂 [𝑟1, . . . , 𝑟𝑠 , . . . , 𝑟𝑡−1, 𝑟𝑠 , 𝑟𝑡 , . . . , 𝑟𝑁]}

A.2.4 Outer product. The outer product 𝑅 ← 𝐴 ⊗ 𝐵 and
its volume element map are given by

𝑅 [a ++ b] = 𝐴[a] 𝐵 [b]
M⊗ := {𝑅 [a ++ b] → 𝐴[a]} ∪ {𝑅 [a ++ b] → 𝐵 [b]}

where a ++ b = [𝑎1, . . . , 𝑎𝑁 , 𝑏1, . . . , 𝑏𝑀], i.e. a concatenation
of the index tuples.

A.2.5 Inner product. An inner product 𝑅 ← 𝐴 · 𝐵 is a
contraction of 𝐴 ⊗ 𝐵. A contraction is a reduction over a
diagonal. The diagonal is ambiguous for a combined rank
> 2. For consistency with matrix-matrix multiplication, we
use the diagonal over the straddling adjacent dimensions,
and so

M· :=Mred,𝑁 ◦Mdiag,𝑁=𝑁+1 ◦M⊗
where 𝑁 is the rank of volume 𝐴.
3⊙ is the element-wise product

A.2.6 Padding. Adding a boundary around an array 𝐴

using values from a volume 𝐵, selected based on index, is
called padding

Mpad,lo,hi,Π := 𝑅 [r] ↦→
{
𝐴[r − lo] lo ≤ r < (∆□ 𝑅 − hi)
𝐵 [Π(r)] otherwise

where lo and hi indicate the size of the boundary in all di-
mensions, Π : dom𝑅 → dom𝐵 and ∆□ 𝑅 = ∆□𝐴 + hi + lo.

Example. To apply a 3 × 3 stencil to a scalar field 𝐹 , we
introduce a periodic boundary of radius 1. We note that
lo = [1, 1] and hi = [1, 1].

To achieve a periodic boundary, we set 𝐵 ← 𝐹 , and define

Π(i) ↦→ i − lo mod ∆□ 𝐹

where the modulo is applied element-wise.

A.2.7 Convolution. A convolution on arrays 𝑅 ← 𝐼 ∗𝑊
with strides sd and dilations dl is modeled by

M∗ := {𝑅 [r] ↦→ 𝐼 [sd ⊙ r + dl ⊙ w] : w ∈ dom𝑊 }
∪ {𝑅 [r] ↦→𝑊 [w]}

which assumes all dimensions are treated equally. Note that
the bounds on w in the first disjunct are explicit because
they are not in the implicit context of that map.

A.3 Programs
Lemma A.1. The volume element map of an SSA operation
is transitively closed.

Proof. Let the element-wise dependencies of an SSA opera-
tion 𝑂 be given by its volume element mapM𝑂 .

By definition, each volume is an SSA value. Due to the SSA
property, the def-use graph is acyclic, and thus a value cannot
be involved in its own definition. Therefore, rangeM𝑂 ∩
domM𝑂 = ∅, andM𝑂 ◦M𝑂 = ∅. □

Lemma A.2. A transitively closed map is a fixpoint under
lenient composition with itself.

Proof. Let 𝐴 be transitively closed, i.e., 𝐴 =
⋃

𝑁=1 𝐴
𝑁 .

Expanding the lenient composition gives

𝑋 = 𝐴 ◦id 𝐴
= 𝐴 ◦ (𝐴 ∪ id(range𝐴 \ dom𝐴))
= (𝐴 ◦𝐴) ∪ (𝐴 ◦ id(range𝐴))
= 𝐴2 ∪𝐴

And equality follows

𝑋 ⊆ 𝐴 ∪𝐴2 ∪
⋃
𝑁=1

𝐴𝑁

𝐴 ⊆ 𝐴 ∪𝐴2

□

IMPACT ’23, January 16, 2023, Toulouse, France Karl F. A. Friebel, Asif Ali Khan, Lorenzo Chelini, and Jeronimo Castrillon

Lemma A.3. The volume element map of a program 𝑃 con-
sisting of assignments 𝐴 ∈ 𝑃 , live-out definitions𝑂 and live-in
uses 𝐼 is given by

M𝑃 =

(⋃
𝐴∈𝑃
M𝐴

)+
∩ {𝑜 ↦→ 𝑖 : 𝑜 ∈ 𝑂, 𝑖 ∈ 𝐼 }

Proof. Let 𝑃+ =
⋃
𝐴∈𝑃
M𝐴 and 𝑎𝑖 ← 𝐴(𝑥 𝑗) : 𝐴 ∈ 𝑃 . Due to the

SSA property, every value and thus volume has exactly one
definition.

If 𝑥 𝑗 ∉ 𝐼 , then its definition 𝑥 𝑗 ← 𝑋 (𝑦𝑘) must be in 𝑃 , and
{𝑎𝑖 ↦→ 𝑦𝑘 } ⊂ 𝑃+. Suppose �𝑖 ∈ 𝐼 : {𝑎𝑖 ↦→ 𝑖} ⊂ 𝑃+, then 𝑎𝑖
must be a live-in definition, and therefore 𝐴 ∉ 𝑃 , which is
contradictory. □

Lemma A.4. The volume element map of the composition of
two SSA operations is the lenient composition of their volume
element maps.

Proof. Let 𝐴 and 𝐵 be SSA operations, and 𝐴 ◦ 𝐵 only define
the outputs of 𝐴.

Since all unused outputs of 𝐵 will not appear in the volume
element map, we write

M𝐴◦𝐵 = (M𝐴 ∪M𝐵)+ ∩ {𝑂𝐴 → 𝐼𝐵 ∪ 𝐼𝐴 \𝑂𝐵}

where the intersection with the context ensures only live-in
and live-out values appear in the map.
Both maps are transitively closed, and due to SSAM2

𝐴
=

M2
𝐵
= ∅. We can simplify the transitive closure to

M𝐴◦𝐵 = (M𝐴 ◦M𝐵 ∪M𝐴 ∪M𝐵) ∩ {𝑂𝐴 → 𝐼𝐴◦𝐵}

The intersection ofM𝐵 with the context is trivially empty,
whileM𝐴 ◦M𝐵 is a strict subset of the context. We obtain

M𝐴◦𝐵 = (M𝐴 ◦M𝐵) ∪
(
M𝐴 \rg 𝑂𝐵

)
=M𝐴 ◦ (M𝐵 ∪ id (rangeM𝐴 \ domM𝐵))
=M𝐴 ◦idM𝐵

□

Lemma A.5. The volume element map of a program is the
lenient composition of all its assignments’ volume maps in
ALAP use-def order.

Proof. Let 𝑃 be a program with live-in values 𝐼 and live-out
values𝑂 . Let𝐺0 = ∅ andM𝐺0 = id𝑂 . Mark all live-out edges
of the use-def graph (using virtual nodes ∉ 𝑃) as visited.
While there are still nodes (assignments) not visited, select

any assignment 𝐴𝑖+1 where all outgoing edges are marked
as visited. Since the use-def graph is a DAG, this is always
possible. Suppose candidate 𝐴 had an unvisited outgoing
edge to 𝐵 ∉ 𝑃 , and could thus never be visited. Then, that
edge would be in 𝑂 , and must therefore have been marked
during initialization. Suppose candidate 𝐴 had an unvisited

outgoing edge to 𝐵 ∈ 𝑃 , then 𝐵 would need to be visited first.
A deadlock can only occur when a path 𝐵 → 𝐴 exists, which
violates the acyclic property.
Visit the selected assignment 𝐴𝑖+1, computing

𝐺𝑖+1 = 𝐺𝑖 ∪ {𝐴𝑖+1}
M𝐺𝑖+1 =M𝐺𝑖

◦idM𝐴𝑖+1

and marking all incoming edges. Since all outgoing edges of
𝐴𝑖+1 aremarked before it is visited, all its uses are already part
ofM𝐺𝑖

, i.e., �𝐴 𝑗 ∈ 𝑃 : 𝐴 𝑗 ∉ 𝐺𝑖 , rangeM𝐴 𝑗
∩domM𝐴𝑖+1 ≠ ∅,

so it must not be visited again.
When 𝐺𝑖 = 𝑃 , terminate withM𝑃 = M𝐺𝑖

. Because all
nodes are visited in this manner, rangeM𝐺𝑖

= 𝐼 . Suppose
there was a value 𝑉 ∈ rangeM𝐺𝑖

: 𝑉 ∉ 𝐼 , defined by an
assignment 𝐴𝑉 . Since all incoming nodes of 𝐴𝑉 were visited
after it, 𝑉 can not be a live-out of any predecessor. For 𝑉 to
be a live-out of 𝐴𝑉 , {𝑉 ↦→ 𝑉 } ⊂ M𝐴𝑉

must be true, which
violates the acyclic property. □

	Abstract
	1 Introduction
	2 Background
	2.1 Polyhedral compilers
	2.2 The MLIR infrastructure
	2.3 Related work

	3 Motivation
	4 Volume-based dataflow analysis
	4.1 Volumes
	4.2 Operations
	4.3 Programs

	5 Usage
	5.1 Building the dependency model
	5.2 Applying facts
	5.3 Inspecting the result
	5.4 Pitfalls
	5.5 MLIR Presburger

	6 Conclusion and future work
	Acknowledgments
	References
	A Volume model
	A.1 Volumes
	A.2 Operations
	A.3 Programs

