

http://www.everest-h2020.eu

dEsign enVironmEnt foR Extreme-Scale big data
analyTics on heterogeneous platforms

D2.2 – Definition of Language Requirements

The EVEREST project has received funding from the European Union’s
Horizon 2020 Research & Innovation programme under grant agreement
No 957269

Ref. Ares(2022)5178706 - 15/07/2022

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 2

Project Summary Information
Project Title dEsign enVironmEnt foR Extreme-Scale big data analyTics on

heterogeneous platforms
Project Acronym EVEREST
Project No. 957269
Start Date 01/10/2020
Project Duration 36 months
Project website http://www.everest-h2020.eu

Copyright
© Copyright by the EVEREST consortium, 2020.

This document contains material that is copyright of EVEREST consortium members and the
European Commission, and may not be reproduced or copied without permission.

Num. Partner Name Short Name Country
1 (Coord.) IBM RESEARCH GMBH IBM CH

2 POLITECNICO DI MILANO PDM IT
3 UNIVERSITÀ DELLA SVIZZERA ITALIANA USI CH
4 TECHNISCHE UNIVERSITAET DRESDEN TUD DE
5 Centro Internazionale in Monitoraggio Ambientale -

Fondazione CIMA
CIMA IT

6 IT4Innovations, VSB – Technical University of Ostrava IT4I CZ
7 VIRTUAL OPEN SYSTEMS SAS VOS FR
8 DUFERCO ENERGIA SPA DUF IT
9 NUMTECH NUM FR
10 SYGIC AS SYG SK

Project Coordinator: Christoph Hagleitner – IBM Research – Zurich Research Laboratory
Scientific Coordinator: Christian Pilato – Politecnico di Milano
The technology disclosed herein may be protected by one or more patents, copyrights, trademarks
and/or trade secrets owned by or licensed to EVEREST partners. The partners reserve all rights with
respect to such technology and related materials. Any use of the protected technology and related
material beyond the terms of the License without the prior written consent of EVEREST is prohibited.

Disclaimer
The content of the publication herein is the sole responsibility of the publishers and it does not
necessarily represent the views expressed by the European Commission or its services. Except as
otherwise expressly provided, the information in this document is provided by EVEREST members
"as is" without warranty of any kind, expressed, implied or statutory, including but not limited to any
implied warranties of merchantability, fitness for a particular purpose and no infringement of third
party’s rights. EVEREST shall not be liable for any direct, indirect, incidental, special or
consequential damages of any kind or nature whatsoever (including, without limitation, any damages
arising from loss of use or lost business, revenue, profits, data or goodwill) arising in connection with
any infringement claims by third parties or the specification, whether in an action in contract, tort,
strict liability, negligence, or any other theory, even if advised of the possibility of such damages.

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 3

Deliverable Information
Work-package WP2
Deliverable No. D2.2
Deliverable Title Definition of Language Requirements
Lead Beneficiary TUD
Type of Deliverable Report
Dissemination Level Public
Due date 31/03/2021

Document Information
Delivery date 20/04/2021
No. pages 38
Version | Status 0.5 | final
Responsible Person Jeronimo Castrillon (TUD)
Authors Jeronimo Castrillon (TUD), Felix Wittwer (TUD), Karl Friebel (TUD),

Gerald Hempel (TUD), Jan Martinovič (IT4I), Stanislav Böhm (IT4I),
Martin Šurkovský (IT4I), Michele Paolino (VOS), Fabrizio Ferrandi
(PDM), Serena Curzel (PDM), Michele Fiorito (PDM), Christian Pilato
(PDM), Stephanie Soldavini (PDM), Gianluca Palermo (PDM),
Dionysios Diamantopoulos (IBM)

Internal Reviewer Francesco Regazzoni (USI)

The list of authors reflects the major contributors to the activity described in the document. All
EVEREST partners have agreed to the full publication of this document. The list of authors does not
imply any claim of ownership on the Intellectual Properties described in this document.

Revision History
Date Ver. Author(s) Summary of main changes

12/02/2021 0.0 Jeronimo Castrillon (TUD) Initial draft
11/02/2021 0.1 Felix Wittwer (TUD) Table of contents
12/02/2021 0.2 Jeronimo Castrillon (TUD) Rephrasing

23/03/2021 0.3 Felix Wittwer, Gerald Hempel, Karl
Friebel, Jeronimo Castrillon (TUD) First complete draft

29/03/2021 0.4

Jeronimo Castrillon (TUD), Jan
Martinovič (IT4I), Stanislav Böhm
(IT4I), Martin Šurkovský (IT4I),
Fabrizio Ferrandi (PDM), Gianluca
Palermo (PDM) and others

Added tables for use cases and
tooling requirements

09/04/2021
15/04/2021
16/04/2021

0.5

Jeronimo Castrillon (TUD)
Dionysios Diamantopoulos (IBM)
Fabrizio Ferrandi (PDM), Christian
Pilato (PDM)

Final pass before first complete draft
Added introduction to HW design

15/06/2022 0.6 Jeronimo Castrillon (TUD)
Revision according to the comments
by the reviewers: Improved
conclusions.

11/07.2022 0.7 Jeronimo Castrillon (TUD) Cleaned up version for resubmission

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 4

Quality Control
Approved by internal reviewer 20/04/2021
Approved by WP leader 20/04/2021
Approved by Scientific Coordinator 20/04/2021
Approved by Project Coordinator 20/04/2021
Revision approved by Sc. Coordinator 12/07/2022
Revision approved by Project Coordinator 12/07/2022

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 5

Table of Contents

1 EXECUTIVE SUMMARY __ 6
1.1 STRUCTURE OF THIS DOCUMENT ___ 6
1.2 RELATED DOCUMENTS ___ 7

2 INTRODUCTION __ 8

3 USE CASE ANALYSIS __ 9
3.1 AIR QUALITY MONITORING __ 9
3.2 RENEWABLE-ENERGY PREDICTION __ 10
3.3 TRAFFIC MODELLING __ 10

4 WORKFLOW ORCHESTRATION __ 12
4.1 PROBLEM DESCRIPTION ___ 12
4.2 REQUIREMENTS __ 13

5 KERNEL COMPUTATIONS __ 14
5.1 PROBLEM DESCRIPTION __ 14
5.2 REQUIREMENTS __ 15

5.2.1 Contextual Requirements ___ 15
5.2.2 Application Requirements ___ 16

5.3 CHALLENGES ___ 17

6 HARDWARE DESIGN CONSIDERATIONS _______________________________________ 18
6.1 HLS PROBLEM DESCRIPTION __ 18
6.2 HLS CHALLENGES __ 18
6.3 FPGA-BASED TARGET PLATFORM ___ 19

7 EXTRA-FUNCTIONAL INFORMATION __ 22
7.1 TIMING CONSTRAINTS ___ 22
7.2 ENERGY EFFICIENCY ___ 22
7.3 DATA SECURITY ___ 22

8 USE CASE AND FRAMEWORK REQUIREMENTS ________________________________ 23
8.1 SUMMARY: PROPERTIES OF THE USE CASES FOR PROGRAMMING SUPPORT ___________________ 23
8.2 REQUIREMENTS ___ 25

8.2.1 Overall Envisioned Flow __ 26
8.2.2 Requirements: Orchestration Large Application Flows (DAGs) ________________________________ 28
8.2.3 Requirements: Language and Compiler __ 29
8.2.4 Requirements: High-level Synthesis and Memory Design ____________________________________ 30
8.2.5 Requirements: Autotuning and Virtualized Environment _____________________________________ 32
8.2.6 Requirements: Use Case Providers __ 34

9 CONCLUSIONS __ 35

10 REFERENCES __ 37

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 6

1 Executive summary
The EVEREST project aims to design a platform for implementing big data
applications with both high performance and edge workloads following a data-
driven model. With the goal of designing the programming interface for this
envisioned platform, we studied the use cases of the EVEREST project. This
document reports on the results of this study and lists requirements on
languages and tooling to be developed for the EVEREST programming
framework. Together with the application requirements reported in D2.1 and the
data requirements formulated in D2.3, they define the work on the EVEREST
design environment to be done in work packages 3-6. Therefore, the three
deliverables D2.1, D2.2, and D2.3 are closely linked and were carefully checked
for consistency. Despite the many links between, e.g., the language and
application requirements, we attempted to make the three documents self-
contained and easy to read. Therefore, some basic requirements are stated in
two or all of the deliverables D2.1-D2.3, because cross-linking all of them would
make the individual documents unreadable.

We observe two different major workload types in the use cases. The first type
is characterized by single-location heavy computational workload (e.g., weather
simulations, or machine learning). The second type corresponds to computation
distributed across loosely coupled systems, like data acquisition tasks. The
highest potential gain achievable by specialized language support is exhibited
by the heavy computational workloads that directly profit from the novel
heterogeneous node architecture of the EVEREST platform. We thus propose a
custom tool flow with tailor-made domain-specific abstractions coupled with
runtime components which enables us to achieve high interoperability and
retargetability at a low cost to users of existing code bases. In addition, to
unlocking the potential of EVEREST nodes, we consider language support for
coordination tasks to better support the second type of workload. We describe
how the proposed language support and associated tooling integrates with
existing code bases and development environment. To accomplish this, we
derive requirements on the different tools and system software of the EVEREST
programming framework, including compilers, runtime auto-tuner, runtime
system and high-level synthesis tools.

1.1 Structure of this document
Section 2 first introduces the overall aim of the EVEREST project. Section 3
breaks down the use cases of the project to identify functionality that could profit
from domain-specific optimizations and hence should be supported by the
EVEREST programming framework. Part of this analysis looks for libraries and
code sections that are shared between the use cases. In Sections 4 and 5,
functional requirements for the language abstractions to be developed are
analyzed and discussed. Section 6 refers to the requirements considerations
related to the FPGA experimental research platforms of EVERETS. Extra-
functional requirements are detailed in Section 7. Finally, Section 8 concludes

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 7

with a detailed requirement analysis on the different components of the
EVEREST programming framework.

1.2 Related documents
This report is closely related to:
D2.1 - Definition of the Application Uses Cases,
D2.3 - Definition of data requirements,
D4.1 - Definition of the compilation framework (M9),
D2.4 - Refined definition of application uses-cases (M24),
D2.5 - Refined definition of language requirements (M24),
D2.6 – Refined definition of data requirements (M24)

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 8

2 Introduction

The EVEREST project will put forward a platform for heterogeneous, distributed,
scalable and secure High-Performance Big Data Analytics (HPDA). The design of
a programming framework and the underlying programming abstractions take a
key role in this undertaking. Providing designers with development tools that are
widely platform agnostic and are able to perform meaningful optimizations on
the code poses a unique challenge. These tools should seamlessly integrate in
current development flows, requiring minor changes to established practices.

The development of the platform and programming framework is driven by three
industry-relevant use cases, namely, renewable-energy prediction, air-
quality monitoring, and traffic modeling. Apart from the high societal
relevance of these use cases, they are excellent representatives of HPDA,
combining challenging high-performance computing, machine learning (ML)
modeling, and state of the art algorithms for decision making. Given the use
cases heterogeneity, established programming practices differ across the
different domains. This makes it even more challenging to design and implement
a seamless programming framework.

This report summarizes the requirements for language abstractions and the
programming framework as a whole. We start by introducing the use cases in
more detail, extracting important underlying computational patterns that can
profit from language and compiler support. One such pattern are HPC and ML
kernels, common to the different use cases as well as the coordination and
workflow aspects of the applications. These aspects will steer the development
of the big data framework and associated language abstractions by means of
dataflow models. We also describe extra-functional constraints that have to be
respected for the different use cases. Finally, we list identified requirements for
the different components of the use cases and the EVEREST programming
framework.

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 9

3 Use Case Analysis
The EVEREST platform will support applications that process large amounts of
data in a distributed setting. In order to better understand the requirements and
find optimization potential in such applications, we first analyze the use cases of
the project with the aim of identifying common bottlenecks and aspects that can
profit from language support.

This section briefly discusses the three use cases, highlighting aspects relevant
for the design of the programming framework. A more detailed presentation of
the use cases can be found in Deliverable D2.1. All use cases are at different
levels of maturity, as is explained in detail in the aforementioned document.

3.1 Air Quality Monitoring
Industrial plants that emit pollution are naturally subject to strict regulation
defining acceptable levels of air quality which must be met. But depending on
the weather situation, the emission dissipation greatly varies. This use case
intends to provide local monitoring of the air quality and weather on site to help
regulating the pollution produced by a plant accordingly. Weather data is
analyzed and used to produce a local weather forecast for a 10km radius around
pollution sources. The resulting information will then be combined with machine
learning approaches to assist in deciding whether or not to postpone emission-
heavy activities at the industrial site.

Figure 1: Air Quality Monitoring Use Case Flow

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 10

The overall structure of this use case is shown in Figure 1. It combines different
functions with different computational requirements and computational
patterns, executed across multiple sites and systems. The largest and
computationally most intense aspect of this application is the generation and
simulation of the weather model using the WRF model. It consists of many
different kernels computing and simulating the different facets that influence
weather phenomena such as cloud movement and radiation. Due to the impact
these kernels have on the computation time of the application, the WRF model
is a key component for acceleration. Given the experience of the partners in
Domain Specific Languages (DSLs) for computational fluid dynamics, these
kernels will serve as initial target for DSL design. From appropriate abstractions,
compilers can be designed/extended in WP4 that lower the code to multi-core
computing nodes with and without FPGA acceleration.

3.2 Renewable-Energy Prediction
To better harvest the potential of Renewable Energy sources, this application
will provide a predictive model to forecast upcoming weather events that may
influence the energy production from renewable sources. It will analyze real-
time weather data and generate a high-resolution weather model that can
produce highly localized weather forecasts hourly or sub-hourly. Artificial
intelligence methods will then be used on the output generated by the weather
model to estimate possible productions by renewable energy sources.

Like the Air Quality use case, this application is mainly built around a weather
model to generate forecasts. Kernel optimization for the model will thus benefit
this use case as well.

3.3 Traffic Modelling
The main focus of this use case is to optimize traffic flows within cities to reduce
congestions and travel times, which in turn can help reducing the pollution
caused by traffic. Based on both historical and real-time traffic data as well as
weather data, a traffic simulation is run in conjunction with a prediction model
to allow the forecasting of high-congestion scenarios and route the traffic
accordingly when routes are requested.

This use case consists of several interconnected workflows that together form a
larger application, as shown in Figure 2. Both the traffic simulation as well as
the traffic prediction model contain kernels that will also profit from performance
improvements brought by the use of custom domain-specific abstractions. By
using higher-level abstractions, it will be possible for these kernels to
transparently leverage the compute efficiency of accelerators implemented on
the reconfigurable fabric of the EVEREST nodes. Apart from kernels, this use
case requires orchestration of the individual workflows, which are either
streaming-based or pure batch processing. Moreover, traffic modeling includes
a prediction model and a traffic simulator. The prediction and simulation access
the same data, so that the orchestration should allow data sharing between
workflows to improve memory efficiency.

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 11

In the next sections we will discuss the specific challenges posed by the use
cases. In order to make solutions to these challenges widely applicable within
the EVEREST framework, we will abstract from the specific issues, focusing on
generalizable solutions.

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 12

4 Workflow Orchestration
The use cases are distributed and thus require support for orchestration among
the different workflows. We will base the discussion in this section on the traffic
simulation use case. A similar analysis applies to the other use cases. In the
particular case of traffic simulation, additional language support maybe required
to optimize the workflow as discussed in the following.

4.1 Problem Description
As outlined in Figure 2, the traffic simulation use case is comprised of four
separate workflows that interoperate with each other. A big data collection
workflow feeds the traffic simulator, which in turn produces output used for the
training of the traffic model and the routing algorithm. Each of these workflows
is computationally intensive. Additionally, loads may vary, depending on the
input size. Thus, efficient scheduling and orchestration at runtime is necessary.

For the collection and processing of large amounts of data, different standard
solutions already exist, making the development of tooling for speeding up this
workflow uncritical. Once a solution is chosen, its potential for optimization may
be investigated in the future.

Both the traffic simulation and the training of the traffic prediction model are
batch operations, being only executed in specific time intervals. HyperLoom [1],
a platform for defining and executing workflow pipelines in large-scale
distributed environments, will be used to orchestrate these workflows.
HyperLoom offers a user-friendly Python interface that eases programmability
and already supports batch operations with task-graph model across distributed
nodes. Stemming from an EVEREST partner, HyperLoom will continue to be
extended to better cater for the EVEREST use cases.

The routing workflow is the most time-critical component of this use case.
Continuously processing a stream of incoming routing requests, its need for
computing power may wildly vary throughout the day. Due to the streaming-
based nature of this aspect of the use case, HyperLoom in its current form is ill-
suited, requiring a different tool for the orchestration of this flow. We will analyze
a solution with a message queuing system for processing the routing requests
and Kubernetes for dynamic resource allocation to adapt to the varying
workload.

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 13

Figure 2: Outline of the traffic simulation use case

4.2 Requirements
Though already a sophisticated platform for describing and executing batch
workflows, HyperLoom still needs to be extended for use in this project. Data
sharing within and across workflows is a concern that should be realized in this
use case to aid computation. This may require HyperLoom to gain a deeper
understanding of the data flow within applications. Previous research by project
partners can be leveraged for this: Ohua [2], a framework for implicit
deterministic parallelism based on extracting and optimizing dataflow graphs
and Reactors [3]–[5], a deterministic actor model, based on dataflow extended
with discrete event semantics. While well-suited for expressing dataflow-based
applications, these two solutions operate at different granularity levels.
HyperLoom operates on entire applications, while Ohua and Reactors do it at the
level of functions within applications.

To better handle the dynamic nature of the applications running on it, the
HyperLoom platform needs to support communicating with the lower layers of
the system like the virtualization infrastructure. For the streaming-based routing
workflow, a framework needs to be found or devised to handle the highly
dynamic nature of the load. Since energy efficiency is a key goal of EVEREST,
unneeded computing resources should be freed and made usable for other
processes. The automatic adaptation of the runtime could employ solutions like
the mARGOt auto-tuner [6].

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 14

5 Kernel Computations
As outlined in Section 3, air quality modeling and renewable-energy prediction
heavily rely on the WRF weather model. In general, most of the computational
power required by such computations is for solving differential equations using
numerical methods. In the case of weather simulations such as WRF, these
mainly include fluid dynamics problems. Apart from them, models of
microphysical processes to simulate radiation are particularly computationally
intensive. For the traffic simulation use case, particle-based simulations are
foreseen. At the time of writing it is unclear what kind of particle interactions
must be supported with languages. This aspect will thus not be further discussed
in this deliverable. In addition to physics simulation, all the three uses cases of
the EVEREST project use simulation data to drive machine learning algorithms.
Such algorithms are dominated by linear algebra operations that have often
been shown to lend themselves to acceleration.

Kernels in physic simulations or machine learning can be conceptually connected
within a dataflow graph. This allows applying optimization techniques on the
kernels themselves without needing to consider the whole application. The
kernels can be interpreted as subsets of general tensor algebra. This view is
often closer to their actual physical or mathematical formulation. These
descriptions can also carry crucial expert knowledge about the problems they
encode, which is lost in lower-level programming languages. This enables more
impactful abstract transformations as oppose to structure-oblivious standard
optimizations. The use cases can thus profit from specialized language and
compiler support for these numerical stencils and general linear algebra kernels.

The rest of this section further explains optimization potential in the kernels that
underlie the WRF model, as they provide our most common form of expert
knowledge. Insights gained from the development of optimizations for WRF
kernels will later also be applied to kernel computations that are part of the
traffic simulation use case and machine learning algorithms. Tensor
optimizations for the latter are widespread in the literature.

5.1 Problem Description
The Weather Research and Forecasting Model [7] is a program for producing
climate predictions and weather forecasts. It is an integral component in at least
two of the three use cases of this project and is also used worldwide, making
the contributions within EVEREST impactful beyond the project itself. The model
code has a modular structure, allowing different components to be enabled and
used as necessary. Each module concerns itself with a different aspect of a
weather simulation, like cloud generation and movement, microphysics
phenomena, or radiation calculations. These kernels are then called in regular
intervals during the simulation, allowing them to update their respective model
parameters. Depending on the complexity of the numerical computations done
within the kernel, the execution times for the modules vary.

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 15

As a result, modules that take especially long to execute, most prominently the
cloud movement, radiation and microphysics modules, are updated less often to
improve latency. This has the side-effect of yielding less accurate data, as certain
variables in the model are only accurate with respect to long-term trends. In
practice, this leads to a simulation missing to capture weather phenomena
associated to highly spatio-temporal processes, such as convection resulting in
thunderstorms. Accelerating these complex modules is a key goal within
EVEREST, partly because it opens up new possibilities for the project’s use cases.

5.2 Requirements
In order to improve the execution time of computational kernels, the numerical
computations they encompass could be described at a higher abstraction level.
Similar work has been done for Computational Fluid Dynamics calculations in the
past by members of the project [8], [9]. By using a high-level DSL, the compiler
has more semantic information about the kernel, enabling data layout
transformations and loop schedules that are no longer evident coming from
lower-level languages like C or Fortran. In the context of this project, existing
DSL abstractions have to be extended to cater for the stencils in the WRF model
and the compiler must be retargeted to generate code for the EVEREST platform.
Most notably, the compiler must generate code both for multi-core CPUs and
FPGAs.

We divide the requirements for the language into two. First, we discuss how the
domain-specific abstractions can be embedded into the use case code
(embedding, cf. Figure 3). We then discuss requirements on the abstraction itself
(mapping, cf. Figure 3).

5.2.1 Contextual Requirements
Standalone DSLs can provide great performance improvements. In reality, DSLs
have to seamlessly integrate with the development environment and respect
constraints imposed by the surrounding code. This includes code surrounding
the kernel itself (e.g., in Fortran) and other components of the programming
stack, such as the language runtime, the operating system and the virtualization
layer (from WP5). More concretely:

• The language must be aware of the immediate surrounding context, such
as data types, data layout and functional conventions. The DSL and its
compiler must encode just enough information to enable integration
without cluttering the design.

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 16

• The user, or preferably the toolchain, must augment the existing codebase
with a customization point that allows invoking the DSL implementation.
In other words, both the tooling and the language must accommodate
their respective parts of a (foreign) calling mechanism.

• In heterogeneous implementations, memory transfers are often needed,
most commonly at the point where execution forks to a different device.
The language should use abstractions that allow the compiler to
automatically insert such transfers. This should to a large extent be
transparent to the programmer.

It is of high importance that these requirements leave the toolchain with as
much freedom to implement a kernel as possible, opening up more opportunities
for optimization. This includes mapping decisions of computations to cores,
threads and FPGA overlays as well as data to memories. Consequently, a
contextual requirement for the DSL language is to be platform agnostic. It should
avoid asserting particular target devices or programming language that it is
embedded in. Retargeting within the compiler should account for platform
specific optimizations.

5.2.2 Application Requirements
Defining and implementing a DSL is always a choice made based on the
observation that there exists a divide between the way requirements and goals
are laid out in the application domain as opposed to the actual implementation
in some more general programming language. What should and should not be
part of a DSL depends on how much of the whole application is deemed relevant.
Given the use case, this yields the following application-specific requirements:

• The DSL must have first-class support for expressing the mathematical
expressions that make up our target application domain. For numerical
simulations of differential equations, the language should support linear
and tensor algebra. Support for stencil operations is also required, i.e. it
must provide a full linear algebra abstraction.

• The DSL must map to an intermediate representation that makes it
amenable to optimizations within the abstract target domain, which should
include mathematical transformations along with more hardware-specific
ones at a lower abstraction level.

• The chosen representation must either build on or enable the use of
existing or standardized infrastructure so that the toolchain can target as
many platforms as possible and interoperate with other tools in the
EVEREST project.

In essence, the chosen mapping of domain- to language elements should provide
a considerable benefit to the user over an implementation in a non-specialized
language. This can be achieved through adopting more concise notations,
reducing the amount of boilerplate code and ambiguity. To improve performance
and other execution metrics, the compiler must be made aware of application
specific and expert knowledge through the language.

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 17

Figure 3: Requirement factors for the Kernel DSL

5.3 Challenges
One of the key challenges in transforming kernels of numerical simulations will
be the stability of the result. In the past, there were attempts to employ
Advanced Vector Extensions 2 in WRF computations to improve the execution
time. This, however, led to highly unstable results and possibly also in numerical
code crashes at seemingly random times, with errors not reproducible at the
same times, which were attributed to the accumulation of floating point
inaccuracy. Hence, special care must be taken when optimizing floating point
operations in kernels, e.g. by comparing the results produced against
unoptimized execution results or another form of gold standard. Other forms of
validation that warrant a physical interpretation could also be aided by a DSL
compiler, though most responsibility is left with the user. Methods for symbolic
analysis of error propagation should be also considered.

Another challenge will be the integration of the DSL into the existing Fortran
compilation flow to ensure that the code produced will link seamlessly to the rest
of the WRF model. This includes integration with the runtime system, mapping
data and synchronizing data transfers. The latter questions will be dealt with in
a future report, once the hardware platform, the virtualization environment and
the interfaces are more precisely described.

In addition to being reconfigurable, some drivers in the WRF model greatly vary
with the evolution of runtime variables. The EVEREST framework should include
provisions to adapt to the application workload. The compiler, in particular,
should at least be able to produce different variants of the code to enable
runtime selection. Should this be insufficient, code generation at runtime in a
“Just in Time” manner will be considered. In this case, the overhead of just-in-
time compilation and synthesis should be constrained so as not to considerably
impact the overall application execution time.

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 18

6 Hardware Design Considerations

6.1 HLS problem description
Field Programmable Gate Arrays (FPGAs) are increasingly becoming an
attractive alternative target, providing valuable efficiency tradeoffs. One key
opportunity afforded by reconfigurable devices is the possibility to continuously
adapt the accelerator architectures to new algorithms, models, and iteratively
provide optimizations without the need to change the device, coping with the
exponential growth of algorithmic research in the area. However, a significant
limitation in using FPGA devices is the requirement to develop the architectures
in low-level hardware design languages (such as Verilog or VHDL), which is
complicated and time-consuming. Traditional software languages allow the
description of sequential instructions that do not depend on the low-level
hardware implementation, while languages such as VHDL or Verilog require a
good knowledge about digital design and circuits to produce efficient results.
Expecting use case developers to follow the design of an application from the
algorithm definition down to the FPGA programming is not realistic.

For these reasons, the common approach in using FPGAs to accelerate complex
applications relies on High-Level Synthesis (HLS). HLS is a process that
automatically translates high-level descriptions into hardware description
language. The use of HLS tools raises the level of abstraction and makes the
most time-consuming step in the development flow automatic. Instead of
manually writing VHDL/Verilog code, the user only needs to provide a program
written in a standard programming language such as C/C++. The Register
Transfer Level generated by HLS usually comes with standard interfaces making
possible the integration of the accelerators in more complex system-on-chip
architectures. In EVEREST, the interfaces between the accelerators and the rest
of the platform (see 6.3) will be based on the Advanced eXtensible Interface
(AXI), part of the ARM Advanced Microcontroller Bus Architecture specifications.

6.2 HLS challenges
Current HLS tools effectively generate serial or parallel (e.g., through OpenCL
annotations) accelerators for regular, easily partitionable, arithmetic-intensive
workloads typical of digital signal processing. They mainly target extraction of
instruction-level parallelism and consider simple memory subsystems.
Additionally, they typically do not consider the need to operate with large
datasets that cannot fit into on-chip memories or cannot be localized. Thus, they
consider known, fixed memory access latencies and perform optimizations that
reduce such latencies. In general, they do not consider massive but fine-grained
memory parallelism due to datasets that can barely fit in the external accelerator
memory, the data-dependent operations, the highly unbalanced parallel
activities, the synchronization through atomic memory operations, and the
creation of custom memory architectures around the computational logic.

HLS-based solutions for optimizing the memory accesses through the
exploitation of coarse-grained parallelism will make the EVEREST approach

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 19

amenable to the power efficient execution of workload with large datasets. In
addition, accelerators will become more efficient with the proper optimization of
memory accesses and data transfers by using intelligent memory managers,
automatically generated with a combination of compiler information and
hardware generators.

On the same front, EVEREST will extend the support for floating-point
computation with variable precision to further improve energy and latency
savings. For example, in Machine Learning/AI-based tasks, such variable
precision operations will reflect different quantization used in deep learning
algorithms.

6.3 FPGA-based target platform
In the EVEREST project two different major workload types are observed in the
use cases, i.e., single-location heavy computational workloads and distributed
workloads in loosely coupled systems. Throughout the project we are going to
selectively decide which processing parts of those workflows can benefit the
most from the specialized language as well as the heterogeneous EVEREST
platforms.

Those platforms may feature one or more FPGA devices for hardware
acceleration and one or more physical memories (either local or external to the
FPGA), as shown in Figure 6. Such systems will run Linux as Operating System
(OS) and a hypervisor to manage the hardware resources. Note that the
EVEREST approach is not limited to these architectures. In fact, specifying the
workflow pipelines at a higher level of abstraction allows us to easily port the
applications to architectures with heterogeneous GPU-based nodes and end-user
embedded devices.

To examine the potential of programmable heterogeneity in EVEREST workflows,
we propose the employment and extension of two state-of-art research
platforms that leverage FPGAs in different architecture configurations. The first
is a CPU-managed system that rely on tightly-coupled, bus-attached FPGAs. The
second is an FPGA-disaggregated system that relies on loosely-coupled,
network-attached FPGAs.

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 20

Figure 4: EVEREST experimental heterogeneous platforms

Both those systems abstract the way that the FPGA accelerators are being
developed and integrated and offer high flexibility to the EVEREST consortium
to account for interoperability and retargetability of the developed accelerated
solutions to different platforms (even out of EVEREST’s platforms).

This abstraction is enabled by a predefined set of interface requirements. There
are mainly two considerations tied to those requirements, a) the interface of the
accelerators to the host through a software API and b) the interface of the
accelerators inside the FPGA at the RTL-level. Both interfaces are offered by the
Integrated Development Environments (IDEs) of the two platforms, i.e., the OC-
Accel framework of the POWER9 with the OpenCAPI-attached FPGAs and the
cFDK of the cloudFPGA research platform.

As shown in Figure 5, the accelerators in both platforms are interfaced through
AXI channels. Both OC-Accel and cFDK provide a Memory Mapped I/O register
access over an AXILite bus, as well as a full AXI master bus. cFDK also enables
AXI-stream based access. Same AXI master buses are used to connect the
accelerators to the FPGA DRAM channels (also HBM for OC-Accel).

The OC-Accel logic and the cFDK logic implement all the necessary low-level
processing of the OpenCAPI and TCP/IP respectively, in order to provide those
AXI interfaces. This way the developers can generate the accelerators with only
this interface requirement. Such interfaces are standardized and commonly used
in the FPGA design ecosystem, while they can be generated by High-Level-
Synthesis (HLS) tools with #pragma directives at the function definition level.

On the host software side, the two platforms offer different APIs. OC-Accel relies
on the libcxl user-space and the ocxl kernel-space libraries. On top of them a
C/C++ interface is provided and based on that, different language porting can
be done, e.g., Python through a C-to-Python tool (e.g., SWIG, Pybind11 etc.).
On the other side, cFDK offers the seamless connection to any TCP/UDP socket
and thus any programming language or library compatible with sockets can be
interfaced directly.

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 21

Figure 5: Interface requirements for FPGA accelerators a) at the host software side and b) at

the FPGA side for both OC-Accel (top) and cFDK (bottom)

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 22

7 Extra-Functional Information
While language and compiler design is mainly focused on meeting functional
requirements, it also has to ensure that extra-functional requirements are met.
This requires additional information to be passed on from the input code to the
final program. Extra-functional information could be provided in the form of
compiler flags, annotations within the code or using an additional markup
language.

This section briefly discusses extra-functional requirements identified during the
use case analysis.

7.1 Timing Constraints
Some applications need to analyze large and varying amounts of data and still
have to deliver results within a specific timeframe or else the data loses its value.
This is especially true for the weather simulation use cases, where weather
predictions have to be produced so that the entity requesting the information
has time to act based on the results. The traffic simulation use case is even more
time critical as the simulation of the current traffic situation has to keep up with
real-world developments to deliver accurate navigation information.

These timing constraints have to be considered by the EVEREST tool flow and
hence must be representable in the language abstractions and the compiler.
End-users must be able to annotate timing constraints to certain computations
that are then enforced by the EVEREST platform. This enforcement could for
instance be realized either by aborting computations that would cause the
overall execution to miss the deadline, allocating more computing resources if
possible or by reducing the accuracy of certain computations in favor of meeting
the deadline.

7.2 Energy Efficiency
HPC clusters need non-negligible amounts of energy to operate. Apart from high-
performance and respecting timing constraints, the EVEREST platform seeks to
also reduce the energy footprint of the applications. Heavy and efficient use of
FPGA acceleration will help making systems more energy efficient. The compiler
and the HLS flows will use energy as additional metric to drive optimization. This
metric is however more difficult to estimate and not trivial to measure
accurately. We expect to be able to rely on advanced measuring setups (for
instance at TU Dresden’s super computer) to shed light on energy-aware
optimizations for the kinds of large scale application dealt with in EVEREST.

7.3 Data Security
Some of the data that is processed as part of the different application use cases
may be considered confidential and must therefore be specifically protected from
unauthorized access. Measures must be available to ensure the integrity and
availability of the data. The EVEREST tool flow will have to account for these
requirements. A detailed analysis of the requirements on data security is
provided in Deliverable D2.3.

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 23

8 Use case and Framework Requirements
This section summarizes important observations extracted from the use cases
that are important from the point of the view of the programming framework.
From these observations we derive general requirements for the components of
the use cases in terms of programmability and interoperability, among other
properties. To account for these properties, we distill requirements for the
components of the programming framework and their interfaces, including
language abstractions and annotations, compiler support, runtime support, and
platform support.

8.1 Summary: Properties of the Use Cases for Programming Support
Table 1 High-level properties of EVEREST use cases describes high-level properties of the
use cases as a whole. As can be seen, the use cases represent a challenging
combination of HPDA, HPC and ML components, stressing today and future
programming frameworks. At the higher-level, use cases are distributed across
different geographical locations, while requiring efficient coordination for
distributed computing within a site (e.g., via HyperLoom). The use cases are
implemented in multiple languages, making language integration an important
requirement. As discussed above, all use cases have components that require
batched processing, with traffic modelling requiring both streaming and batched
processing. Similarly, all use cases are time critical, in the sense that results
delivered too late are either irrelevant (e.g., a prediction of something in the
past) or can potentially lead to economic costs (e.g., in the case of prediction
for renewable energies). All three use cases use ML techniques for decision
making, with inference possibly offloaded to the edge.

Table 1 High-level properties of EVEREST use cases

D
is

tr
ib

-
u

te
d

M
u

lt
i -

lo
ca

ti
on

 M

u
lt

i-
la

n
g

u
ag

e
 S

tr
ea

m
in

g

 B
at

ch

 Ti
m

e
cr

it
ic

al
it

y

 M
L

co
m

p
o -

n
en

ts

Ed
g

e -
en

ab
le

d

Renewable-
energy
prediction

X X X X X X

Air-quality
monitoring X X X X X X X

Traffic
modeling X X X X X X X X

At a finer granularity, use cases have to profit from the novel computing nodes
proposed in EVEREST. This requires a detailed analysis of individual components
within the larger workflows. Properties of selected components are shown in
Table 2. These components are selected for being critical for the execution of
the use cases. Components not included in the table will receive standard

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 24

support by the high-level platform, meaning no special language or framework
support to improve execution metrics or programmability. Table 2 depicts a
heterogeneous landscape for tool support, which imposes requirements on use
case providers, language and framework design, and tool interfaces, as will be
discussed in the following. Some of the components are being developed at the
time of writing. In this case, we report on what is planned whenever possible.

Table 2 Properties of key components in EVEREST use cases

ID Name Languages Target
resource

Compute
class

Data
class

Frameworks

C1 WRF
Assimilation

Fortran CPU,
GPU,
FPGA

HPC, I/O
bound

Regular
data

WRF

C2 WRF data
preparation

Fortran CPU,
FPGA

HPC, I/O
&
Memory
bound?

Regular
data

WRF

C3 WRF radiation Fortran CPU,
GPU,
FPGA

HPC,
compute
bound

Regular
data

WRF

C4 WRF cloud
movement
and
microphysics

Fortran CPU,
GPU,
FPGA

HPC,
compute
bound

Regular
data

WRF

C5 Energy
modeling

Python,
C++

 Irregular
data

TF, Keras

C6 Big data
collection

Rust/Python CPU,
FPGA

I/O and
storage
bound

Irregular
data

Expected:
Sqlite, HDF5,
InfluxDB,
Apache Flink

C7 Traffic: AI
Training

Python CPU,
GPU,
FPGA

HPC,
Compute
intensive

Regular
data

TF, Keras

C8 Traffic: AI
inference

Python CPU,
GPU,
FPGA

Cloud,
Edge

Regular
data

TF, Keras

C9 Traffic
simulation:
Benchmarking
& AI training

Python,
Rust, C++

CPU,
GPU,
FPGA

HPC,
Compute
intensive

Irregular
data

HyperLoom

C10 Traffic
simulation:
daily use

Python,
Rust, C++

CPU,
GPU,
FPGA

HPC,
Cloud
Edge

Irregular
data

HyperLoom

C11 Intelligent
routing

C++, Rust CPU,
GPU,
FPGA

HPC,
Cloud

Irregular
data

Unknown

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 25

8.2 Requirements
EVEREST as a whole contributes to different aspects of system design and
programming. Global requirements and a detailed representation of the degree
to which the requirements should be met for the different components are
presented in Table 3 Global requirements on key use case components (the darker, the more
important the requirement is). The table includes the following requirements:

GREQ1. Programmability: End users of the platform should profit from the
EVEREST platform in a transparent way. This means that with minor effort,
programmers can have functionality executing on, for instance, an FPGA
without having to write a single line of code in an HDL. Code modifications
include annotations or inserting DSL expressions in exiting code. As an
example, as discussed in Section 5, the main numerical components of the
WRF model (C3 and C4) will profit from expression DSLs to automatically
create FPGA accelerators for stencils and other linear algebra operations.
Machine learning components (e.g., C5) do not require that much
programming support, since this is already accounted for in machine
learning frameworks.

GREQ2. Interoperability: End programmers use different frameworks (cf.
Table 2) and languages. A learned model, for instance, has to be exported
from the framework to be deployed on the platform. This requires support
for standard formats and for clearly defined interfaces within the EVEREST
programming framework.

GREQ3. Retargetability: The EVEREST computing platform scales from the
edge all the way to the data center. Different instantiations of the platform
as well as alternative technological options (e.g., Xilinx FPGAs and HLS
tool flows) have to be supported by the EVEREST programming
framework.

GREQ4. Performance: The EVEREST programming frameworks shall help
improve the performance of applications. Naturally, the development will
focus on the more performance critical components of the use cases from
Table 2.

GREQ5. Energy efficiency: Apart from performance, an increasingly
important property of systems is the energy efficiency. By clever use of
programmable and reconfigurable resources, the EVEREST programming
environment must have energy efficiency as second objective.

Table 3 Global requirements on key use case components (the darker, the more

important the requirement is)

ID Global
requirement

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

GREQ1 Programmability
GREQ2 Interoperability
GREQ3 Retargetability
GREQ4 Performance
GREQ5 Energy efficiency

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 26

From these global requirements and the information in Table 1 High-level properties
of EVEREST use cases and Table 2, we distil requirements for different flows to be
implemented in the EVEREST software development kit. The flows and the
requirements are described hereafter.

8.2.1 Overall Envisioned Flow

Figure 6. Envisioned overall flow

Figure 6 provides an overview of the envisioned EVEREST programming
environment. We first discuss the role of the different components before listing
their requirements in Sections 8.2.2 through 8.2.6.

8.2.1.1 Workflow Orchestration
The preliminary use case analysis in Section 3 showed that some use cases
include highly computing intensive workflows. Within the project, HyperLoom
[1] shall be used to orchestrate these large application flows. HyperLoom is a
platform used to define and execute workflow pipelines in large-scale distributed
environments. Using a simple Python interface, end-users can define their
application flows, which are then executed on a HyperLoom server that
distributes the work onto several workers.

As discussed in Section 4.2, a batch-enabled pipeline framework in EVEREST
needs to efficiently distribute shared data between consequent simulated
iterations or reuse it across workflows.

8.2.1.2 Embedded DSLs
Embedded DSLs offer great potential to simplify coding while opening up more
possibilities for optimization. Given the preliminary analysis discussed in Section
5, we will extend prior DSLs for computational fluid dynamics and tensor-based
computation, e.g., CFDLang [2], TeML [9], and TeIL [10]. The latter works by
constructing an AST in-place in the code. This level of control is particularly

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 27

important to control memory access patterns. We aim for a clear-cut call-like
embedding that leaves us with the freedom to rearrange and possibly
precompile. Additionally, in order to disseminate our DSL and obtain feedback,
we have considered building library targets that could also be integrated with
existing projects right away.

8.2.1.3 Multi-level Intermediate Representation with MLIR
One of the explicitly stated goals of the project is to achieve an interoperable
tool flow. To that extent, we will build on the steadily maturing MLIR framework
[11]. MLIR is working towards compatibility with a wide variety of existing back-
ends, hinting at possible vendor support in the future. In addition to this, MLIR
is also being used for hardware specification within the EVEREST consortium and
outside (e.g., CIRCT1). With MLIR, we envision a modular compilation pipeline,
leveraging the design effort of the open-source community. By designing
EVEREST dialects that the DSL abstractions map to, we can profit from the
existing lower-level dialects for linear algebra.

8.2.1.4 High-level Synthesis and Memory Design
High-level synthesis (HLS) allows application designers to accelerate specific
kernels on FPGA without having much hardware/software. Moreover, since HLS
uses high-level input languages (e.g., C/C++), the system-level integration is
simplified. In addition to the acceleration of the kernels, as stated in Section 6.2,
HLS flow allows for the optimization of the energy consumed by the EVEREST
applications. EVEREST will consider two alternative HLS tools: Xilinx Vitis HLS
and Bambu [12]. Supporting two different HLS tools shows the interoperability
of our solutions. Xilinx Vitis HLS is one of most common HLS tools. It offers an
open-source frontend based on the LLVM compiler. It also supports a wide range
of optimization directives and accelerator interfaces. Bambu accepts as input
standard C/C++ specifications, OpenMP parallel annotations, and compiler
intermediate representations (IRs) coming from the well-known Clang/LLVM and
GCC compilers. The broad spectrum and flexibility of input formats allow the
seamless integration of several source-to-source compilers (like MLIR) and
design space exploration frameworks. Bambu HLS tool already includes many
hardware-oriented optimizations and interfaces with synthesis and verification
backends, either commercial or open-source. So, it is also a good platform to
evaluate targets different from Xilinx devices.

Since the EVEREST applications have a strong focus on data management,
EVEREST includes a specific flow to customize the memory infrastructure around
the accelerators. For doing this, we aim at extending Mnemosyne [13], an open-
source CAD prototype for the customization of memory architectures.
Mnemosyne currently supports the creation of multi-port, multi-bank private
local memories that can interfaced with HLS-generated accelerators. It will be
extended with the support for more memory-related components for the
creation of “intelligent memory managers” that are optimized based on the
information extracted during the compilation flow.

1 https://github.com/llvm/circt

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 28

8.2.1.5 Run-time Auto-Tuning
As outlined in Section 7.1 , the timely execution of parts of the use case
application is of utmost importance. However, computation times in several use
cases can fluctuate, based on the input data, while optimal kernel configuration
or their versions can heavily depend on the target architecture and the available
resources. To adapt to these changes, the toolchain includes the mARGOt
dynamic autotuning framework [6]. This will help to ensure that the application
meets its timing constraints.

mARGOt allows the programmer of an application to expose software-knobs,
which can be used to influence the execution of the program. Using a pre-defined
set of objectives (e.g., “Achieve a specific throughput with as high accuracy as
possible”), the auto-tuner will use the exposed software knobs to meet the
objectives as best as it can. In the context of kernel computations like
Computational Fluid Dynamics, mARGOt could be used to regulate the execution
frequency of computationally intensive kernels or to trade accuracy in the results
for higher throughputs, e.g., by reducing the polynomial degree of interpolation
operations if necessary.

8.2.2 Requirements: Orchestration Large Application Flows (DAGs)

Table 4 Requirements for EVEREST HyperLoom extensions

ID Name Description Nature Priority Comments Relation
to
global

REQ2.1 Front-end for
EVEREST
Applications

Framework on top of
HyperLoom for easy
use-cases driven
development

Tool Must
have

Specific front-end
design by use-cases
requirements

GREQ1

REQ2.2 Dynamic data
sharing
between DAG
tasks

Extend framework to
support spawning a
dynamic service-like
tasks that may serve
data independently
on fixed
dependencies defined
in a task graph

Methodology/
API

Should
have

In some frameworks
it is known as actor
model (e.g. in Ray).

GREQ4

REQ2.3 API for
communication
with
virtualization
environment

The goal is to
establish a way of
communication
between the
scheduler and the
environment to
exchange all
important properties
and constraints.

API

Must
have

If a dynamic
reconfiguration of
the environment is
possible, the
protocol have to be
able to notify the
scheduler about the
changes

GREQ3

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 29

8.2.3 Requirements: Language and Compiler

Table 5 Requirements for language and compiler support

ID Name Description Nature Priority Comments Relation
to
global

REQ3.1 WRF
Expression
abstraction

Language support
for expressions in
numerics
(tensors, linear
algebra)

Methodology Must
have

Kernel support for WRF
simulations.

GREQ1

REQ3.2 WRF Fortran
integration

Expression
abstractions
should be callable
from within
Fortran code

Methodology Must
have

Either by annotations or
inline code
modifications, user can
write expressions within
Fortran code for WRF

GREQ2

REQ3.3 ML integration Framework
integration with
machine learning
frameworks

Methodology/
API

Should
have

Allow importing models
to hook into the code
generation process for
EVEREST specific
transformations

GREQ2,
GREQ4

REQ3.4 Streaming
support

Language support
for streaming
workflows with
highly dynamic
loads

Methodology Could
have

Enable compiler
reasoning for
reconfiguring streaming
oriented computations.
Expected to support
traffic use case. Will be
revisited as the
implementation fort
progresses.

GREQ1,
GREQ4,
GREQ5

REQ3.5 Integration
with compiler
frameworks

For stability,
reusability and
extensibility,
compiler work
should build on
top of established
frameworks (e.g.,
LLVM and MLIR
for numerics,
Haskell or alike
for dataflow)

Methodology/
tool

Should
have

By contributing to open
sources frameworks,
the results from
EVEREST can be used
by the community at
large. By integrating
with these frameworks,
EVEREST can reuse and
extend existing
methods.

GREQ2,
GREQ3

REQ3.6 Compiler
transformations
for kernels

At the middle-
end, the compiler
must include a
framework for
transformations to
manipulate code
and optimize for
the EVEREST
platform

Methodology Must
have

For numerics, this
should include affine
transformations
(polyhedral) with
support for stencils and
other linear algebra
primitives

GREQ4,
GREQ5

REQ3.7 Compiler
transformations
for dataflows

For dataflow
programs, the
compiler should
include semantic
preserving
rewrites for
performance and
energy
optimizations,
while retaining
determinism

Methodology/
tool

Could
have

This should extend on
previous work on
optimization for
dataflow programs
(including mapping,
graph rewrites and I/O
batching)

GREQ4,
GREQ5

REQ3.8 Multi-target
code
generation

The source to
source compiler
should generate
code for different
targets

Methodology/
tool

Must
have

Code written in high-
level expression
abstractions should
translate to pure
software (C/C++ code),
or software with
offloading to
accelerators (e.g.,
FPGA)

GREQ3

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 30

REQ3.9 Generation of
tunable
parameters

To enable
autotuning, the
compiler must
produce
descriptors of
solutions to
interface with
mARGOt.

Methodology/
tool

Must
have (for
adaptable
kernels)

From high-level
abstractions, the
compiler should extract
knobs and parameters
that are key to
modifying performance
and/or energy efficiency

GREQ4,
GREQ5

REQ3.10 Interface to
HLS

The compiler
should enable a
downstream HLS
flow

Methodology Must
have

The compiler must
export code (or an
intermediate
representation thereof)
to the HLS flow,
including behavioral
descriptions of the
kernels alongside
configuration
information for
generation/configuration
of the memory modules

GREQ4,
GREQ5

REQ3.11 cFDK/OC-Accel
software
integration and
language
compatibility

The software
should be
compatible with
the cFDK/OC-
Accel API

Methodology/
API

Must
have

The software part of the
kernels that are being
mapped to the FPGA
should be built in a way
that allows the seamless
integration with the API
specifications of cFDK
(e.g. C/C++/Python
sockets) and/or OC-
Accel frameworks (e.g.
C/C++/libocxl)

GREQ2,
GREQ3

8.2.4 Requirements: High-level Synthesis and Memory Design

Table 6 Requirements for high-level synthesis and memory design

ID Name Description Nature Priority Comments Relation
to
global

REQ4.1 C/C++ support C/C++
Language
support for HLS
of descriptions
coming from
DSL compiler

Methodology/tool Must have The language
supported
should covered
the original
code in case it
is written in
C/C++ or the
one generated
by the DSL
compiler

GREQ1,
GREQ2

REQ4.2 Bambu LLVM
bytecode support

Low level
integration with
DSL compiler

Methodology/Tool Must have The version of
the LLVM
bytecode
should be
consistent with
used by the
DSL compiler.

GREQ2,
GREQ4

REQ4.3 Bambu MLIR
dialect support

Direct synthesis
from MLIR
dialects

Methodology/tool Can have It may improve
the final
performance
raising the
abstraction
level. At least,
it should
support the
affine dialect.

GREQ2,
GREQ4

REQ4.4 HLS Verilog output HLS generates
RTL Verilog code
as output

Methodology/tool Must have The Verilog
code must be
synthesizable
with respect
the EVEREST
backend flow

GREQ2

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 31

REQ4.5 HLS VHDL output HLS generates
RTL VHDL code
as output

Methodology/tool Should have The VHDL code
must be
synthesizable
with respect
the EVEREST
backend flow

GREQ2

REQ4.6 Top function
specification

The code to be
synthesized
must be in a
stand-along
function and
needs to be
specified

Methodology/tool Must have The top
function could
be specified as
annotation to
the code,
command line
parameter or
option files

GREQ2

REQ4.7 Block level/Top
component
interfaces

The protocol to
interface with
the top module
has to be
specified

Methodology/tool Must have The start,
done, etc.
protocol of the
top component
has to be
defined and
compatible with
the EVEREST
platform.

GREQ2

REQ4.8 Port-Level
interfaces

IO interface
protocols added
to the individual
function
arguments

Methodology/tool Must have The definition
of protocol
should be
defined through
code
annotations

GREQ1,
GREQ2

REQ4.9 Bambu Vivado HLS
IO interface
interoperability

Annotations
specifying the IO
protocols
interface
compatibility

Methodology/tool Can Have Block/port level
interfaces
should use the
same
annotations
used by Vivado
HLS

GREQ2

REQ4.10 Technology
options
specification

The HLS tool
accepts inputs
for optimization,
clock constraint
and resource
constraints.

Methodology/tool Must have These
technology
constraints will
passed as input
options.

GREQ2

REQ4.11 Bambu Data flow
annotations

HLS Data flow
support

Methodology/tool Should/have Dataflow style
applications
could be
specified by
code
annotations

GREQ1

REQ4.12 Bambu OpenMP
support

OpenMP for
pragma
synthesis
support

Methodology/tool Must have The body of
OpenMP
parallel loop
need to be in a
separate
function.
Example of
supported code
could be found
at OpenMP for2
and OpenMP
simd3

GREQ1

REQ4.13 Bambu floating
point precision

Floating point
variables may
use a custom
floating precision
data type.

Methodology/tool Can have Allow
optimizations of
scientific and
machine
learning
kernels.

GREQ1

2 https://github.com/ferrandi/PandA-bambu/blob/main/examples/parallel_queries/trinityq1/lubm_trinityq1.c
3https://github.com/ferrandi/PandA-bambu/blob/main/examples/omp_simd/add/modified/add.c

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 32

REQ4.14 cFDK/OC-Accel top
component
interface

Interface
definition of the
top component
being
intergraded with
cFDK/OC-Accel
frameworks.

Methodology/tool

Must have The top-level
component of
the
functionality
that will be
mapped to the
FPGA must be
compatible with
cFDK ROLE
interface
(AXIlite AXIs,
AXIm) and/or
OC-Accel Action
interface
(AXIlite, AXIm)

GREQ2
GREQ3

REQ4.15 Memory interfaces Standard
interfaces for
memory access

Methodology/tool Must have The HLS-
generated
kernels and the
memory
modules should
have a
common
interface
format

GREQ2

REQ4.16 Software-level
support

Software code to
interface with
the accelerators.

Methodology/tool Must have The
accelerators
should be
invoked with
custom OS
drivers

GREQ1

REQ4.17 Hardware/software
data sharing

Data allocation
must be
compatible with
hardware
memory
interfaces

Methodology/tool Must have The software-
level data
allocation
should be
performed in a
way that
hardware can
access the data

GREQ2

8.2.5 Requirements: Autotuning and Virtualized Environment

Table 7 Requirements for the Virtualized Environment and in particular Dynamic
Autotuning

ID Requirement Description Nature Priority Comments Relation
to
global

REQ5.1 Application
knobs

The autotuning
framework should
have access to the
application knobs

Methodology/
tool

Must
have

The access should
be provided by
means of the DSL
or by the
application itself.
The dynamic
autotuning
framework is only a
decision engine.

GREQ4,
GREQ5

REQ5.2 Adaptive
autotuning

The dynamic
autotuning
framework should
be able to adapt
depending on
decisions taken on
the virtualized
environment

Methodology/
tool

Must
have

The application
adaptation should
be triggered by
changes in the
available resources

GREQ2,
GREQ4,
GREQ5

REQ5.3 Integration
with runtime

The dynamic
autotuning
framework should
be able to interact

Methodology/
tool

Could
have

Given the
knowledge of the
application, the
dynamic adaptation
framework can

GREQ2

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 33

with the virtualized
environment

provide hints to the
virtual manager to
steer decisions

REQ5.4 Autotuning and
optimization

The dynamic
autotuning
framework should
manage the
software knobs
exposed by the
application by
autonomously
selecting a near-
optimal
configuration

Methodology/
tool

Must
have

The adaptation
should be triggered
automatically and
not by hand

GREQ4,
GREQ5

REQ5.5 Variant
selection

The dynamic
autotuning
framework should
be able to manage
code variants
selection

Methodology/
tool

Must
have

Code variants
should be managed
as for the
parameters of the
application

GREQ4,
GREQ5

REQ5.6 Design and
deploy-time
information

The dynamic
autotuning
framework should
be able to take a
decision based on
knowledge collected
at design time or at
deploy time

Methodology/
tool

Must
have

The knowledge for
taking the decision
can be directly
injected by some
analysis of the
compilation flow or
extracted by an on-
line profiling of the
kernel

GREQ4,
GREQ5

REQ5.7 Language
support

The dynamic
autotuner requires
C++ applications

Methodology/
tool

Must
have

mARGOt is a C++
library to be linked
with the application

GREQ2

REQ5.8 HW Knobs The dynamic
autotuning
framework should
have access to HW
knobs

Methodology/
tool

Could
have

In case of a
configurable
accellerator that
can be dynamically
configured, the
knobs have to be
exposed to the SW
layer.

GREQ4,
GREQ5

REQ5.9 HW monitors HW accelerators
should expose a
monitor interface to
the run-time to
trigger dynamic
decisions

Methodology/
tool

Could
have

Monitoring
information should
be exposed to the
SW and will be
used by the run-
time environment
(dynamic
autotuning and
virtualize
environment) to
take dynamic
decisions.

GREQ4,
GREQ5

REQ5.10 Execution The run-time
environment
requires a CPU
where to execute

Methodology/
tool

Must
have

The runitme
environment is
composed by
software modules
that requires a core
where to execute.
Pure HW
environments are
not considered.

REQ5.11 Virtual
Environment

Virtualization
environment has to
enable execution of
applications on
different hardware in
terms of processor
and accelerators

Methodology
/ tool

Must
have

The EVEREST
virtualization
environment
targets different
hardware
accelerators and
CPU architectures

GREQ2,
GREQ4,
GREQ5

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 34

8.2.6 Requirements: Use Case Providers

As mentioned in Section 5, one of the most important factors for pursuing
specialized language support is enabling the encoding of expert knowledge. Our
investigation into WRF and experience with past projects already show a variety
of ways how expert knowledge can be leveraged for high-level optimizations.
This implies that a close cooperation with domain experts is key for a successful
language design. While we can make solid assumptions for many language
features based on the observations we made for the kernels, such as the focus
on linear algebra, much falls outside the scope of language and compiler
development. Mappings and identities pertaining to the physical or application-
specific interpretation are fundamentally the responsibility of the use case
providers. It is them who have the authority over these tacit requirements
placed on the compiler development.

At the same time, the success of the language design relies on the ability to
encode and exploit them, which means that our development processes are tied
together. While we have started this during the creation of this document, both
the language design and the use cases are a moving target. We believe the
requirements specified here are a great starting point for continuous
collaborative development, as all sides continue to probe their design space.

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 35

9 Conclusions
In this deliverable we have discussed elements in the use cases that can benefit
from language support within the EVERET SDK. Together with the appropriate
tooling it will help programmers to transparently leverage the efficiency of the
EVEREST heterogeneous platform. After reviewing the use cases, we discussed
considerations for the hardware design of the EVEREST platform and listed
extra-functional information from the use cases that has to be accounted for in
the EVEREST SDK. This deliverable closed with a detailed analysis of the
requirements of the use cases, and derived specific requirements for the
individual components of the EVEREST SDK, i.e., orchestration of workflows,
domain-specific languages and compiler, high-level synthesis and memory
design, and autotuning and virtualized environment.

The analysis presented here reflects a highly heterogeneous use case landscape,
combining different computational patterns, input languages and build systems.
On top of this, the use cases are not fully specified but are meant to evolve
throughout the course of the project. Provided our current understanding of the
use cases, these are the main findings that will drive the development of the
compilation framework in the EVEREST SDK:

• A need for interoperability for machine learning algorithms and
optimization for distributed execution of large models on FPGAs.

• A need for high-level abstractions in HPC simulations to transparently
optimize hardware, with focus on memory subsystems and data
movement.

• A need to implicitly describe task graphs in a syntax close to application
developers (e.g., Rust or Python).

Machine learning algorithms, exploited by traffic management, energy, and air
quality pilots, are well defined and can be readily supported by existing
frameworks. Important in the SDK will be the support of interoperability (reading
in and processing models exported from different machine learning
frameworks), interoperability with other application phases, and support for
distributed execution on FPGA-based systems. Apart from machine learning, we
observed two different major workload types, namely HPC (e.g., weather
simulations) and coordination of loosely coupled tasks (e.g., data acquisition and
data assimilation tasks). A special focus will be set in heavy computational
workloads, to provide language and compiler support, so as to transparently
accelerate portions of HPC applications. This will be enabled by tailor-made
domain-specific abstractions coupled with runtime components which enable us
to achieve high interoperability and retargetability at a low cost to users of
existing code bases. For task coordination, we consider language support for
implicit definition of task or dataflow graphs. This will be driven by the routing
use case which is well understood at the time this deliverable was written.

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 36

Apart from these requirements, the availability of a powerful HPC facility,
including FPGA resources, is strictly necessary for the execution of the weather
simulations in support of energy and air quality machine learning algorithms.

This document will serve as guide for the work in work packages WP4 and WP5.

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 37

10 References

[1] V. Cima et al., “HyperLoom: A Platform for Defining and Executing Scientific

Pipelines in Distributed Environments,” in Proceedings of the 9th Workshop
and 7th Workshop on Parallel Programming and RunTime Management
Techniques for Manycore Architectures and Design Tools and Architectures
for Multicore Embedded Computing Platforms - PARMA-DITAM ’18,
Manchester, United Kingdom, 2018, pp. 1–6, doi:
10.1145/3183767.3183768.

[2] S. Ertel, C. Fetzer, and P. Felber, “Ohua: Implicit Dataflow Programming for
Concurrent Systems,” in Proceedings of the Principles and Practices of
Programming on The Java Platform, Melbourne FL USA, Sep. 2015, pp. 51–
64, doi: 10.1145/2807426.2807431.

[3] M. Lohstroh and E. A. Lee, “Deterministic Actors,” in 2019 Forum for
Specification and Design Languages (FDL), Southampton, United Kingdom,
Sep. 2019, pp. 1–8, doi: 10.1109/FDL.2019.8876922.

[4] M. Lohstroh, C. Menard, A. Schulz-Rosengarten, M. Weber, J. Castrillon,
and E. A. Lee, “A Language for Deterministic Coordination Across Multiple
Timelines,” in 2020 Forum for Specification and Design Languages (FDL),
Kiel, Germany, Sep. 2020, pp. 1–8, doi: 10.1109/FDL50818.2020.9232939.

[5] M. Lohstroh et al., “Reactors: A Deterministic Model for Composable
Reactive Systems,” in Cyber Physical Systems. Model-Based Design, vol.
11971, R. Chamberlain, M. Edin Grimheden, and W. Taha, Eds. Cham:
Springer International Publishing, 2020, pp. 59–85.

[6] D. Gadioli, E. Vitali, G. Palermo, and C. Silvano, “mARGOt: A Dynamic
Autotuning Framework for Self-Aware Approximate Computing,” IEEE
Trans. Comput., vol. 68, no. 5, pp. 713–728, May 2019, doi:
10.1109/TC.2018.2883597.

[7] W. C. Skamarock et al., “A Description of the Advanced Research WRF
Model Version 4,” UCAR/NCAR, Mar. 2019. doi: 10.5065/1DFH-6P97.

[8] N. A. Rink, A. Susungi, J. Castrillon, J. Stiller, and C. Tadonki, “CFDlang:
High-level code generation for high-order methods in fluid dynamics,” in
Proceedings of the Real World Domain Specific Languages Workshop 2018
on - RWDSL2018, Vienna, Austria, 2018, pp. 1–10, doi:
10.1145/3183895.3183900.

[9] A. Susungi, N. A. Rink, A. Cohen, J. Castrillon, and C. Tadonki, “Meta-
programming for cross-domain tensor optimizations,” in Proceedings of the
17th ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences, Boston MA USA, Nov. 2018, pp. 79–92, doi:
10.1145/3278122.3278131.

[10] N. A. Rink and J. Castrillon, “TeIL: a type-safe imperative tensor
intermediate language,” in Proceedings of the 6th ACM SIGPLAN
International Workshop on Libraries, Languages and Compilers for Array
Programming - ARRAY 2019, Phoenix, AZ, USA, 2019, pp. 57–68, doi:
10.1145/3315454.3329959.

http://www.everest-h2020.eu

D2.2 – Definition of Language Requirements 38

[11] C. Lattner et al., “MLIR: A Compiler Infrastructure for the End of Moore’s
Law,” ArXiv200211054 Cs, Feb. 2020, Accessed: Mar. 26, 2021. [Online].
Available: http://arxiv.org/abs/2002.11054.

[12] F. Ferrandi et al. "Invited: Bambu: An Open-Source Research Framework
for the High-Level Synthesis of Complex Applications", Proceedings of the
ACM/IEEE Design Automation Conference (DAC), 2021.

[13] C. Pilato et al. "System-Level Optimization of Accelerator Local Memory for
Heterogeneous Systems-on-Chip" in IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2017.

