

http://www.everest-h2020.eu

dEsign enVironmEnt foR Extreme-Scale big data
analyTics on heterogeneous platforms

D4.1 – Definition of the compilation
framework

The EVEREST project has received funding from the European Union’s
Horizon 2020 Research & Innovation programme under grant agreement
No 957269

Ref. Ares(2022)5178726 - 15/07/2022

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 2

Project Summary Information
Project Title dEsign enVironmEnt foR Extreme-Scale big data analyTics on

heterogeneous platforms
Project Acronym EVEREST
Project No. 957269
Start Date 01/10/2020
Project Duration 36 months
Project website http://www.everest-h2020.eu

Copyright
© Copyright by the EVEREST consortium, 2020.

This document contains material that is copyright of EVEREST consortium members and the
European Commission, and may not be reproduced or copied without permission.

Num. Partner Name Short Name Country
1 (Coord.) IBM RESEARCH GMBH IBM CH

2 POLITECNICO DI MILANO PDM IT
3 UNIVERSITÀ DELLA SVIZZERA ITALIANA USI CH
4 TECHNISCHE UNIVERSITAET DRESDEN TUD DE
5 Centro Internazionale in Monitoraggio Ambientale -

Fondazione CIMA
CIMA IT

6 IT4Innovations, VSB – Technical University of Ostrava IT4I CZ
7 VIRTUAL OPEN SYSTEMS SAS VOS FR
8 DUFERCO ENERGIA SPA DUF IT
9 NUMTECH NUM FR
10 SYGIC AS SYG SK

Project Coordinator: Christoph Hagleitner – IBM Research – Zurich Research Laboratory
Scientific Coordinator: Christian Pilato – Politecnico di Milano
The technology disclosed herein may be protected by one or more patents, copyrights, trademarks
and/or trade secrets owned by or licensed to EVEREST partners. The partners reserve all rights with
respect to such technology and related materials. Any use of the protected technology and related
material beyond the terms of the License without the prior written consent of EVEREST is prohibited.

Disclaimer
The content of the publication herein is the sole responsibility of the publishers and it does not
necessarily represent the views expressed by the European Commission or its services. Except as
otherwise expressly provided, the information in this document is provided by EVEREST members
"as is" without warranty of any kind, expressed, implied or statutory, including but not limited to any
implied warranties of merchantability, fitness for a particular purpose and no infringement of third
party’s rights. EVEREST shall not be liable for any direct, indirect, incidental, special or
consequential damages of any kind or nature whatsoever (including, without limitation, any damages
arising from loss of use or lost business, revenue, profits, data or goodwill) arising in connection with
any infringement claims by third parties or the specification, whether in an action in contract, tort,
strict liability, negligence, or any other theory, even if advised of the possibility of such damages.

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 3

Deliverable Information
Work-package WP4
Deliverable No. D4.1
Deliverable Title Definition of the compilation framework
Lead Beneficiary TUD
Type of Deliverable Report
Dissemination Level Public
Due date 30/06/2021

Document Information
Delivery date July 23, 2021
No. pages 49
Version | Status 0.4.2 | Final
Responsible Person Jeronimo Castrillon (TUD)
Authors Jeronimo Castrillon (TUD), Felix Wittwer (TUD), Karl Friebel (TUD),

Gerald Hempel (TUD), Burkhard Ringlein (IBM), Stephanie Soldavini
(PDM), Christian Pilato (PDM), Mattia Tibaldi (PDM), Fabrizio Ferrandi
(PDM), Stanislav Bohm (IT4I), Francesco Regazzoni (USI), Kartik
Nayak (USI)

Internal Reviewer Gianluca Palermo (PDM)

The list of authors reflects the major contributors to the activity described in the document. All
EVEREST partners have agreed to the full publication of this document. The list of authors does not
imply any claim of ownership on the Intellectual Properties described in this document.

Revision History
Date Ver. Author(s) Summary of main changes

02.06.2021 0.0 Jeronimo Castrillon (TUD) Initial draft

08.07.2021 0.2 Jeronimo Castrillon (TUD)
Integration security, HLS, wrote high-level
overview in Section 3. Minor modifications to
DSL and Orchestration flows.

14.07.2021 0.3 Jeronimo Castrillon (TUD)
First completed draft including contributions
by PDM, IT4I, IBM and TUD. Added
executive summary and conclusions.

21.07.2021 0.4 Christian Pilato (PDM) Updates after first internal revision.

21.07.2021 0.4.1 Jeronimo Castrillon (TUD) Fixing security section and connections to
the rest. Ready for full revision.

22.07.2021 0.4.2 Jeronimo Castrillon (TUD) Clean up, review after full revision.

27.06.2022 0.4.4 Jeronimo Castrillon (TUD)

Revision according to project review. Added
table describing existing technologies,
extensions to them, and envisioned new
tools along with a comparison to commercial
offerings.

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 4

Quality Control
Approved by internal reviewer July 22, 2021
Approved by WP leader July 22, 2021
Approved by Scientific Coordinator July 23, 2021
Revision approved by Sc. Coordinator July 12, 2022
Revision approved by Project Coordinator July 12, 2022

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 5

Table of Contents

1 EXECUTIVE SUMMARY __ 6

1.1 STRUCTURE OF THIS DOCUMENT ___ 6
1.2 RELATED DOCUMENTS ___ 7

2 OVERALL DATA-DRIVEN COMPILATION FRAMEWORK: SPECIFICATION _______ 8

2.1 ORCHESTRATION/DATAFLOW PROGRAMMING __ 9
2.2 HPC KERNELS ___ 10
2.3 ML PROGRAMMING SUPPORT ___ 11
2.4 RUN-TIME ENVIRONMENT AUTO-TUNING __ 12
2.5 DATA POLICIES AND SECURITY CONSIDERATIONS ___ 12

3 DOMAIN-SPECIFIC ABSTRACTIONS AND INTERMEDIATE REPRESENTATIONS 15

3.1 DSLS FOR WORKFLOW ORCHESTRATION ___ 15
3.1.1 Abstractions and tools for orchestration and batch processing in HyperTools ____________________ 15
3.1.2 A dataflow abstraction for streaming-enabled workflows ___________________________________ 16

3.2 DSL FOR NUMERICAL APPLICATIONS __ 20
3.2.1 Frontend __ 21
3.2.2 Intermediate representation __ 23
3.2.3 Middle-end __ 24
3.2.4 Analysis and transformations for HLS ___ 26
3.2.5 Exploiting variance at runtime ___ 27

3.3 MACHINE LEARNING WORKLOAD INTEGRATION ___ 28

4 HIGH-LEVEL SYNTHESIS AND MEMORY DESIGN FLOW ________________________ 31

4.1 BAMBU HLS FLOW DESCRIPTION ___ 32
4.1.1 Bambu Input specification __ 35

4.2 VITIS HIGH-LEVEL SYNTHESIS FLOW ___ 38
4.3 MEMORY GENERATION FLOW __ 39

5 TARGET PLATFORM AND SYSTEM INTEGRATION ______________________________ 43

5.1 FPGA-BASED TARGET PLATFORM ___ 43
5.2 SYSTEM INTEGRATION __ 45

5.2.1 Hardware integration __ 45
5.2.2 Hardware-software interfacing __ 46
5.2.3 Hardware-software security flow ___ 46

6 COMPILATION TECHNOLOGIES: ADVANCING THE STATE OF THE ART _______ 49

6.1 TECHNOLOGIES OVERVIEW __ 49
6.2 ADDED VALUE TO COMMERCIAL TOOLS __ 51

7 CONCLUSIONS __ 53

8 REFERENCES __ 54

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 6

1 Executive summary
The EVEREST project proposes a platform for implementing big data applications
with both high performance and edge workloads following a data-driven model.
This document defines the compilation framework, which plays a key role in
providing high-level programming support for productivity alongside a
methodology for optimization. The latter includes software and hardware-
oriented transformations as well as autotuning support for runtime adaptivity.
The design presented here is derived from the use case analysis, as reported in
Deliverables D2.1, D2.2, and D2.3.

Based on the requirement analysis, the compilation framework follows three
main programming flows, for orchestration/dataflow, for HPC kernels and for ML
workloads. These three flows help provide dedicated support for the EVEREST
use cases. We provide early insights and an earlier specification of how data
policies (from WP3), e.g., for security, and how runtime adaptation (WP5) can
be accounted for by the compilation framework. On the concrete programming
flows, this deliverable specifies the language and framework support, the
compiler frameworks and intermediate languages, and the hardware generation
approach for the three main programming flows. We detailed extensions to
existing solutions, like (1) dataflow language and runtime extension for
deterministic execution of workflows, (2) big-data framework extension to
manage FPGA resources, (3) stencils and MLIR-based middle end for numerical
computation in weather models, (4) EVEREST-specific extension to TVM for
partitioning of machine learning models, (5) new high-level system analysis to
support irregular applications, (6) novel decoupled design of memory subsystem
for data-intensive applications. We also specify how these different tool
components exchange information, for instance, by means of source-to-source
compilation or by direct interfacing via intermediate languages (e.g., via MLIR).
Finally, this deliverable describes the main FPGA target platform including
hardware and software interfaces, and how we will perform system integration
based on the individual inputs provided by the different tool flow components.

1.1 Structure of this document
Section 2 provides an overview of the three main programming flows and an
early account of interfaces to WP3 and WP5. The section provides an overview
of the required (1) language and framework support, (2) source-to-source
compilation flows for orchestration/dataflow, HPC kernels and ML workload, and
(3) high-level synthesis and memory design flow. Section 3 provides further
details on the flows, with focus on the frontend and the source-to-source
compilation, while Section 4 specifies the high-level synthesis flows (commercial
and open source) and the memory design flow. Section 5 describes the EVEREST
platform, providing details to access FPGA resources over the cloud. The section
also describes how the software and hardware components of applications are

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 7

integrated in such a system. A summary of the technologies, their status and a
brief positioning with respect to existing commercial tools is provided in Section
6. The deliverable closes with a summary in Section 7.

1.2 Related documents
This report is closely related to:
D2.1 - Definition of the Application Uses Cases
D2.2 - Language Requirements
D4.2 - Intermediate report of the compilation framework (M18)
D4.3 - Alpha version of the software compilation tool flow (M18)
D4.4 - Alpha version of the hardware compilation tool flow (M18)
D4.5 - Final report of the compilation framework (M33)
D4.6 - Beta version of the integrated compilation tool flow (M33)

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 8

2 Overall data-driven compilation framework:
Specification

The definition of application use cases in Deliverable D2.1 revealed a highly
heterogeneous application landscape (cf. Table 2 in Deliverable D2.2), leading
to a set of challenging requirements, as detailed in Deliverable D2.2. To cope
with these challenges, we foresee a data-driven compilation framework, as
depicted in Figure 1, with three main thrusts:

• Orchestration/dataflow programming flow, providing a high-level
imperative syntax to describe algorithms that operate distributed over
data streams. This is for instance important for the traffic use case (cf.
Section 5 in Deliverable D2.1).

• HPC kernel acceleration, providing domain-specific languages with high-
level semantics that enable powerful optimizations. This is important for
several use cases that require weather simulation (cf. Sections 5-7 in
Deliverable D2.1).

• ML programming support, enabling EVEREST application partners to use
established ML frameworks to transparently target the EVEREST platform
(cf. energy modeling in Section 5 in Deliverable D2.1).

As shown in Figure 1, the different flows shall include (i) programming support
(GREQ1 in Deliverable D2.2) via high-level syntax and frameworks, and (ii)
optimizations via compilation and hardware generation for performance and
energy-efficient execution (GREQ 4 and GREQ5 in Deliverable D2.2). As
identified in Deliverable D2.2, interoperability (GREQ2) is particularly important
for ML tasks within the use cases. This shall be provided by adhering to the
established TVM framework and corresponding exchange formats. Finally, all
different flows shall transparently generate code for the EVEREST Platform,
accounting for FPGA acceleration if available, and thus enabling high code
portability (GREQ 3 in Deliverable D2.2). This also requires automatic vendor-
specific changes to the device code, based on the offloading target.

In the following we provide an overview of the different flows. Detailed
specifications are provided in Sections 3-4 along with system integration in
Section 5 of this Deliverable. This section also briefly touches upon interfaces
with the runtime environment developed in Work Package 5 (Section 2.4), and
in particular, data policies from Work Package 3, with emphasis on security
(Section 2.5).

No need for language-level integration nor tight compiler-level integration has
been identified so far. Use cases have clear boundaries, communicating over
standard interfaces. For this reason, we do not foresee a tight integration

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 9

between the flows. At tighter integration is however required at the backend for
seamless execution on the EVEREST platform (cf. Section 5).

Figure 1 - Compilation framework: Overview of programming flows

2.1 Orchestration/dataflow programming
The use case analysis (cf. Deliverable D2.2) revealed highly compute-intensive
workflows. Within the project, HyperLoom [1] shall be used to orchestrate these
large application flows. HyperLoom/HyperTools is a platform used to define and
execute workflow pipelines in large-scale distributed environments. The existing
Python interface is to be extended to improve programmability (cf. Section
3.1.2). This shall include a simple imperative specification, where parallelism is
automatically handled by the compiler/framework for finer-grained dataflow.
The framework itself shall support batched processing to efficiently distribute
shared data between simulated iterations or reuse it across workflows (cf.
Section 3.1.1).

The compilation framework shall include a dataflow IR, amenable for semantic-
preserving transformations for parallelism and I/O optimization (cf. Section
3.1.2.2). It should be possible to reason about determinism when producing
parallel schedules of the dataflow graph.

Within dataflow use cases, irregular access patterns in control-dominated
portions of the workflow were identified which can profit from FPGA acceleration.
This is the case, for instance, in routing algorithms based on the probabilistic

Multi-location
use cases

Orchestration

- Sequential syntax
- Implicit dataflow

parallelism
- Deterministic execution
- Possible support for

shared state

Low-level compilation, bitstream generation, and system integration

HPC ML

HPC kernels (weather
simulation)

Orchestration (routing
algorithms)

ML (predictive models
and decision making)

Language/framework support

- DSLs for numerical
kernels

- Accelerate WRF model
- Integration in HPC

distributed
infrastructure

- Interoperability with ML
frameworks (pytorch,
TF, TVM)

- Support for exchange
formats (ONNX)

- Dataflow IR: I/O,
Batching, pipelining

High-level source-to-source compilation

- MLIR dialect and
polyhedral analysis

- Model partitioning
based on TVM/RelayIR

- HLS support for irregu-
lar accesses (Bambu)

High-level synthesis and memory design flow

- Generation of memory
controllers

- Re-use existing HLS
tools and libraries

Secure
connections

WP5: Virtualized runtime environment

W
P3

:
D

at
a

m
an

ag
em

en
t

te
ch

ni
qu

es

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 10

time-dependent routing (PTDR, cf. C9-C10 in Table 2 of Deliverable D2.2). To
enable ease of programming, the HLS flow shall provide support for sparse
matrices, lists, dynamic memory allocation, and pointer arithmetic (cf. Section
4.1). These programming constructs are common, for example, in the routing
algorithms since they allow software designers to create efficient
implementations. However, commercial HLS tools do not support dynamic
pointer resolution or circumvent the issue by performing transformations that
remove the unsupported memory access pattern. We will extend the existing
support in the Bambu HLS tool to cater for these types of use cases, without
requiring source code modification.

2.2 HPC kernels
Prior experiences have shown the power of simple DSLs to analyze and
accelerate complex mathematical expressions, as those appearing in numerical
kernels (CFDLang (Rink, et al., 2018), TeML [2], and TeIL [3]). The compilation
framework should include support for high-level specifications of mathematical
expressions appearing in the WRF model (cf. Section 3.2). Given the sheer size
of the model, at least the costly Radiation Module should be accelerated. Apart
from providing a standalone language, the compilation framework should be
integrated within the complex WRF build infrastructure. This requires modifying
the WRF codes and the build scripts. Additionally, in order to disseminate our
DSL and obtain feedback, we have considered building library targets that could
also be integrated with existing projects right away.

For source-to-source compilation the compiler will rely on the MLIR compiler
infrastructure [4] (cf. Section 3.2.2). This will allow to re-use existing
abstractions and make our compiler middle-end interoperable with other middle
and backends (including hardware description projects like CIRCT1). MLIR shall
enable a modular compilation pipeline, leveraging the design effort of the open-
source community. By designing EVEREST dialects that the DSL abstractions
map to, we can profit from the existing lower-level dialects for linear algebra.

The types of computational kernels appearing in numerical simulation are
amenable to HLS, even though, FPGAs are not yet widespread in HPC. We will
investigate interfacing to two different HLS tools, namely, Bambu (cf. Section
4.1) and Xilinx Vitis HLS (cf. Section 4.2). Supporting two different HLS tools
shows the interoperability of our solutions. For Bambu, in particular, the source-
to-source compiler shall generate either C/C++ with OpenMP annotations or
directly interface at the MLIR level (see Sections 3.2.2 and 4.1.1). Since data
movement is particularly relevant in HPC, this programming flow will focus on
automatically customizing the memory subsystem around the accelerators (cf.
Section 4.3). To this end, the Mnemosyne tool shall be extended with support

1 https://github.com/llvm/circt

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 11

for more memory-related components for the creation of “intelligent memory
managers” that are optimized based on the information extracted during the
compilation flow.

2.3 ML programming support
To support a wide range of state-of-the-art ML frameworks (pytorch,
TensorFlow) and exchange formats (ONNX), as required by GREQ 2 & 4, D2.2,
the Apache TVM framework [5], [6] will be used by the EVEREST tool chain. TVM
can import a variety of used ML models and represent them in its unified Relay
intermediate representation (cf. Section 3.3). Using this IR, further application
or device specific optimizations can be applied before the ML training or inference
task is packed into a binary executable that dynamically executes the
application’s graph.

However, the existing TVM flow is limited to a few target devices (CPUs, GPUs,
and some domain specific accelerators), is optimized for single-device
environments, and does not support distributed execution of ML workloads, let
alone heterogeneous platforms. To support the heterogeneous EVEREST
platform (REQ 5 & 9, D2.1), two key functionalities should be added to the TVM
flow: (1) partitioning of the inference tasks of deep neuronal network models
(DNNs) and (2) FPGA support for selected DNN inference operations. Both shall
increase the overall throughput of the system. FPGA support shall increase the
energy efficiency and could decrease the latency of the required inference tasks.
The widely used DNN operations 2d-convolutions, rectifications, pooling, and
dense layer shall be supported by both new functionalities.

Classical ML tasks (i.e. without DNNs) shall be supported by the TVM flow as
well and could be optimized towards CPU environments or other compilation
flows within EVEREST.

In order to increase performance or to be able to use larger models, DNN tasks
must be partitioned to be calculated in parallel on multiple nodes. This
partitioning shall leverage the unified RelayIR and existing TVM optimization
APIs and should include the automatic creation of the required communication
and synchronization between the then distributed ML tasks. This partitioning
phase shall take the EVEREST heterogeneous platforms into account and
schedule different parts of the models on the best fitting available type of node.
The compiler backend to support FPGAs shall be compatible to the cFDK/OC-
Accel environments (cf. Section 5.1) and should optimize the generated FPGA
designs towards different target constraints, like e.g. low-latency, high-
throughput, or low-energy.

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 12

2.4 Run-time environment auto-tuning
As identified in Deliverable D2.2., the execution characteristics of several kernels
greatly vary with the input data and on the status of the execution environment
To this end, the compiler shall interface with the mARGOt dynamic autotuning
framework [7]by generating and exposing kernel variants that can be selected
at run-time. The mARGOt autotuning framework will then have in charge the
selection of the alternatives by relying on static or profiling gathered information.
A specification of the interfaces will be provided in Deliverables D5.1 and D5.3.
For the DSL compiler’s perspective on runtime tuning, see Section 3.2.5 of this
document.

2.5 Data policies and security considerations
From the analysis carried out in WP2 and reflected in Deliverables D2.1, D2.2,
and D2.3, we identified as the most relevant security requirements that the
EVEREST environment should provide are (1) confidentiality (only the authorized
parties can access the information), (2) integrity (the information communicated
between the two parties is not tampered with) and (3) authentication
(assurance that a message was sent by the purported party) of the data
processed and transferred to and within the environment, and the possibility of
tracking the flow of information in the systems. These requirements are provided
by means of security primitives, including encryption/decryption and
authentication (often coupled together in authenticated encryption), and by
library and extensions to support the so-called information flow tracking. The
goal of information flow tracking is to follow a program’s flow and data
progression. When applied to security, information flow tracking helps to keep
track of potential security hazards and to avoid that they could affect the security
of the overall system.

Given the complexity of the EVEREST platform, the compilation framework
should provide automation to help user define and deploy security policies. To
do so, we look at the most elementary element we see in our system, the node,
and we address the problem by providing security at two levels: inter-node
(which deals with the communication between different nodes) and intra-node
(which deals with communication within the node).

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 13

Figure 2 - Internode security considerations

Inter-node means that the node is considered as an atomic (intended as a
computational unit that cannot be divided) and secure entity, and all security
functionalities should be provided only till the boundary of the node. As an
example, in Figure 2, we depict a simple communication model between several
nodes in the EVEREST setup. Some communications must be just encrypted,
others require authentication in addition to encryption, and, for some
interactions, the flow of information must be followed. These types of
interactions happen at a course granularity and must be supported by
orchestration (cf. Figure 1 and Section 3.1). High-level annotations should allow
the programmer to define the desired security functionalities. The system
integration should instantiate the required SW and HW components to account
for this (cf. 5.2). Exact policies and components will be further defined in WP3.

At the intra-node level, we maintain the property of a node of being an atomic
entity, but only at the logic level. This means that different components of the
node can be physically separated. The situation is depicted in Figure 3, which
depicts a logic node composed of a CPU and an FPGA, each of them residing in
physically separated nodes. To maintain the atomicity property of such nodes,
we need to ensure that the elements belonging to a node form an enclave, where
all the communications between the components of the node are secured and
not accessible by elements not belonging to the node, even if physically located
close to them. Once the logical node is created, it will be treated exactly like a
physical node, where intra-node security properties can be specified. Of course,
to ensure logical isolation of the nodes, we also need to be sure that all the
elements of the node are extended with the needed security features, which
includes, among others, the extension of memory controllers to support such an
isolation (Section 4.3). Furthermore, this will require runtime support, in WP5.

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 14

Figure 3 - Single logical node distributed across physical nodes

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 15

3 Domain-specific abstractions and intermediate
representations

This section provides detailed specifications of the language support and the
source-to-source compilation frameworks for the three main flows introduced in
Section 2 (cf. Figure 1), namely support for orchestration/dataflow (Section 3.1),
for HPC kernels (Section 3.2) and for ML use cases (Section 3.3).

3.1 DSLs for Workflow Orchestration
In this section, we focus on mechanisms for workflow orchestration and efficient
dataflow execution. In general, we differentiate between two types of workflows
within the project: Batch-enabled workflows intended to be executed on HPC
clusters and potentially streaming-enabled workflows deployed on a cloud
infrastructure.

For the workflow type, which is primarily featured in the Traffic Simulation Use
case as detailed in Deliverable D2.2, HyperTools (which includes HyperLoom [1])
is to be used to orchestrate workflow execution. As efficient resource usage is
one of the key goals of the EVEREST project, the framework has to allow for the
intuitive specification of node- and system-level resource requirements.

The orchestration of streaming-enabled workflows is currently less well-defined.
A suitable abstraction for this task should allow deterministic execution of
workflows to easy debuggability and enable result reproducibility. Additionally,
insights into the dataflow of the application could be leveraged for improved
resource usage and performance. A DSL for this purpose should abstract from
the dataflow graph it will use internally and expose a specification language that
is ideally sequential, not including any parallelism paradigms. The compilation
flow will have to contain a middle-end featuring an intermediate representation
that supports transformations to rewrite the dataflow graph in order to introduce
parallelism and reorder nodes. The backend of the proposed flow will then
generate code in a high-level programming language compatible to the language
used elsewhere in the project.

3.1.1 Abstractions and tools for orchestration and batch processing in HyperTools
We are introducing HyperTools as a set of tools that also includes HyperLoom.
Other tools in this set are HyperQueue2, Quake3, and RSDS4. All these tools are
based (or will be rewritten) to the same infrastructure core called Tako5 that
includes a basic scheduler, communication with workers, security, and resiliency

2 https://github.com/It4innovations/hyperqueue
3 https://github.com/It4innovations/quake/
4 https://github.com/It4innovations/rsds
5 https://github.com/spirali/tako/

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 16

features. The core may be wrapped in various tools and that expose different
interfaces or task types. For example, it may serve for orchestration of
standalone applications or Python programs through a Python API. This allows
us to decouple the development of the orchestration infrastructure and
capabilities from the EVEREST API (REQ2.1, D2.2). The main work in Tako will
be focused on the resource management to fulfil REQ2.2 and REQ2.3 in
Deliverable 2.2. The tool must be extended to express resources for long-
running service-like tasks (REQ2.2) and to express FPGA resources (REQ2.3).

To better cater for the EVEREST Platform, the HyperTools task manager will be
extended with better support for FPGAs. The current version allows to specify
resource requirements mainly with respect to CPUs and allocation of strategies
of cores on NUMA systems. We will extend these capabilities to define FPGA
resource requirements also considering the IBM cloudFPGA architecture. To
support the inter-node security mechanisms (cf. 2.5), we will leverage the
cryptographical layer in Tako, which is based on XChaCha20Poly1305
implemented in Orion crate6. It uses a symmetrical encryption. It is expected
that key is exchanged outside of the system, e.g. in case of HyperQueue via a
shared file system and protected by the file permissions.

Figure 4 - Tako architecture

3.1.2 A dataflow abstraction for streaming-enabled workflows
For streaming, we plan to extend the Ohua framework [8] a compilation
framework for implicit parallelism based on dataflow graph rewrites. Ohua
represents a well-tested base for the workflow optimizations envisioned in
EVEREST.

6 https://github.com/orion-rs/orion

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 17

Figure 5 - Overview of the envisioned compilation flow for a language that allows dataflow

optimizations and streaming workflows

The compilation flow as shown in Figure 5 outlines the intended source-to-source
compilation flow. The frontend, which exposes different language dialects
resembling other high-level languages, maps the input to an Intermediate
Representation that helps understanding state dependencies. This can be
optimized as seen fit before lowering to a dataflow IR, amenable for graph
transformations. Both IRs are strongly related to the lambda calculus, which
eases reasoning about the transformations. The backend then generates target
code that can be compiled down for use on CPUs or FPGAs. The framework is
flexible, allowing dataflow nodes to represent complex functions, including HPC
kernels like those described in Section 3.2). This flow should be able to handle
kernels as black-boxes, optimizing around them, e.g., via simple reordering
operations.

3.1.2.1 Frontend
The frontend is defined by the language that is exposed to the application
developer and used to define the workflow. In order to fulfill the Global
Requirement of Programmability (GREQ1 as defined in D2.2), the frontend is
designed according to the following core principles:

• Familiar high-level language
The DSL grammar is modeled after a subset of high-level programming
languages like Rust, Python or Go. This is done to avoid forcing the
developer to learn a new programming language and, by extension, in the
interest of maintainability. This way, the dataflow program is easily
comprehensible for end-users, lowering the barrier to entry. Using a high-
level language also allows to hide the dataflow aspect of the framework
from the user, freeing them of the burden to reason explicitly about
graphs.

• No parallelism primitives
The frontend does not expose any explicit parallelism paradigms like
threads or synchronization primitives. This makes the program appear
sequential to the user but allows the compilation flow in fact to freely

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 18

optimize the created workflows for an arbitrary number of workers without
side effects.

• Seamless integration of library functions
All modern widespread high-level languages feature mechanisms for
importing libraries into projects. The frontend also exposes this
mechanism to enable the re-use of code. With these mechanisms, library
functions can be used, just as if developing a normal program in the
chosen high-level language.

• Multi-language support
The frontend has a modular design, allowing for the definition of different
frontend languages to cover a wide range of use cases written in different
languages, which is relatively easy to achieve as the Dataflow Graph is
synthesized from the input and not written directly. This also helps to fulfill
the requirement for Multi-Target Code Generation (REQ3.8, D2.2) by
lowering the abstraction level to the host language to begin with to avoid
complex lowering operations later on.

To provide streaming support (REQ3.4, D2.2), the language features a primitive
for representing streamed data processing. The normal loop syntax of the host
language could be used for modelling this, transforming the loop into a dataflow
operator that continuously streams data through its body. To support extra-
functional requirements for the dataflow, e.g., for security (cf. Section 2.5), we
plan to use type annotations. By annotating the types of variables that flow
between coarse-grained dataflow nodes, we can pass inter-node security
requirements down the compilation flow. This will influence the hardware and
software components that are instantiated during system integration (cf. Section
5.2.3). This will be specified in more detail as the implementation of the use
cases advances.

3.1.2.2 Intermediate Representation
A suitable intermediate representation for the DSL compilation flow
accommodates the fact that the main focus in the flow lies on dataflow
optimizations. Hence, a close resemblance to a dataflow graph is desirable.

As Figure 5 shows, the compilation flow will feature multiple Intermediate
Representations which are all loosely based on the lambda calculus. While the
language allows the definitions of function-like looking algorithms, most calls are
made to functions in the host language, which are modeled as operators in the
IR. Data dependencies between operators are represented as channels through
which the data will be sent.

The compiler internally differentiates between stateful functions, which can hold
internal state associated with them and pure dataflow functions which have no
side effects but merely process the input data to produce an output. This

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 19

differentiation is important when reasoning about possible performance
optimizations, as stateful loops (e.g., the continuous updating of an internal
value in a loop) cannot be parallelized easily while loops containing pure
functions may be executed in parallel without restrictions. Special kernels, like
HPC kernels, can be accommodated as a new function type in the IR, which will
remain untouched and unoptimized by the Ohua flow. Other options include just
mapping the kernel functions to the existing function types although the
compiler would have to ensure that no conflicting optimizations are performed.

The State Thread IR is close to the input language and retains higher-order
functions such as for or if. It also has a concept of state threads [9], which are
functions that can access their privately owned state. This IR is lowered to the
Dataflow IR, which no longer has explicit control flow or higher-order functions,
as shown in Figure 6. Both IRs differentiate between stateful and pure functions
to ensure sane transformations. But apart from that they allow for different
optimizations as they expose different aspects of the workflow. Possible
transformations are discussed in the following subsection.

Figure 6 - Example outlining the translation of stateful sequential programs written in the frontend

language (middle, here resembling Rust) into dataflow programs. The frontend language uses
functions written in the host language

3.1.2.3 Middle-end
All optimizations like the parallelization of operators are part of the middle-end
of the compilation flow. Here, transformations are applied to the Intermediate
Representation of the program in the form of graph rewrites. Special attention
is paid on retaining the deterministic nature of the program throughout all
transformations and be transparent about the guarantees that are given by the
individual transformations.

Compiler Transformations for Dataflow programs (REQ3.7, D2.2) implemented
here could include, but are not limited to:

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 20

• Parallelization of loops
The Intermediate Language has a notion of stateful and pure functions.
This allows the compiler to recognize loops or parts of loops that are state-
free and therefore easily parallelizable.

• I/O batching
I/O operations are by nature very time-consuming and can impact
program performance when done frequently. Hence, it makes sense to
collect and batch such operations [10] to reduce the latency impact of the
operations and make performance more predictable.

• Batching of State accesses
Stateful operations are usually a bottleneck in parallel programs as they
either form a bottleneck or require complex synchronization primitives not
available in this DSL. As a result, other solutions to improve performance
of stateful parallel programs need to be found. One solution that comes to
mind is the batching of state accesses to reduce the frequency of accesses,
allowing the program to run for longer periods of time in parallel. Of
course, such an optimization will have to be discussed from the perspective
of determinism of the program.

3.1.2.4 Backend code generation
The backend is tasked with generating code for the target platform from the
given optimized Intermediate Representation. In this case, the compiler
produces code for the workflow in the host language of the environment, the
same language the frontend was modeled after. This allows a seamless
integration into the standard compilation process of the workflow and thus helps
fulfilling the requirement for multi-target code generation (REQ3.8, D2.2). A new
target can be easily added by providing an implementation of the relevant
frontend and backend functions.

3.2 DSL for numerical applications
In this section, we focus on the proposed domain-specific language (DSL) and
custom compiler toolchain for the numerical workloads. This specification targets
the language itself and its corresponding DSL compiler infrastructure.
The custom compiler toolchain is designed to automate the process of deploying
efficient computational kernels on the EVEREST platform. Figure 7 shows how
the DSL compiler augments a typical WRF compilation flow, allowing the DSL to
be mixed with the large existing code base.

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 21

Figure 7 - Building the WRF model with the DSL compiler toolchain

In the weather simulation use case, the DSL compiler will be used to offload the
time-consuming radiative-convective processes. Dividing the domain into
discrete columns, the radiation driver simulates the scattering of photons and
the subsequent transfer of energy. As a result, vertical movement of air and
thus the formation of clouds is triggered. Both processes have governing
equations with differential formulations that we can implement in the DSL. To
improve performance, we plan to move even more operations to DSL, such as
stencils and random sampling.

The proposed flow includes a middle-end with an intermediate representation
(IR) that can represent high-level transformations. To achieve satisfactory
results, some restrictions must be placed on the input kernels for this middle-
end, and some domain knowledge is required. Both are to be realized with the
kernel DSL, which shall also reduce the burden on the user added by this new
indirection. To some extent, DSL and IR are independent in their design to allow
for fluid language development as per Deliverable D2.2 Section 8.2.6.

3.2.1 Frontend
The frontend, which is the interface exposed to the user, is designed to meet
the following goals:

• Brevity
In the interest of maintainability, and to reduce barrier to entry, the
language should adopt a terse and generic notation.

• Familiarity
To avoid users having to learn a new language, syntax and notation
should be self-evident, and preferably close to the notation typical in the
domain.

• Convenience (REQ 3.2, D2.2)
As kernels are integrated into larger, mostly legacy, systems, the
language must allow for easy connection with surrounding code.

• Completeness (REQ 3.1, D2.2)
The language must allow the user to encode as much of the problem as

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 22

required for the target optimizations, providing at least a complete linear
algebra abstraction.

All these goals fall under the scope of the DSL language design. As the proposed
implementation allows us to adjust the design during development within
reason, this specification highlights some of the fixed aspects.

As outlined in Deliverable D2.2, the DSL must provide an abstraction of linear
algebra, specifically in terms of tensor operations. Completeness is achieved
by providing an index-based notation that allows users to formulate almost
arbitrary expressions via their individual elements. This is done with the
following syntax, which must still be extended to support stencil operators.

A_ij = B_i * C_j + D_ij

Additionally, the type system and kernel interface must have clearly defined
overlap with the supported host languages, i.e. the programs the kernels are
embedded in. Convenience is achieved through type concepts that map directly
to Fortran and C/C++ multidimensional arrays, as well as capturing memory
layouts. A candidate syntax is given by the following expression, which leans
more towards Fortran for better readability in context.

var A(11 11 11) layout(k*121 + i*11 + j)

We target the more subjective goals of Brevity and Familiarity by deriving the
DSL grammar from existing languages. The following list names candidates that
set the user expectations for languages in the linear algebra domain, and the
features they contribute to our implementation:

• TACO [11] is a compiler focused on exploiting sparsity of tensors for
efficient kernel implementations. It features a terse syntax that adopts the
implicit Einsteinian summation convention.

A_ijk += B_ui * C_vj * D_wk * U_uvw

Here, the axes over which reduction is performed are implicitly given by
the indices u, v and w, which only appear on the right hand side.

• TVM [5] is a large compiler framework for implementing machine learning

workloads. It can consume a subset of Python code that represents tensor
operations in an explicit and imperative manner. It features dynamically-
sized tensors.

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 23

var A : (M N N)
This declaration encodes the constraint that the last two ranks of A have
identical but arbitrary dimensionality.

• TensorComprehensions (TC) [12] is a language focused on writing pure

functions exclusively defined over tensor values. It features functional
tensors-as-values semantics and embeds into MLIR. We extend this by
making indices optional in more places, such as per-element operations.

A = B + C

• CFDlang [13] is a language initially created to model specific formulations

of fluid dynamics problems. It features CFD-specific short-hands and
explicit temporary variables.

A = (S#S#S#u)^uivjwk_uvw

The above statement shows a possible evolution of the contraction syntax
that is both terser and closer to the mathematical notation.

Given the fine granularity of numerical kernels, we do not foresee a need to
annotate security information for inter or intra-node mechanisms at this level.

3.2.2 Intermediate representation
To balance abstraction and target-specific optimizations, the IR shall be layered.
In a layered IR, different levels of abstraction are used based on the compiler
strategy, and may exist simultaneously within a translation unit.

The only such framework that is close enough to maturity to be usable for our
purposes is MLIR. Different abstractions are encoded in dialects, which may
declare custom types and operators. MLIR excels at rapid development of DSLs,
as custom dialects with subsequent lowerings to existing ones can quickly create
a functioning pipeline. Originally developed for machine learning, and with
existing frontends for TensorFlow and TC, it aims to unify all methods and
targets for machine-learning applications. Growing support and incubator
projects in the realm of HLS make it a very promising development target, also
for ongoing standardization efforts.

An amenable encoding of our DSL in MLIR, however, requires a dialect that
allows for more flexible transforms on tensor expression trees. TeIL is an IR for
tensor expressions that was created to unify the different tensor frontends. It

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 24

reduces all tensor programs to primitives, featuring more abstract value
semantics than MLIR’s usual treatment of tensors.

Figure 8 - Teil dialect interactions

Therefore, our IR will be a value-based tensor expressions dialect “teil” based
on TeIL that is integrated using the MLIR framework. The language constructs
of our DSL will map directly to this dialect, or may bypass (parts of) our middle-
end explicitly via the standard dialects. Additionally, the optimizations identified
in TeIL and CFDlang can be expressed directly as transformations on this
dialect. Figure 8 shows the hierarchy of existing dialects below teil, with red
arrows indicating new components. The gray arrows show future extensions that
may extend the scope of optimizations.

Current MLIR development is heading into a direction of value-based semantics
for tensor expressions, which indicates a readiness for further standardization.
If successful, this would amplify the reach of the EVEREST project. Support for
a variety of additional use cases may be achieved in this way.

3.2.3 Middle-end
The middle-end, which operates on the IR and thus MLIR, requires a more rigid
design than the other components. Its architecture and implementation is
largely dictated by MLIR guidelines. It must achieve the following goals:

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 25

• Completeness (REQ 3.1 3.2, D2.2)
All kernels falling under the desired abstraction level must be supported,
and require embedding into potentially arbitrary code.

• Performance (REQ 3.6 3.7, D2.2)
The middle-end must produce outputs that achieve notable improvements
in terms of energy and/or performance metrics.

• Heterogeneity (REQ 3.8 3.10 3.11, D2.2)
The different execution targets of the EVEREST platform must be
supported transparently.

• Extensibility (REQ 3.5, D2.2)
Apart from future host compilers and languages, additional targets, such
as GPUs, are among likely extensions. The toolchain should support an
exchange format for these purposes.

• Tunability (REQ 3.9 3.11, D2.2)
The compiler shall be able to export parameters for auto-tuning.

The middle-end is roughly a collection of functions that serve the following
purposes within the MLIR-based pipeline.

• Canonicalization of the teil dialect.
• Optimization passes on the teil dialect.
• Verification and diagnostic visitors for kernels.
• Lowering of the teil dialect onto the linalg and affine dialects. (cf.

Figure 8)
• Code injection passes for runtime (tuning).
• Code generation passes for HLS artifact output.
• In-MLIR HLS and/or hardware toolchain specific translation. (Optional, cf.

Section 4.1)
• Raising from linalg to teil constructs. (Optional)

By opting for MLIR and providing lowerings, we achieve Completeness and
also a reasonable level of Performance by falling back onto the extensive
existing compiler infrastructure. Similarly, the design of MLIR provides inherent
Extensibility, especially with respect to GPU targets.

The following are possible paths to interface with the HLS flow. At least one of
these paths must be supported by the DSL compilation toolchain:

• Interfacing via source code to HLS tools.
• Extend HLS tools to accept (a subset of) MLIR directly, allowing for more

precise control from the middle-end. The Bambu HLS flow, for instance,
will be extended with such support (cf. Section 4.1). Also, Xilinx’s Vitis HLS
now accepts LLVM-IR, which MLIR can be lowered to.

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 26

• MLIR dialects such as the CIRCT project aim to move the HLS task
entirely into the IR, eliminating the need for external HLS altogether.
These flows would end in an export to a vendor-specific place-and-route
tool.

All of the above methods can be used to create a more vendor-independent HLS
flow as discussed in Deliverable D2.2.

It shall be noted that the previously mentioned TVM also uses its own unique IR
to implement code generation for a variety of devices (cf. Section 4.3).
Extensibility is achieved by allowing compiler developers to hook into this
process, with more elaborate methods being enabled through the “Bring Your
Own Codegen” (BYOC) API. This does, however, provide far less opportunity for
applying domain-specific transformations.

3.2.4 Analysis and transformations for HLS
Existing vendor HLS flows already allow for the user to guide the synthesis
process using additional attributes. These are indispensable for achieving high
performance, but do not mix very well with the input code. They often rely on a
declarative (#pragma) extension or force the user to adopt specific patterns in
their code.

The DSL compiler shall automate this task by generating code that conforms to
these requirements. The most basic solution would use the exact same
mechanisms exposed to an HLS user, but with more extensive and automated
code transformations.

By abstracting the problem of embedding kernels into larger systems, the
interactions between them become more implicit. This opens up opportunities
for optimization, in particular with respect to the memory subsystem. In this
context, the compiler will provide support for:

• Memory Allocation, which refers to the process of committing physical
memory resources to store values of variables in a program. A common
goal is to reduce the amount of committed resources while trading with
contention on them.

• Data layout and representation, meaning the way values are stored in
memory. Inherently structured values, such as tensors, can be mapped to
linear address spaces in different ways. Additionally, a compiler may
reason about different data representations for individual elements based
on precision and other constraints.

• Data transfer schedules, which correspond to decisions of when to move
data between memories of one or multiple systems. In a heterogeneous
system, this becomes an increasingly important problem.

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 27

Section 5.3 shows how these optimizations can be implemented. The required
information is inferred by the compiler, which produces the machine-readable
interchange format described there. The analysis processes required are rooted
deep within the kernel compiler reasoning and often cannot be decoupled from
other tasks. That also means it is largely referential to a particular kernel
representation in the compiler's IR. As a result, we consider tying this
information to the IR in a more standardized way such that it can be consumed
easily, as part of a more composable flow.

3.2.5 Exploiting variance at runtime
According to REQ 3.9, D2.2, a runtime tuning mechanism is to be implemented,
which adapts implementation parameters according to on-line data (see also
Section 2.4) and execution environment. There are two consequences for the
proposed system that are common to all methods of implementing this feature:

• A runtime system is required to implement policy and mechanism for
this behavior. Roughly, this means it must make decisions on the runtime
tunable parameter's values (see mARGOt) and then apply them.

• At compile time, explicit variance must be made available in the
produced artifact. In other words, the compiler must identify and expose
runtime tunable parameters in its implementation and provide a tie-in for
the runtime.

Figure 9 - Kernel runtime

Figure 9 shows the view the runtime has over the running system. In order to
make a beneficial decision, it must monitor the runtime performance of the
depicted components. Using that data, it enacts at least the following decisions:

• Parameter tuning
The runtime adjusts the values of statically-known tuning variables,
such as accuracy thresholds and discretization constants. In general,
these must be exposed manually.

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 28

• Retasking
The runtime uses the cloudFPGA API to (re-)assign (parallel) tasks to
execution nodes to balance latency, utilization, and efficiency. A
minimal strategy is always required for the deployment of any
application.

3.3 Machine Learning workload integration
To additionally enable the execution of machine learning (ML) workloads by the
EVEREST toolchain, domain-specific abstractions popular for ML models -- like
ONNX, pytorch, or TensorFlow -- will be supported. These interchange formats
for ML applications evolve rapidly and to reduce the risk of incompatibilities or
uncontrollable dependencies, the TVM framework is used to import, optimize
and represent these workloads in a unified way.

Apache TVM [5], [6] is a compiler framework maintained by the Apache Software
Foundation (cf. Figure 10). Its goals are to compile ML models to deployable
modules while providing a large compiler infrastructure to automatically optimize
the models to achieve better performance. TVM’s high-level IR, called “RelayIR”,
can be created from the popular ONNX format. The industry-driven standard
NNEF is not directly supported, but it can be easily converted to ONNX.

Within EVEREST, all three use cases specified in Deliverable D2.1 will use ML for
some steps. As example, the general weather forecast will be adapted for each
individual industrial site using sequential aggregation (cf. Section 4.1, D2.1).
Similarly, a ridge regression using Gaussian kernels will be used to adapt the
weather forecast to local measurements to better predict reusable energy
production (cf. Section 3.1, D2.1). Lastly, the traffic prediction use case will train
deep neural networks (DNNs) on daily traffic data (cf. Section 5.1, D2.1). Those
ML workloads should also be able to leverage heterogeneous hardware,
especially in the case DNNs are used (REQ5, D2.1, REQ3.3, D2.2).

The flow presented in Figure 10 fulfills this requirement and support the
inference of DNN models on distributed heterogeneous hardware. In case of the
traffic prediction model, this will be DNNs that consists of compute intensive
convolutional and fully-connected layers.

As depicted in Figure 10, this proposed EVEREST flow to support the execution
of ML workloads on multiple FPGA or CPUs consists of multiple steps: After the
modules are imported as RelayIR module, the ML application is optimized using
TVM build-in optimization passes. Using the unified community-supported
RelayIR has the advantage that subsequent optimizations can be applied
irrespective of the original ML framework.

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 29

To support the requirement of distributed DNN execution (REQ8, D2.1),
algorithms will be developed that analyze the optimized RelayIR module and
derive a portioning scheme for each specific DNN. This partitioning step will take
detailed characteristics of the ML operations and the user-given target
constraints into account. During this step, the original single module of the DNN
workload will be split into one module per node. The type (FPGA or CPU) and
number of nodes will be automatically derived and optimized within the
constraint ranges given by the user. Please note, that these nodes can be
scheduled to run on heterogeneous hardware independent of each other, based
on performance and efficiency predictions of the newly developed algorithms.
For example, the DNN could be split across 2 CPUs and 5 FPGAs, if this would
have the best predicted performance and is within the user-given resource
budget.

After the partitioning of the workload is decided, the proposed tool continues to
determine the communication configuration among the nodes. This step ensures
that operations that can be executed in parallel will be executed in parallel and
that each node knows where and when to get and to send data. Hence, besides
the data communication, also the execution synchronization will be ensured by
the inserted communication modules. This communication modules can re-use
existing heterogeneous communication frameworks, e.g. MPI. At this step, also
use case specific pre- or post-processing can be considered and the data streams
linked (REQ8, D2.1).

Individual modules will be optimized for their specific target (CPU or FPGA) and
lowered further so that either synthesis tools can synthesize the HLS or HDL
descriptions or, using the TVM infrastructure, emitting the binary for the
targeted CPU. Please note that this step is individual for each type of CPU or
FPGA in order to adapt the workload as much as possible to the chosen target
devices (REQ 9, D2.1). In case FPGA-target nodes, HLS code will be emitted and
EVEREST HLS design flow will be used (cf. Section 4).

As last step, depicted at the bottom of Figure 10, after the target specific binaries
or bitstreams are synthesized, an automatic deployment framework will be
developed, so that the ML workload can be distributed to the target devices and
launched, automatically.

The TVM community is also working on adding the option of exporting RelayIR
to MLIR. Depending on the availability, this feature may serve as a additional
bridge to the EVEREST MLIR toolflow described above, as depicted on the left-
hand side of Figure 10.

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 30

Figure 10 - EVEREST machine learning to distributed FPGA/CPU flow

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 31

4 High-level synthesis and memory design flow
EVEREST has a strong focus on FPGA acceleration and the compilation
framework is thus requested to generate efficient hardware architecture to
coordinate computation and data movements. The computational part of the
FPGA system is generated with high-level synthesis, while the data movements
are optimized with the customization of the memory architecture. The
integration of the two parts is based on standardized interfaces. Also, the project
has a strong focus on modularity and interoperability (REQ 4.9, D2.2), allowing
the use of different HLS tools, namely for example Bambu [14] and Xilinx
Vivado/Vitis HLS [15].

To combine these two aspects (separation of computation and data movements,
and interoperability), we rely on the following:

• We export the internal memory modules from the accelerators generated
either with Bambu or Vivado/Vitis HLS to enable further optimizations. For
example, in case of C functions, when data structures are moved from
local variables to function parameters, the HLS tools will add local-memory
interfaces to the top module. This will enable memory optimizations (cf.
Section 4.3) and ease system integration (cf. Section 5.2)

• Based on the HLS tool to be used, the compiler may need to slightly adapt
the output format of the code to be synthesized. For example, it can
introduce pragma annotations for code optimization with Xilinx
Vivado/Vitis HLS. However, Bambu does not support the same pragmas,
and, in some cases, it can enable further optimizations with command-line
options or by writing the code in a slightly different way. The compiler may
thus need to adapt the intermediate artifacts and metadata with a
customization of the specific backend.

• Bambu is also going to support a direct interfacing with MLIR dialects. So,
the compiler and the HLS tool will need to define the subset of information
that can be exchanged between the two parts.

• We assume fixed-latency accesses to the private local memories, currently
using the Xilinx Vivado/Vitis naming convention for the signals (cf. 4.3).
Accesses with variable latency (e.g., to external data) will require a
latency-insensitive protocol (ready/valid/stop). We will then create a
proper wrapper to access the external memory controllers or interfaces
(cf. Section 5.2).

• Additional compiler information (e.g., security annotations) can be passed
through code annotations (and directly synthesized with HLS) or
represented in XML annotations to be used by HLS extensions, memory
generation flow, or system integration.

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 32

Figure 11 summarizes the hardware generation flow, showing how the compiler
can pass information to the other parts.

Figure 11 - Integration of compilation and hardware generation flow

4.1 Bambu HLS flow description
Bambu is a command-line tool aimed at assisting the designer during the HLS
of complex applications. It supports most of the C/C++ constructs, including
function calls and sharing of the modules, pointer arithmetic and dynamic
resolution of memory accesses, accesses to arrays and structs, parameters
passed by reference or copy, and many more.

Like in a standard software compilation flow, Bambu has three phases (see
Figure 12: frontend, middle-end, and backend.

Bambu frontend. Bambu interfaces with existing compilers, such as GCC and
Clang. With GCC, a plugin extracts the call graph and the control data flow graph
of the functions under analysis from GCC's internal IR. Similarly, a Clang plugin
extracts the same information and serializes them into a textual format easy to
parse. Bambu then parses back all the compiler serialized information plus all
the annotations to build a Static Single Assignment in-memory IR.

This approach decouples the compiler frontend code from the rest of the HLS
process. Localizing all the changes in a GCC or LLVM/Clang plugin allows rapid
and easy integration of many different versions of the compilers.

Experimental
flow

Annotated C code
/ LLVM IR

HLS
(Bambu/Vitis)Wrapper Gen

System Integration
(Olympus)

DSL

DSL-to-Sw (MLIR)
Compiler+DSE

Memory info

IP requirements

Mem Generation
(Mnemosyne)

Mem HDL

Compatibility
Info

Standardized
memory interfaces

Component
Library

Additional
metadata

MLIR
dialects

Logic
Synthesis

Host Code
Compilation

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 33

Figure 12 - Bambu HLS flow

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 34

Bambu supports GCC versions ranging from 4.5 to 8, and LLVM/CLANG versions
ranging from 4.0 to 11. The Bambu frontend needs some information from the
upstream compiler, such as the top function (REQ 4.6, D2.2) on which the high-
level synthesis is performed and the specification of the Block-level/Top
component and Port-level interfaces (REQ 4.7 4.8, D2.2). This information will
be passed through command-line options or source code annotations.

Bambu middle-end. Starting from the intermediate representation extracted
from GCC/Clang, Bambu rebuilds data structures, such as the Call Graph and
the Control Data Flow Graphs, and builds additional data structures such as the
Program Dependence Graphs. Next, it applies a set of device-independent
analyses and transformations. Some of these steps are commonly used in a
software compilation flow (e.g., data flow analysis, loop recognition, dead code
elimination, constant propagation, LUT expression insertion, etc.).

Multiplications and divisions by constant values are transformed into expressions
that use only shifts and adders to reduce area utilization and improve timing.
The resulting expression structure depends on the target device and technology,
since adders and multipliers may have different performances on different
devices. Bambu, for these purposes, accepts XML file and command-line options
to constrain the number of resources used, the type of FPGA used, and the clock
constraint at which the application must meet (REQ 4.10 D2.2).

Differently from general-purpose software compilers, designed to target a
processor with a fixed-sized data-path (usually 32 or 64 bits), a HLS compiler
can exploit custom-size operators (e.g., a multiplier with the minimum number
of I/O bits) and registers.

Consequently, we can select the minimal number of bits required for the specific
algorithm's operations and value storage, which leads to less area, less power,
and shorter critical paths. At this stage, Bambu also performs Bitwidth and
Range Analysis, aiming at reducing the number of bits required by data-path
operators. Floating-point computation is usually demanding in terms of
computing resources, but it is even more demanding when the target technology
is based on FPGAs. In Bambu, Bit-Value analysis and Range Analysis are done
to reduce as much as possible this impact. In addition to these analyses, Bambu
accepts annotations to the top function parameters and command-line options
that trade accuracy with resource reductions (REQ 4.13 D2.2). This will impact
all the applications where double-precision accuracy is not really required, but
the EVEREST users sometimes use it during the application specification (e.g.,
PTDR or machine learning applications).

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 35

This analysis is crucial during the optimization process because it impacts all
non-functional requirements (e.g., performance, area, power) of a design
without affecting its behavior.

Another important part relevant for the EVEREST project is the Memory
Allocation. It defines the memories used to store aggregate variables (arrays
and structures), global variables, and how the dynamic memory allocation is
implemented. Bambu adopts an architecture for memory accesses that support
a wide range of cases. Statically analyzing the memory accesses, Bambu builds
a hierarchical data-path where memories can be classified as read-only, local,
with aligned or unaligned memory accesses, or which require dynamic
resolutions of the addresses to identify the physical location. Accesses to dual-
port BRAMs or memory controllers with complex parallel channels are supported
by replicating such memory interconnections as needed. The same memory
infrastructure can also connect to external components (e.g., scratchpads,
caches, and DRAMs) or directly to the bus to access off-chip memories.
Supporting protocol-based accesses (e.g., FIFO or stream-based access) is
obtained by generating specific components that replace the load/store
instructions. Interfacing with the actual memory banks and physical controllers
will be optimized by sharing information with the memory generation flow (cf.
Section 4.3).

Bambu backend. In this phase, Bambu performs the actual architectural
synthesis of the specification. The synthesis process acts on each function
separately. The resulting architecture reflects the structure of the call graph.
Each function includes at least two sub-modules: the control logic and the data-
path. Control logic modeled as a Finite State Machine handles the routing of the
data values and the temporal execution of the operations. The data-path is a
custom mux-based architecture with optimized data types to reduce the number
of flip-flops and bit-level multiplexers. It implements all the operations and
memories required during the function execution.

Bambu currently generates Verilog/VHDL compatible with many different target
technology AMD/Xilinx ISE, AMD/Xilinx Vivado, Yosis-Vivado, Intel/Altera
Quartus, Lattice Diamond, NanoXplore, and OpenRoad 4.5. Extension and
customization for the EVEREST platform will be considered, but they should be
limited since the target FPGAs are very similar to those already supported (REQ
4.4 4.5, D2.2).

4.1.1 Bambu Input specification
The default input specification supported by Bambu is a behavioral description
of the specification, written in C/C++ language (REQ 4.1, D2.2). The C/C++
language supported is in line with the ones supported by many other commercial
tools, such as Vitis HLS or Intel HLS. Bambu supports additional patterns such

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 36

as the synthesis of pointer functions and of double de-referenced pointers
accesses that are usually not supported by commercial tools. These patterns are
used especially when the application has irregular memory access to the
memory, like in the EVEREST Probabilistic Time-Dependent Routing (PTDR).
Indeed, this algorithm works on sparse graphs using such pattern.

The tool has a partial support for standard libraries such as libc and libm and a
complete support for single and double precision basic arithmetic functions. An
experimental port of the ac_types Mentor Graphics library allowing C++
specifications with arbitrary integer/fixed-point precision arithmetic has been
integrated into Bambu. The tool supports both the types used by Mentor
Graphics (ac_types) and the ones supported by Vitis HLS (ap_types). These
types can be used to explore custom representations of the data and reduce the
resource requirements of the accelerators.

If the frontend compiler is based on Clang/LLVM, Bambu can perform high-level
synthesis starting directly from LLVM Bitcode File Format (REQ 4.2, D2.2

MLIR interfacing
Bambu will be extended by interfacing directly via the affine MLIR dialect (REQ
4.3, D2.2). This will allow for a tighter integration with the DSL compilation flow
(cf Figure 8), enabling rich information passing between the tools. The affine
dialect represents loops as polyhedral-friendly structures and offers loop and
memory operations. The affine dialect classifies values as symbols, dimensions,
and non-affine values. The type of symbols and dimensions must be index.
Symbols represent an unknown quantity that can be treated as a constant for a
region of interest - loop body; symbols are, thus, loop invariant variables.
Dimensions correspond to the dimensions of the underlying structure being
represented. Dimensions have the same constraints as symbols, except they can
also accept induction variables of the affine loops. Affine dialect offers several
operations, of which affine.for is the most important one. It represents a loop
nest with one region with one block as its body. The block usually has one
argument: the induction variable of the loop. Index bounds have the same
restrictions as dimensions and symbols. These constructs are widely used in HPC
and ML kernels and their optimization can bring significant benefits. Other
dialects can be lowered to the affine dialect, so interfacing with this dialect is not
too restrictive. The following textual description shows an example of affine MLIR
description.

func @example(%arg0: memref<1000xi32>) {
 affine.for %arg1 = 0 to 1000 {
 affine.load %arg0[%arg1]
 %1 = mul %0, %0
 affine.store %1, %arg0[%arg1]

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 37

 }
 return
}

MLIR provides the concept of passes to expose entry points for IR analyses and
transformations; they are implemented as program traversers to either collect
useful information or apply transformations. MLIR passes are often used to
convert one dialect to another, as well. This use case is helpful for moving to
another abstraction level. For example, affine dialect can be lowered to standard
dialect, which can then be lowered to the LLVM dialect - the middle step between
MLIR and LLVM IR. This is the approach we will follow to interface affine MLIR
descriptions with the high-level synthesis tool Bambu. This is particularly
important to directly interface with the dialects defined for HPC kernels (cf.
Section 3.2 and Figure 8) and for the ML compilation flow (cf. Section 3.3). The
.ll file generated with these lowering steps can be passed to Bambu HLS as is.

OpenMP support
Bambu supports the efficient generation of accelerators for graph kernels. The
methodology enables the programmer to naturally write shared memory graph
algorithms annotated with OpenMP-like pragmas and using atomic memory
operations while generating related architecture templates that maximize
external memory utilization through latency tolerance (see Figure 13 for the
architectural template used by Bambu).

Figure 13 - Architectural template associated with the OpenMP oriented synthesis [16]

In EVEREST, the Probabilistic Time-Dependent Routing (PTDR) application
contains irregular memory accesses that can be parallelized with OpenMP for
pragmas. Bambu supports the synthesis of OpenMP parallel applications with a
pattern similar to the following one:

 void atomic_update(...) {
 #pragma omp atomic

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 38

 update_results(...);
 }

 void loop_iteration(size_t i, ...) {
 {...} // loop body X
 atomic_update(...);
 {...} // loop body Y
 }

 void parallel_loop(...)
 {
 #pragma omp parallel for
 for (size_t i = 0; i < N; ++i)
 loop_iteration(i, ...);
 }
 void top_function(...) {
 {...} // code block A
 parallel_loop();
 {...} // code block B
 }
The current implementation requires that the parallel loop body and the parallel
functions are wrapped in standard C functions (REQ 4.12, D2.2). Pragma omp
for support will be extended by adding dynamic/static scheduling attributes
management. Another thing added to the current high-level synthesis of
OpenMP for is the support of OpenMP for reductions. Support to data-sharing
attributes will be improved as well.

4.2 Vitis high-level synthesis flow
Xilinx Vitis/Vivado HLS is a commercial high-level synthesis tool based on LLVM.
It includes a complete design environment with several important features to
fine-tune the generation of hardware accelerators. C, C++ (REQ 4.1, D2.2) and
SystemC are accepted as input, and hardware modules are generated in VHDL
(REQ 4.5, D2.2), Verilog (REQ 4.4, D2.2) and SystemC. During the compilation
process, it is possible to apply different optimizations, such as operation
chaining, loop pipelining, and loop unrolling. Furthermore, different parameter
mappings to memory can be specified. Streaming or shared memory type
interfaces are both supported to simplify accelerator integration. In EVEREST,
Vitis HLS will be used as alternative high-level synthesis flow, and the upstream
compiler should use VITIS pragmas to steer optimizations. In addition to this,
the compiler should insert the appropriate pragmas and annotations for:

• the top function specification (REQ 4.6, D2.2);
• the Block level/Top component interfaces (REQ 4.7, D2.2);
• the port-level interfaces (REQ 4.8, D2.2);
• the constraints for the clock and the resources (REQ 4.10, D2.2)

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 39

4.3 Memory generation flow
Our memory generation flow is based on Mnemosyne [17]. Mnemosyne is an
open-source CAD tool for the generation of local memory architectures. These
memory architectures are targeted for loosely-coupled hardware accelerators
where each accelerator is composed of computation logic and private local
memories (PLMs). This separation between computational logic and memory
simplifies the integration with HLS that can be executed in parallel.

The computation logic performs the functionality of the accelerator and is
assumed to have a standard interface for the memory ports. This is a valid
assumption for most of the HLS tools (e.g., Xilinx Vivado HLS or Bambu) that
can be used to generate such logic. Figure 14 shows an example of accelerator
interface before HLS and the corresponding hardware module. Mnemosyne
decouples the optimization of the computational logic and, more in general, the
memory subsystem. This is an important aspect in EVEREST to separate the
optimization of data communication and storage, and the optimization of the
computational aspects. The accelerator logic will interface only with the
Mnemosyne-generated memory infrastructure, while the coordination of data
transfers will be transparently executed.

The memory ports of the accelerator can be then connected to one of the PLM
elements. Mnemosyne assumes the following ports and behaviour (where x in
an identifier of the interface):

• CEx (chip enable): this signal must be active every time there is a valid
operation on the memory

• Ax (address): this signal carries the address of the request.
• WEx (write enable – only for write ports): this signal must be activated

when the write request is active
• Dx (data in – only for write ports): this signal carries the value to be written

into the memory
• Qx (data out – only for read ports): this signal carries the value read from

the memory

All command signals (i.e., CE and WE) are active high. This definition addresses
requirement REQ 4.15, D2.2. In case of different interfaces of the accelerator
logic or the other system component, the system integration logic will introduce
proper adapters).

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 40

Figure 14 - Example of accelerator interface and connection to the PLM elements

The PLMs store the data structures needed for the computation. Mnemosyne-
generated PLMs guarantees that the accesses have fixed latency (one clock
cycle) by using multiple memory banks implemented with Intellectual Property
(IP) blocks to offer multiple ports for concurrent accesses (e.g., FPGA BRAMs).
Each physical bank is generally expressed as a vendor macro and requires a
wrapper with the same interface and semantics described above. These
wrappers must be generated only once for every new technology.

Mnemosyne optimizes the PLM architecture by analysing certain characteristics
of the system. Mnemosyne takes as input information on the data structures to
be stored in the PLMs, the compatibilities between these data structures, and
details on the memory interfaces for each accelerator. The accelerator memory
interfaces are used to automatically determine port direction and simplify
integration. By using this information, Mnemosyne shares the physical memory
banks whenever possible and generates RTL for this optimized memory
architecture. The produced RTL is generated in Verilog (REQ4.4, D2.2).
Currently, VHDL backend is not planned but this limitation does affect the
integration with other components.

To identify sharing opportunities, Mnemosyne looks for data structure
compatibilities. In many cases, data structures are not used throughout the
entire duration of execution. While a data structure is unused, the memory IP it
resides in is wasted space and could be used for storing a different data
structure. To determine which data structures can share the same physical
memory banks, their lifetimes must be known. The lifetime of a data structure
is the interval between the first write and last read of the data structure. If two
data structures have disjoint lifetimes, that means only one of them is active
and valid at a time. This means they can fully share the same physical memory
IPs and use the same address space. These data structures are considered
address-space compatible. In some technologies, the area of one IP is smaller
than the area of smaller individual IPs combined to store the same amount of
data. Also, if a data structure is much smaller than the smallest available
memory IP, the remaining memory space is wasted. In either case, storing two
smaller data structures in one larger physical memory IP, if there are no port
conflicts, would save this extra overhead area. If it can be confirmed that these
two data structures are never read from at the same time or written to at the

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 41

same time, then they are memory-interface compatible and can be allocated
within the same memory IP.

The metadata required as input to Mnemosyne are formatted as YAML files. This
format affects the metadata produced by the compiler to pass memory-related
information (REQ3.10, D2.2). The information about the data structures to be
stored in the PLM are formatted as follows:
arrays:
 - name : A0
 width : 2048
 height : 16
 interfaces : [w, r, r]
 - name : [...]
 [...]

“name” is the name of the data structure, “width” is the bitwidth of each element,
“height” is the number of elements to be stored, and “interfaces” is a list of
all interfaces required by the accelerator to access the data structure (write must
be listed first, then read/write, and lastly read). The compatibilities between the
data structures (the memory compatibility graph) are formatted as follows:
nodes: [A0, B0, C0]
 edges:
 - compatibility : [A0, B0]
 type : a
 - compatibility : [A0, C0]
 type : b
 - compatibility : [...]
 [...]

“nodes” is the list of all data structures to be stored in the PLM (and must match
the data structures described in the previous file) and “edges” describes each
compatibility between a pair of compatible nodes. “compatibility” is a list of
the two compatible nodes and “type” is the type of compatibility between them
where “a” is an address-space compatibility and “b” is a memory-interface
compatibility. If a pair of nodes is not listed, they are conservatively assumed to
have no compatibility.

During EVEREST, Mnemosyne will be extended to include more memory
components based on the information coming from the compilation flow. For
example, it will automatically include a DMA engine for making the accelerator
able to perform autonomous data transfers and prefetchers to hide the
communication latency by anticipating data transfers. All components will then
interact with the physical memory or ethernet controllers made available by the
target platform. This integration will rely on standard interfaces, like AXI
(REQ4.14, D2.2) and will be managed during system integration. Also, the

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 42

Mnemosyne-generated memory architectures will include variants that can
perform data transfers in different ways (e.g., variable lengths of data bursts,
format, or source-destination). The memory architecture will expose an
additional set of input ports that will represent the configuration to be activated.
These ports will be interfaced with the autotuning part for dynamic management
(REQ5.8, D2.2).

Finally, security extensions will be added during the generation of the memory
architecture, like automatic encryption/decryption of the memory data. The use
of intelligent data management will allow for an automatic management of such
operations that minimize the performance overhead.

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 43

5 Target platform and system integration

5.1 FPGA-based target platform
Using energy-efficient and heterogeneous platforms containing FPGAs are a
main focus of EVEREST (among others REQ9, D2.1, GREQ2, D2.2). EVEREST
targets two state-of-the-art research platforms that leverage the FPGAs with
different design paradigms, both will be described in the following.

Those platforms will feature one or more FPGAs and one or more physical
memories (either local or external to the FPGA), as shown in Figure 15. For both
types of platform, at least one CPU host is required that run Linux as Operating
System and the software (SW) part of the application. The application can
communicate with the accelerated hardware (HW) kernels either via tightly-
coupled OpenCAPI connection or via a loosely-coupled network (UDP/TCP/IP)
connection, depending on the platform. In the latter case, the application may
consist of multiple network-attached FPGAs. The first platform will be referred
to as “OC-Accel”, the latter as “cloudFPGA (cF)”.

Both systems abstract the development of deployment of FPGA applications and
therefore offer a high flexibility to the EVEREST consortium to account for
interoperability and portability of the developed accelerated solutions to different
platforms (even out of EVEREST’s platforms). This abstraction is enabled by a
predefined set of interfaces. To achieve portability for EVEREST workflows, the
interfaces between the SW part of the application (left hand side of Figure 15)
and the HW kernel (right hand side of Figure 15) will be based on a unified set
of interfaces.

In the FPGA, the accelerated kernels in both platforms are interfaced solely via
AXI channels. Both OC-Accel and cF provide a Memory Mapped I/O register
access over an AXILite bus to pass runtime parameters, as well as a full AXI
master bus to access the memory. CF also enables AXI-stream based access.
Differences exists in the number of AXI master buses to connect the accelerators
to the FPGA DRAM channels or HBM, depending on the specific FPGA platform.
Please note, that the EVEREST approach is not limited to these platforms,
because the specified HW/SW interfaces can be easily ported to other, similar
FPGA platforms.

The OC-Accel logic and the cF logic will be referred to as platform specific “Shell”.
Those Shells implement all the necessary low-level processing of the
communication or memory links respectively, to provide those AXI interfaces
(cf. REQ4.14, D2.2). This way the compiler is only required to generate the
accelerators with this higher-level interfaces. AXI interfaces are standardized
and commonly used in the FPGA design ecosystem and supported by HLS tools.

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 44

Based on the selected platform, the compiler chooses the subset of necessary
interface connections (e.g. with or without stream access, or with or without
HBM). Due to this approach, the application can be generated independently of
the final platform, to a large extend. Additionally, this also enables high
reusability of compiler-backend modules developed for these FPGA target
platforms (REQ3.11, D2.2).

Similarly, a set of unified interfaces will be provided at the SW side. This unified
interface will be a wrapper to the platform specific APIs. As can be seen in the
upper left corner of Figure 15, OC-Accel relies on the libcxl user-space and the
ocxl kernel-space libraries. On top of them a C/C++ interface is provided and
based on that, different language can bind to those libraries.

On the other side in the lower left corner of Figure 15, cF requires TCP/UDP
sockets and needs to know the IP addresses and ports of the corresponding
network-attached FPGA. This library is written in C++ and again it can be used
by multiple language-binding tools. The cF platform also provides a development
kit that contains build scripts, test cases and necessary SW/HW abstractions.
This development library is referred to as “cloudFPGA Development Kit (cFDK)”.

Figure 15 - EVEREST FPGA IDE with unified interfaces

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 45

5.2 System integration
5.2.1 Hardware integration
After generating the accelerator kernels and the memory architecture, the
components must be interfaced with the rest of the system and the subsequent
logic synthesis tools for bitstream generation. Synthesis options and constrained
will be specified to the single HLS tools and memory generators (REQ4.10, D2.2)
via command-line options and meta-data information.

Before logic synthesis and bitstream generation, it is necessary to create the
complete system description that includes the generated components and
additional IPs, like soft IPs to interface with the physical memory controller and
the ethernet controllers, hardware monitors for runtime selection (REQ5.9,
D2.2) and hardware API for exchange information virtualization environment
(REQ5.11, D2.2). Such components will be described in a component library with
standard formats (e.g., IP-XACT). Similarly, HLS-generated components will
follow a standardized interface (REQ4.7, REQ4.8, and REQ4.9, D2.2) In the case
of cloudFPGA, the generated system will be placed in the Role module and
interfaced with the Shell module through standard interfaces (REQ4.14, D2.2).

To do so, EVEREST will develop Olympus, which is an automated system
integration tool for creating such architecture. It will integrate all components,
also creating parallel accelerator architectures from a high-level description. This
is particularly important for the applications of the project that include massively
parallel computation (e.g., WRF simulations).

Olympus generates a memory system wrapper for parallelization of the RTL
modules of the Private Local Memory (PLM) architecture. From the total number
of available resources and the resource estimates of the accelerator and the PLM
architecture, maximum degrees of parallelism can be determined. Let m be the
number of PLM architecture instances that can be instantiated on the platform
(based on the available number of BRAMs and the requirements of the optimized
Mnemosyne units), and k be the number of accelerators that can be instantiated
(based on the available logic resources and the ones required after HLS).
Olympus will generate an architecture with the following assumptions:

• k must be less than or equal to m, since an accelerator can only execute
if it has a corresponding PLM architecture available.

• k can be less than m so that one accelerator can execute several iterations
in sequence using several pre-loaded PLM architectures (in case, for
example, the DMA engine and the prefetchers will be used to hide
communication latency.

Depending on the values of m and k, Olympus will automatically generate an
RTL wrapper which instantiates all memory modules for the entire system and
connects them with the necessary control logic so that external memory access

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 46

is completely transparent. Similarly, Olympus will provide the necessary logic to
handle streaming interfaces (REQ3.4, REQ4.11, D2.2), if needed.

Olympus will also perform system partitioning to divide the computation
across multiple FPGA cards in a transparent way with respect to software
allocation and execution (REQ4.17, D2.2). To do so, it generates the logic to
interface with the Ethernet controller in case of off-chip data transfers from/to
other boards and data exchanges with the host. This logic will hide the
communication details to the accelerators and the local memory architectures.

Finally, Olympus will automatically generate TCL scripts to create the system
descriptions and interface with the rest of the system (e.g., cloudFPGA Shell)
and synthesis tools. The flow will generate single descriptions and bitstreams for
each of the target boards.

5.2.2 Hardware-software interfacing
Olympus also simplifies and automates hardware/software integration by
automatically generating the host code that interfaces with the generated
hardware. Such code will be based on the low-level libraries provided for the
target platform (e.g., the cloudFPGA Development Kit) where common functions
(like data bursts and more complex/secure data transfers) will be abstracted in
software libraries (to be used at the host side during code generation) and
hardware IP components (to be used at the FPGA side during hardware
integration). Such integration will be completely transparent to the application
designers.

5.2.3 Hardware-software security flow
As discussed in Section 2.5, our goal is to provide security support for inter and
intra-node mechanisms. Application designers should annotate the
communication between software components (e.g., in a workflow or dataflow
graph) to specify the required security functionality at the inter-node level, to
define the nodes.

The envisioned automation flow to extend the SW-HW system with required
security capabilities is depicted in Figure 16. The EVEREST platform will be
extended with a library with security primitives that are needed to ensure the
required security properties (developed in WP3). The library will include
primitives implemented in hardware (at RTL level), in software (that can be used
in the system as software, but they can even be the starting point for generating
hardware using high level synthesis), and will be connected with the rest of the
system by means of a standardized interface, such as AXI. Regardless of the
implementation, security components will be integrated in the system in a
transparent way for the rest of the application (or, at least, in the most
transparent way possible). Furthermore, the designer must be able to specify

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 47

the composition of a logic node, simply instantiating the elements that compose
it. The first step of the flow is the creation of logical nodes when the logic node
is defined. To do so, the primitives needed to create the virtual enclave will be
automatically selected from the ones included in the library and the node
architecture will be extended with them. Where needed, communication will be
re-routed to make use of the instantiated primitives. In the second step, we will
handle the inter-node security requirements. In this case, the most appropriated
security primitive will be automatically selected based on the policies defined in
WP3 from the ones present in the library and the node architecture will be
extended with the necessary components (either software or hardware). The
selection of the primitives, in this case, will be based on the inter-node
requirements specified, for instance, with the dataflow DSL (cf. Section 3.1).
The flow will then continue with the other steps.

For the EVEREST use cases, the specification of the requirements will be done
according to the requirements collected in D2.3: all the applications require the
enforcement of inter-node data confidentiality and authentication and, in some
cases, also the tracking of the information flow. Intra-node security
functionalities will be provided to ensure the maximum flexibility in allocation of
node resources to all the application.

Figure 16 - Envisioned flow for providing encryption, authentication, and information flow tracking in

EVEREST.

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 48

To exemplify the concept, let’s begin to realize the nodes at the application level.
For instance, for the traffic prediction model, we need to run specific machine
learning algorithms on distributed resources including FPGAs and CPUs. Let’s
imagine that, within that application, we need a logical node that includes FPGAs
and CPUs, and that they should be completely isolated from the rest of the
resources. Since the algorithm will be executed on FPGAs and CPUs, our node
will be formed by a logic enclave containing FPGAs and CPUs. Regardless of their
physical placement, these computing elements will be logically isolated by the
appropriated cryptographic primitives from the library. The definition of enclaves
shall be integrated with the resource definition Hyperloom/HyperTools (cf.
Section 3.1.1).

Once the nodes are defined, we need to ensure the security of the
communications, for instance, the confidentiality between the traffic simulator
and the traffic prediction model. Similar to what is done for defining the nodes,
we will define a communication channel between the traffic simulator and the
traffic prediction module. The communication channel definition will include the
security functionalities that needs to be ensured (in our case confidentiality).
From this, the hardware modules needed to ensure confidentiality will be
automatically inferred and instantiated in the architecture.

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 49

6 Compilation Technologies: Advancing the State of the
Art

The previous sections of this deliverable list several technologies, with focus on
the frameworks, languages, compilers, intermediate representations, high-level
synthesis and hardware generation tools that will serve as the basis for the
compilation flow in the EVEREST SDK. To make the contributions to the state of
the art more explicit, this section provides details on the original status of the
technologies, the foreseen extensions thereof, and envisioned new technologies
to be developed within EVEREST. Since the project is ongoing, the list provided
here is by no means exhaustive. We also discuss how our contributions
complement and, if applicable, compare to existing commercial tools.

6.1 Technologies Overview
Table 1 presents an overview of the different components of the compilation
framework. For each component (Tool column), the table names the main lead
and whether the tool originates from a partner of the consortium or if it is
maintained by an external entity (Source column). The next two columns
express whether the tool will be completely developed within the EVEREST
project (New column), or if it already existed and was extended in the project
(Extended column). In either case, the table describes the major features these
components will have. The final column of the table lists the major tool flow in
which the component will be integrated at first.

While the table provides a tool-specific view, it is to be noted, that a major
contribution of EVEREST lies in building a framework in which these tools can
seamlessly operate to provide a transparent and efficient use of the EVEREST
platform. Only by investigating tool interfaces, identifying possible mismatches
between tool abstractions and finally building an end-to-end tool flow in such a
collaborative approach can one achieve the holistic approach envisioned by
EVEREST.

The description of the tools in the table is kept succinct, since they are the matter
of ongoing research within the project. Details on the tools themselves, the new
features and how they are implemented will be provided in subsequent
deliverables, most notably, in Deliverable 4.2.

The first three entries of the table correspond to the languages and intermediate
languages defined in Section 3. For instance, TeIL-mlir will integrate into the
MLIR language stack as described in Figure 8. Most likely, other smaller dialects
will be needed to implement abstract scalars types that can be then mapped to
custom number representations. DOSA is a framework that shall automatically
select ML operators provided by existing frameworks so as to improve the
system efficiency while providing support for distributed execution across FPGAs.

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 50

As discussed above, we will initially rely on the TVM framework to manipulate
the ML model.

WRF is an external framework that we will extend to be able to extract kernels
that can be then offloaded to reconfigurable accelerators. This includes
modifications to the build system, to the interfaces of modules and a new testing
infrastructure. As mentioned in Section 2.2, we will initially focus on the radiation
module. To expose more parallelism, we plan to extend the default WRF setup
with a the recently proposed RTE RTMGP module.

As discussed in Section 4, Bambu and Mnemosyne are two tools developed by
partners of EVEREST that will be used for hardware generation. In contrast to
many other tools, Bambu is an open-source HLS tool. Within EVEREST, Bambu
will be extended to receive MLIR, allowing for a tighter interaction between the
DSL compiler and the HLS flow. To demonstrate interoperability, the compilation
framework will also support downstream commercial HLS tools, such as
Vitis/Vivado from Xilinx/AMD. Mnemosyne will be extended to receive high-level
buffer life-time information from the DSL compiler. Since the DSL generates
code for kernels, and these kernels can be generated to work on different data
granularities, a new tool called Olympus will be designed that composes
accelerators, sets up the HW interfaces and ultimately produces the final design.

Finally, for network-attached FPGAs, we will rely and extend the cloudFPGA SDK
(cFDK). This will initially focus on providing support for the ML workload of the
EVEREST use cases.

Table 1. Summary of the technologies in the EVEREST compilation framework

Tool Lead Source New Extended New features Validated in
TeIL-mlir TUD Internal Yes Yes MLIR implementation of the

TeIL language specification,
domain optimizations,
optimizer driver

Integration and
unit tests;
DSL-to-FPGA
flow

CFDlang TUD Internal No Yes New compiler infrastructure
based on MLIR, extended
primitives, implemented
new intermediate language,
new frontend, new
optimizations, extended
language support

DSL-to-FPGA
flow

Ohua TUD Internal No Yes Improved support for Rust
and Python, implemented
dataflow transformations
for batching, state update
and roll-back

PTDR flow

DOSA IBM Internal Yes Yes all (partitioning of ONNX,
analysis and reuse of
existing libraries, automatic
system generation,
improved heterogeneous
communication library)

End-to-end
analysis of ML
flow

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 51

TVM IBM External No Yes Minor improvements in
ONNX parsing

End-to-end
analysis of ML
flow

WRF CIMA External No Yes Isolation of the RRTMG
radiation driver, Modified
allocation strategy, testing
infrastructure

WRF flows,
stand-alone
validation,
DSL-to-FPGA
flow

RTE RTMGP TUD External No Yes Interfacing external module
that exposes more
parallelism into the WRF
simulation

WRF flows

Bambu PDM Internal No Yes Custom floating-point
support, loop pipelining,
MLIR interfacing

DSL-to-FPGA
flow and ML
Flow

Mnemosyne PDM Internal No Yes Automatic generation of the
input metadata

DSL-to-FPGA
flow

Olympus PDM Internal Yes Yes Automatic generation of the
system/memory
architecture

DSL-to-FPGA
flow

Vitis HLS Xilinx External No No None DSL-to-FPGA
flow and ML
Flow

cFDK IBM Internal No Yes Stabilization of platform,
improvement of
networking, new build flow,
new debugging flow, more
tools to support the user,
improved documentation

ML flow

6.2 Added Value to Commercial Tools
As mentioned multiple times, the main goal of the EVEREST SDK is to integrate
technologies so as to provide a better end-result than with fragmented tools.
This includes aspects such as increased productivity, i.e., making reconfigurable
hardware accessible to application experts, and system efficiency, i.e., making
it possible for the framework to explore configurations that are not possible with
existing (commercial) tools.

Concretely in the case of commercial tools, we make explicit how the framework
can rely on tools like Vitis (cf. Figure 11). For instance, in [18] we show that by
implementing high-level transformations in the DSL compiler, not available to
the HLS tools, the accelerator’s throughput increases from around 3 GFLOPs to
43 GFLOPs.

DOSA builds atop existing ML frameworks such as hls4ml, haddoc2, FINN
VitisAI/DPU and Vitis AI/custom, by automatically selecting the best operator for
a given FPGA. With the exception of VitisAI/DPU, DOSA is the only framework
that supports distributed model execution on FPGAs. In contrast to FINN, DOSA
does so with a set of scripts, requiring no user intervention. In terms of ease of
use, DOSA is as easy to use as hls4ml which is limited to a single FPGA.

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 52

From the tools presented in Table 1, Bambu does have an overlap with
commercially available tools. Bambu, like many others, supports operator
chaining, bit-width analysis and optimization, memory space allocation,
speculation and code motion [19], and if-conversion transformations. It also
supports spatial parallelism through OpenMP annotations [16]. Moreover, it is
the only HLS tool that can start both from the intermediate representations
generated by Clang and GCC. More importantly for this project, Bambu accepts
MLIR and LLVM as input. While XILINX recently open-sourced their Clang/LLVM
front-end, it is well-documented by developers that the subset of the accepted
LLVM IR is restricted. The MLIR entry point of Bambu has been already leveraged
by the Soda-opt compiler [20]. In terms of quality of results, as shown in [21],
Bambu is on par or better than a well-known commercial tool, LegUp (later
commercialized), and to the academic HLS tool Dwarf.

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 53

7 Conclusions
In this deliverable we have defined how to architect the complex compilation
framework to transparently and automatically compute efficient execution
implementations for the use cases on the EVEREST Platform. We have shown
how language support, frameworks extensions, novel intermediate languages
and transformations in source-to-source compilers, and extension to HLS tools
and memory generators can seamlessly interoperate to produce efficient HW
and SW implementations. This document described the concrete implementation
plans in work package WP4 and provided early insights into the interaction with
work packages WP3 and WP5. Stronger connections to these work packages will
be made, as the use case implementation advances and the runtime
environment is brought up.

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 54

8 References

[1] V. Cima et al., “HyperLoom: A Platform for Defining and Executing Scientific

Pipelines in Distributed Environments,” in Proceedings of the 9th Workshop
and 7th Workshop on Parallel Programming and RunTime Management
Techniques for Manycore Architectures and Design Tools and Architectures
for Multicore Embedded Computing Platforms - PARMA-DITAM ’18,
Manchester, United Kingdom, 2018, pp. 1–6. doi:
10.1145/3183767.3183768.

[2] A. Susungi, N. A. Rink, A. Cohen, J. Castrillon, and C. Tadonki, “Meta-
programming for cross-domain tensor optimizations,” in Proceedings of the
17th ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences, Boston MA USA, Nov. 2018, pp. 79–92. doi:
10.1145/3278122.3278131.

[3] N. A. Rink and J. Castrillon, “TeIL: a type-safe imperative tensor intermediate
language,” in Proceedings of the 6th ACM SIGPLAN International Workshop
on Libraries, Languages and Compilers for Array Programming - ARRAY 2019,
Phoenix, AZ, USA, 2019, pp. 57–68. doi: 10.1145/3315454.3329959.

[4] C. Lattner et al., “MLIR: A Compiler Infrastructure for the End of Moore’s
Law,” ArXiv200211054 Cs, Feb. 2020, Accessed: Mar. 26, 2021. [Online].
Available: http://arxiv.org/abs/2002.11054

[5] T. Chen et al., “TVM: An Automated End-to-End Optimizing Compiler for Deep
Learning,” in Proceedings of the 13th USENIX Conference on Operating
Systems Design and Implementation, USA, 2018, pp. 579–594.

[6] Apache TVM. [Online]. Available: https://tvm.apache.org
[7] D. Gadioli, E. Vitali, G. Palermo, and C. Silvano, “mARGOt: A Dynamic

Autotuning Framework for Self-Aware Approximate Computing,” IEEE Trans.
Comput., vol. 68, no. 5, pp. 713–728, May 2019, doi:
10.1109/TC.2018.2883597.

[8] S. Ertel, C. Fetzer, and P. Felber, “Ohua: Implicit Dataflow Programming for
Concurrent Systems,” in Proceedings of the Principles and Practices of
Programming on The Java Platform, Melbourne FL USA, Sep. 2015, pp. 51–
64. doi: 10.1145/2807426.2807431.

[9] J. Launchbury and S. L. Peyton Jones, “Lazy functional state threads,” ACM
SIGPLAN Not., vol. 29, no. 6, pp. 24–35, Jun. 1994, doi:
10.1145/773473.178246.

[10] S. Ertel, A. Goens, J. Adam, and J. Castrillon, “Compiling for concise code
and efficient I/O,” in Proceedings of the 27th International Conference on
Compiler Construction, Vienna Austria, Feb. 2018, pp. 104–115. doi:
10.1145/3178372.3179505.

[11] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe, “The tensor
algebra compiler,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA, pp. 1–29,
Oct. 2017, doi: 10.1145/3133901.

[12] N. Vasilache et al., “Tensor Comprehensions: Framework-Agnostic High-
Performance Machine Learning Abstractions,” ArXiv180204730 Cs, Jun.

http://www.everest-h2020.eu

D4.1 – Definition of the compilation framework 55

2018, Accessed: Jul. 22, 2021. [Online]. Available:
http://arxiv.org/abs/1802.04730

[13] N. A. Rink, A. Susungi, J. Castrillon, J. Stiller, and C. Tadonki, “CFDlang:
High-level code generation for high-order methods in fluid dynamics,” in
Proceedings of the Real World Domain Specific Languages Workshop 2018 on
- RWDSL2018, Vienna, Austria, 2018, pp. 1–10. doi:
10.1145/3183895.3183900.

[14] PandA/Bambu - A framework for Hardware-Software Co-Design of
Embedded Systems. [Online]. Available: https://panda.deib.polimi.it/

[15] Xilinx Inc., “Vivado Design Suite User Guide: High-Level Synthesis.”
[Online]. Available: http://xilinx.com

[16] M. Minutoli et al., “Svelto: High-Level Synthesis of Multi-Threaded
Accelerators for Graph Analytics,” IEEE Trans. Comput., pp. 1–1, 2021, doi:
10.1109/TC.2021.3057860.

[17] Mnemosyne: Multi-Bank Memories for Heterogeneous Architectures.
Politecnico di Milano and Columbia University. [Online]. Available:
https://github.com/chrpilat/mnemosyne

[18] S. Soldavini, K. F. A. Friebel, M. Tibaldi, G. Hempel, J. Castrillon, and C.
Pilato, “Automatic Creation of High-Bandwidth Memory Architectures from
Domain-Specific Languages: The Case of Computational Fluid Dynamics.”
arXiv, Jun. 03, 2022. Accessed: Jun. 28, 2022. [Online]. Available:
http://arxiv.org/abs/2203.10850

[19] M. Lattuada and F. Ferrandi, “Code transformations based on speculative
SDC scheduling,” in 2015 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), Austin, TX, USA, Nov. 2015, pp. 71–77. doi:
10.1109/ICCAD.2015.7372552.

[20] N. B. Agostini, S. Curzel, D. Kaeli, and A. Tumeo, “SODA-OPT an MLIR
based flow for co-design and high-level synthesis,” in Proceedings of the 19th
ACM International Conference on Computing Frontiers, Turin Italy, May 2022,
pp. 201–202. doi: 10.1145/3528416.3530866.

[21] R. Nane et al., “A Survey and Evaluation of FPGA High-Level Synthesis
Tools,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 35, no.
10, pp. 1591–1604, Oct. 2016, doi: 10.1109/TCAD.2015.2513673.

