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ABSTRACT
We present Mocasin, an open-source rapid prototyping framework
for researching, implementing and validating new algorithms and
solutions in the field of mapping software to heterogeneous multi-
cores. In contrast to the many existing tools that often specialize
for a particular use-case, Mocasin is an open, flexible and generic
research environment that abstracts over the approaches taken
by other tools. Mocasin is designed to support a wide range of
models of computation and input formats, implements manifold
mapping strategies and provides an adjustable high-level simulator
for performance estimation. This infrastructure serves as a flexible
vehicle for exploring new approaches and as a blueprint for building
customized tools. We highlight the key design aspects of Mocasin
that enable its flexibility and illustrate its capabilities in a case-
study showing how Mocasin can be used for building a customized
tool for researching runtime mapping strategies in an LTE uplink
receiver.

CCS CONCEPTS
•Computer systems organization→ Embedded systems; Hetero-
geneous (hybrid) systems; • Theory of computation → Models of
computation; • Computing methodologies → Modeling method-
ologies; Discrete-event simulation.
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Figure 1: General flow for mapping applications to multi-
core architectures.

1 INTRODUCTION
The increasing complexity of heterogeneous hardware architec-
tures in the multi- and many-core era has motivated the devel-
opment of manifold frameworks and tools to abstract hardware
complexity and increase software productivity [3, 6, 23, 26, 32, 33,
36, 37, 47]. Typically such tools leverage well-known models of
computation (MoCs) like task graphs [40], Kahn Process Networks
(KPNs) [22], or Synchronous Data Flow (SDF) [25] to model func-
tional properties of software applications in a particular domain.
These MoCs commonly represent applications as directed graphs
where nodes denote computation and edges represent data depen-
dencies. The challenging problem solved by the tools is to find a
(near-) optimal spatial and temporal mapping of the graph’s nodes
and edges to hardware resources in a given target platform. Pro-
duction level tools commonly generate source code tailored for
the target platform or even synthesize optimized hardware. The
general flow implemented by such tools is depicted in Figure 1.

Existing tools such as PREESM [36], Sesame [37], SystemCoDe-
signer [23], DOL/DAL [42, 47], Turnus [3], or MAPS [26] implement
refined workflows for specific use cases, making deliberate choices
on the abstractions and algorithms used for each of the nodes de-
picted in Figure 1. MAPS, for instance, implements a workflow for
generating pthreads-based source code from KPN-based application
descriptions utilizing near-optimal mappings for a defined set of
platforms. While such specialized workflows serve the needs of the
end-user in the specific use-case, they do not address the needs of
researchers exploring and developing new solutions in the field.
Integrating new ideas and approaches with existing tools is often
hard due to conflicts with design choices made in the past and a
large overhead in maintaining complex features like GUI frontends
and sophisticated code generation backends. While such features
are useful for the end-user, they are usually not required for quickly
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implementing and validating a new idea in research. Moreover, it is
difficult to compare different approaches across existing tools [16].

In this paper, we introduce Mocasin, an open-source rapid pro-
totyping framework for exploring new approaches in mapping
software to heterogeneous multi-cores. In contrast to existing tools,
Mocasin is specifically designed for supporting researchers and de-
velopers working in the field. Mocasin is not intended as a workflow
for end-users. Instead, we position Mocasin as a complementary
tool for exploring potential improvements to existing workflows
and for prototyping customized workflows for new use cases.

Building on our experience in the field over the past ten years,
Mocasin is designed from ground up for increased flexibility and
interoperability. Instead of specializing the flow in Figure 1 for a
specific use case, Mocasin provides modular and general implemen-
tations of individual components. This includes data structures for
various MoCs, abstractions for hardware platforms, several prede-
fined mapping algorithms, a high-level simulator for performance
estimation and evaluation of mapping quality, as well as several
convenience tools (e.g. for visualization). All of Mocasin’s compo-
nents are configurable and exchangeable. This modular approach
makes Mocasin an ideal toolbox for building customized flows, pro-
totyping new mapping strategies and data structures, as well as
evaluating the effects of such new approaches.

Concretely, we make the following contributions:
• We present Mocasin, an open-source research environment
for exploring mapping algorithms and novel data structures
for representing the mapping space.i

• We define an abstract modular architecture that generalizes
commonly used dataflow MoCs as well as related tool flows,
and enables composition of such flows.

• We describe a flexible high-level simulator and evaluate its
accuracy by comparing to real hardware.

• We illustrate Mocasin’s prototyping capabilities in a case
study, building a tool for exploring runtime mapping strate-
gies for the dynamic workload of an LTE uplink receiver.

2 RELATEDWORK
The literature describes a wide range of frameworks that are closely
related to Mocasin and significantly influenced its development.
Ptolemy II [11, 38], in particular, follows an idea very similar to
Mocasin—to provide a rapid prototyping environment independent
of a particular use-case to facilitate research and development. Con-
cretely, Ptolemy II is a framework for experimenting withMoCs and
researching new MoCs. It allows to model applications in various
MoCs and accurately simulates the application behavior accord-
ing to the MoC semantics. While Ptolemy II focuses on accurately
capturing the semantics and functional properties of applications,
Mocasin completely abstracts over the semantics and only consid-
ers application properties that are relevant for rapid performance
estimation. Mocasin is complementary in the sense that Ptolemy II
is a toolbox for creating accurate models of applications in various
MoCs and Mocasin is a toolbox for creating flows for generating
efficient implementations of given applications on a wide range of
hardware architectures.

ihttps://github.com/tud-ccc/mocasin

Many frameworks in the literature address the problem of find-
ing (near-) optimal mappings of given applications to a given plat-
form. To the best of our knowledge all existing tools specialize
for specific use-cases and do note provide a flexible platform for
researching the mapping problem like Mocasin. PREESM [36], for
instance, is a framework specialized on parameterized and inter-
faced SDF (PiSDF) [8] applications. It can assess whether a given
application will run fast enough on a given platform, automatically
derives static mappings and generates code for the target platform.
PREESM can also be used in conjunction with SPIDER [20], a run-
time which enables the execution of dynamic PiSDF applications.

There are also several frameworks based on the KPN MoC.
Sesame [37], for instance, is a framework with a strong focus on
DSE and simulation at multiple levels of abstraction. Sesame is part
of the Daedalus tool [33] and can be used in combination with ES-
PAM [32] to directly synthesize optimized hardware from dataflow
applications. A similar approach is also taken by SystemCODe-
signer [23]. MAPS [6, 26] is another KPN-based framework, which
provides a C extension (called CPN) for describing applications and
comes with a rich set of mapping algorithms and analysis tools
including a high-level trace-based simulator. A similar simulator is
also used in the Turnus DSE framework [3] which simulates traces
of dynamic dataflow applications written in CAL [10]. This frame-
work, however, is tightly coupled to the CAL language and as such
not suitable as a flexible and open research platform. The DOL and
DAL frameworks for KPN applications [42, 47], instead, include an-
alytical performance estimation alongside a system-level SystemC
simulator for more general platforms. DAL supports an extended
KPN model including scenario state machines and additional con-
trol channels. The analytical model uses real-time calculus and is
restricted in the type of resources and schedulers it can handle [7].

Mocasin combines the various approaches found across existing
tools to create a generic and flexible toolbox independent of specific
use cases. Its design is strongly influenced by our experience in
developing and working with the manifold tools described in the
literature. However, Mocasin is not a replacement for these tools.
It is a complementary framework that is designed from ground up
for interoperability. Mocasin’s goal is to facilitate research of new
approaches, prototyping of improvements for existing tools and
comparison of approaches across tools.

3 MOCASIN
In this section we describe the architecture of Mocasin in more
detail. In particular, we show how our design generalizes over
dataflow MoCs and the approaches taken by existing tools.

3.1 Overview
Mocasin uses a highly modular architecture as is shown in Fig-
ure 2. Each module stands on its own and may interact with other
modules. Mocasin provides several tasks, each of which offers a
unique functionality. Tasks can be seen as flows through the mod-
ules of Mocasin. The visualize task, for instance, opens a GUI that
visualizes a platform as well as a spacial mapping of a given appli-
cation on this platform. More elaborate tasks include simulate and
generate_mapping, which respectively run a high-level simulation
in order to estimate the performance of a given mapping or use a
configurable mapping algorithm to find mappings.

https://github.com/tud-ccc/mocasin
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Figure 2: The Mocasin architecture.

3.2 Data Structures
Mocasin provides internal data structures for representing appli-
cations, platforms, mappings, and additional information about
the runtime behaviour such as pre-recorded traces. In order to ac-
count for interoperability with other tools, these data structures
are designed to be abstract and generic without making too many
assumptions about a precise use case.

Each data structure is defined with a common base class that
needs to be implemented by any object representing an application,
platform, mapping, or trace. Thereby, Mocasin does not impose re-
strictions on how such objects are created. While Mocasin provides
a few standard methods including file readers for various formats
(cf. Section 3.2.5), a platform designer (cf. Section 3.3), and mapping
generators (cf. Section 3.6), arbitrary new methods can be added.

3.2.1 Application. Applications are modeled as directed graphs
where nodes denote computation and edges represent data depen-
dencies. Depending on the particular MoC, nodes or edges may be
annotated with additional information, e.g. fixed token sizes for
data channels or firing rates of nodes. This simple graph description
matches the abstractions used in common dataflowMoCs including
task graphs, SDF, KPN, Actors [2, 21] or even new models such
as Reactors [27, 28] and approaches facilitating component-based
design (e.g. AUTOSARii). Note that this application model only
describes the topology of the application and does not provide
information on its behavior.
iihttps://www.autosar.org/

3.2.2 Trace. A trace in Mocasin is complementary to an appli-
cation and describes a possible behavior for a sample execution.
Traces are the foundation for running simulations and for obtaining
additional information as required for some mapping strategies.
MoCs with strict firing rules like SDF and task graphs provide
enough information to precisely describe the application behavior.
For these MoCs, traces can be automatically generated and sim-
ply encode the firing rules. For more permissive MoCs like KPNs,
Actors, or component based models, however, the behavior is not
defined statically. Thus, traces need to be recorded while executing
a real implementation of the application. KPN-based frameworks
like MAPS, Turnus or DOL/DAL can be used to instrument applica-
tions and obtain the execution traces. Also, more general tracing
frameworks like Vampiriii or the AUTOSAR Diagnostic Log and
Trace tool can be used to record relevant events and obtain traces.

An application trace inMocasin is a sequence of segments, where
each segment represents an action that a node in the application
graph performs. A segment can denote a consume operation that
reads a number of tokens from an incoming data channel, a produce
operation on an outgoing data channel, or a computation lasting for
a certain amount of cycles. A special termination segment marks
the end of the trace. To model computation on various platforms
and types of processing elements, the trace can define different
computation costs for different types of processing elements.

3.2.3 Platform. Mocasin essentially models platforms as a set of
processing elements (PEs) and communication primitives (CPs). A PE
can represent any component capable of performing computations
like general purpose processors, DSPs, or even accelerators. PEs
are characterized by a frequency and, if this is applicable, by an
estimated cost in cycles required for a context switch on this pro-
cessing element. Each PE is also associated with a scheduler which
manages the workload executing on one or multiple PEs according
to a selected policy. Note that Mocasin currently only models costs
in terms of execution time. However, the model can be extended
by other metrics such as energy consumption.

CPs abstractly describe a mechanism for communicating data
between PEs. They are based on the primitives described in [6], but
extended for improved flexibility and accuracy. Each CP defines
a set of source and sink PEs that can use this primitive. For any
pair of sink and source PE, multiple CPs may be defined if multiple
mechanisms for exchanging data between these PEs exist in the real
platform. Each CP defines two lists of communication phases—one
for the producing side and for the consuming side [34]. Thereby,
each phase represents one step in the communication processes and
defines a list of communication resources that it requires. Resources
represent the actual hardware used to move data along a certain
path in the platform (e.g. buses, links, caches, scratchpad memories,
DRAM or DMAs). Each resource is defined by its read/write latency
and total throughput. In summary, each CP provides step by step
instructions on how two PEs can exchange data and how the precise
communication costs for each step can be calculated. This flexible
mechanism can accurately describe the communication in bus based,
clustered, and NoC based [30] architectures, as well as distributed
systems. An example platform model representing the ODROID-
XU4 [41] is depicted on the right of Figure 3.
iiihttps://vampir.eu/

https://www.autosar.org/
https://vampir.eu/
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little_processor = Processor("PE", type="ARM_CORTEX_A7", <params>)

big_processor = Processor("PE", type="ARM_CORTEX_A15", <params>)

# add two cluster of processors

designer.addPeClusterForProcessor("cluster_a7", little_processor, 4)

designer.addPeClusterForProcessor("cluster_a15", big_processor, 4)

# add L1 caches to each processor

designer.addCacheForPEs("cluster_a7", name='L1', <params>)

designer.addCacheForPEs("cluster_a15", name='L1', <params>)

# add L2 caches to each cluster

designer.addCommunicationResource("L2_A7", ["cluster_a7"], <params>)

designer.addCommunicationResource("L2_A15", ["cluster_a15"], <params>)

# add a RAM accessible by all PEs

designer.addCommunicationResource("DRAM", ["cluster_a7", "cluster_a15"],

<params>)

PE0 PE1 PE2 PE3

PE4 PE5 PE6 PE7

prim_L1_PE0 prim_L1_PE1 prim_L1_PE2 prim_L1_PE3

prim_L1_PE4 prim_L1_PE5 prim_L1_PE6 prim_L1_PE7

prim_DRAM

prim_L2_A7

prim_L2_A15

Figure 3: An example description of the clustered ARM big.LITTLE ODROID-XU4 platform [41] using Mocasin’s platform
designer API (left) and a visualization of the platform graph used internally by Mocasin (right).

Mocasin’s platform model effectively abstracts from the precise
platform topology. It focuses on modeling computation costs and
data communication mechanisms. This abstract view is compatible
to many platform description formats as they are found in related
tools as well as in industry standards like IEEE 2804-2019 (SHIM) [1]
and AUTOSAR.

3.2.4 Mapping. A mapping assigns the nodes and edges of a given
application graph to PEs and CPs in a target platform. This is im-
plemented as a simple dictionary. Each of the assignments may be
annotated with additional information like a process priority or
a maximum channel capacity. Mappings can also be provided as
a sequence over time in order to implement a fixed schedule as it
is commonly done for SDF applications. In addition to this simple
dictionary view of a mapping, the representations implemented in
Mocasin (c.f. Section 3.5) provide more sophisticated views that can
be utilized by various algorithms.

3.2.5 Readers. To obtain the data structures described above, Mo-
casin provides modular readers that create the internal data struc-
tures by reading from input files. The abstract models used by
Mocasin enable conversion from a wide range of existing formats
and tools. To illustrate this flexibility, Mocasin currently provides
readers for SDF applications in SDF3 [46] format, task graphs in
TGFF [9] format and KPNs in MAPS format. More readers for other
tools and formats can be easily added by extendingMocasin directly
or by providing a plugin implementing the reader.

Supported MAPS formats comprise a description format for KPN-
based applications, a platform description format that is close to
the SHIM standard [1], an internal execution trace exchange format
and a mapping exchange format. Our readers automatically convert
all four MAPS file formats to Mocasin’s data structures.

The SDF3 and TGFF formats describe applications based on the
SDF and task graphMoCs, respectively. Since the semantics of these
MoCs defines strict firing rules, SDF3 and TGFF files provide suffi-
cient information for generating both Mocasin’s application and
trace data structures. Additionally, SDF3 provides platform descrip-
tion and mapping formats. However, importing these descriptions
is not yet supported by our readers.

3.3 Platform Designer
A central enabler in researching compilation methods to complex
architectures is system modeling. Depending on the level of ab-
straction and fidelity required, this can be an extremely complex

endeavor or a fairly simple matter. During the work on andwithMo-
casin we experienced the implementation of new platforms to be an
elaborate and time consuming task. The communication primitive
abstraction of Mocasin’s platform model is useful for estimating
communication delays and abstracting over the precise topology
of the target architecture, but it is not a straightforward method
for describing such architectures. Therefore, we introduced the
PlatformDesigner module, which can be used to describe archi-
tectures in a convenient way using a simple API. The module is
capable of creating a variety of different chip designs, which can
be hierarchically composed to create more complex platforms.

The code excerpt in Figure 3 illustrates how the platform designer
API can be used to describe the ODROID-XU4 platform [41]. The
platform has two clusters of PEs—one consisting of 4 ARM Cortex-
A7 cores (little) and one consisting of 4 ARM Cortex-A15 cores (big).
Each core has its own L1 cache and each cluster shares an L2 cache.
Both clusters have access to the DRAM via a shared bus. The code
excerpt describes precisely this topology, and the platform designer
automatically derives the platform data structure consisting of PEs
and primitives as it is expected by other modules. Note that the
example omits the precise parameters of hardware components like
frequency, throughput, and latency for space reasons.

The platform designer is also capable of describing NoC-based
architectures. Elements can simply be connected by providing pa-
rameters describing the NoC characteristics and an adjacency ma-
trix. Mocasin also provides a set of predefined platforms utilizing
the platform designer to model the ODROID-XU4 as described
above but also configurable platforms with certain patterns such as
mesh-based NoC topologies or bus-based hierarchical architectures.

3.4 Simulate
The simulation module is a key component of Mocasin. It imple-
ments a high-level simulator capable of estimating the performance
for given applications (consisting of an application graph, mappings
and traces) running on a given platform. This not only enables rapid
performance estimation, it is also the key enabler for evaluating
the characteristics of various MoCs, mapping algorithms and repre-
sentations within Mocasin. While the simulator aims at providing
accurate results, it neither models the hardware nor the software
running on top precisely. Instead, it uses abstractions that capture
the essence of the hardware characteristics and the application
behavior. Related tools implement similar high-level simulators for
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Figure 4: Basic process model for simulation.

performance estimation. However, Mocasin’s simulator is designed
for increased flexibility supporting various dataflow MoCs and also
allowing other components to interact with the simulation as we
illustrate in our case study (cf. Section 4).

Mocasin’s simulator is based on the SimPyiv discrete-event sim-
ulation framework. The basic simulator structure is designed to be
independent of the concrete MoC semantics, application behaviour
and hardware characteristics. Essentially, an application is mod-
elled as a set of concurrent processes interacting with each other.
The precise semantics of this interaction can be adjusted in order
to implement concrete MoCs.

The execution of a process in the simulator is modeled abstractly
as the well-known finite state machine shown in Figure 4, inspired
by classical POSIX threads. The execution of all processes in the
system is controlled by a set of schedulers, each of them is in control
of one or multiple PEs. Currently, Mocasin implements the FIFO and
Round Robin scheduling algorithms. Other algorithms can be added
by simply overriding the schedule()method of the scheduler base
class.

The process model shown in Figure 4 is an abstraction that sepa-
rates the basic processing mechanisms and scheduling algorithms
from the concrete MoC semantics and application behavior. The
precise semantics are implemented on top of this abstraction. This is
analogous to a real world runtime that implements MoC semantics
through an abstraction layer on top of a thread model. In Mocasin,
concrete MoC semantics can be implemented by specializing the
process class provided by Mocasin overriding its workloadmethod.

For instance, Mocasin implements the KPN MoC. The workload
function of a KPN process implements the behavior of one node
in the KPN application graph by replaying the trace provided for
this node. The trace provides step-by-step instructions as to what
the process needs to do. For instance, the trace could start with a
consume segment reading a certain number of data tokens from a
channel, followed by a computation segment and finally a produce
segment writing a certain number of tokens to a channel.

The KPN implementation models the state of each FIFO channel
that connects KPN nodes. Note that this state only entails the num-
ber of data tokens that are stored in the buffer and does not describe
concrete data. For each read operation, KPN processes check the
state of the corresponding input channel. If a sufficient number
of tokens is available, the process retrieves the tokens from the
channel. The delay imposed by the consume operation is calculated
based on the concrete CP selected by the mapping and specified
by the platform model. If not enough tokens are available, the pro-
cess blocks and thus waits until a sufficient number of tokens is
available. A compute segment simply delays the execution by a
certain time. The precise time is calculated based on the cycle count
provided in the trace for the given processing element that the
ivhttps://simpy.readthedocs.io/en/latest/

audio_filter.filter_r

audio_filter.filter_l

audio_filter.fft_l

audio_filter.sink audio_filter.ifft_laudio_filter.ifft_l

audio_filter.ifft_r audio_filter.ifft_r

audio_filter.fft_r

11,000 μs 11,500 μsodroid

PE0

PE2

PE4

PE5

PE6

PE7

Figure 5: Visualization of the simulated execution of an au-
dio filter application on the ODROID-XU4.

process is mapped to. Writing tokens is implemented analogously
to reading. If there is not sufficient free space in the modeled FIFO
buffer, the process blocks. Otherwise, it continues and accounts for
any communication delays. If another process is waiting to read
tokens from this channel, it will be automatically unblocked.

While the above description focuses on the KPNMoC, the generic
simulation infrastructure can be utilized to model arbitrary MoCs
and runtime strategies. This includes the modeling of dynamic
workloads, such as a runtime scheduler that assigns incoming tasks
to a number of worker threads (c.f. Section 4).

The simulator can also produce a JSON history which provides
detailed information about the simulated execution and is a good
basis for further analysis. The JSON history can be visualized with
the Catapult Trace Viewerv as in the example shown in Figure 5.

3.5 Representations
Representations are a unique idea behind the modular design in
Mocasin, and are concerned with mathematical encodings of a map-
ping [14]. The most common way to represent this in algorithms
is what we call the SimpleVector representation. A mapping𝑚 is
specified as a vector:

𝑚 = (𝑝1, . . . , 𝑝𝑘 , 𝑐1, . . . , 𝑐𝑙 )
where the 𝑝𝑖 are processing elements for each of the 𝑖 = 1, . . . , 𝑘
computational tasks (or actors or processes) and the 𝑐 𝑗 are commu-
nication primitives for the data. Many algorithms consider com-
munication implicitly, or just ignore it, removing the 𝑐 𝑗 from the
representation. However, other representations are possible, like an
embedding to real vectors that captures a distance metric between
processors [14, 48] or the symmetries of the architecture [15, 43].

3.6 Mappers
Mocasin defines a modular mapper structure with a common inter-
face. This enables quick implementation and testing of algorithms,
using the various applications provided by Mocasin and easily uti-
lizing different representations. A simulation manager abstracts
the process of evaluating a series of mappings in order to obtain
performance estimations. This enables leveraging the structure
of mappings when searching the designs space, e.g. by getting a
symmetry-aware cache [15] for free.

In general, a wide range of different algorithms can be used for
generating mappings [44]. Mocasin implements several heuristics
and meta-heuristics. The heuristics can use domain-knowledge
and the internal data structures to derive a mapping. For instance,
Mocasin provides a very simple default mapper that maps all com-
putation to the first available PE and CP accordingly, and a static
fair mapper, following the basic design principle of the Linux CFS
vhttps://github.com/catapult-project/catapult

https://simpy.readthedocs.io/en/latest/
https://github.com/catapult-project/catapult


RAPIDO ’21, January 20, 2021, Virtual event C. Menard, A. Goens, G. Hempel, R. Khasanov, J. Robledo, F. Teweleitt, J. Castrillon

scheduler [31]. Meta-heuristics explore the design-space of map-
pings by evaluating multiple candidates and refining them through
the search. The implemented ones range from a simple random
walk to more sophisticated genetic algorithms. The genetic algo-
rithms are implemented with the DEAP framework [13] and follow
the general approach used in Sesame [12, 16, 39]. A tabu-search
mapping algorithm follows the method proposed in [29] and a
simulated annealing mapper is based on [35].

Mocasin also supports scheduling, e.g. with a knapsack-based
algorithm [24], or based on a Lagrangian relaxation method [50].
Together with static mappers (e.g. genetic algorithms), it forms
a hybrid approach generating spatio-temporal mappings, like in
TETRiS [17]. Also mappers with different objectives are supported
by Mocasin, like a bio-inspired design centering algorithm that
searches for robust mappings [18].

3.7 Configuration
All tasks provided by Mocasin can be configured via yaml files and
command line parameters. Mocasin uses Hydra [52] for managing
those configurations which is a key enabler for its flexibility. Hydra
allows dynamic composition of configurations from various sources,
which allows users to combine external and internal modules to
form flows tailored for specific use cases.

The use case depicted in Figure 2, for instance, reads the applica-
tion graph and traces from a TGFF file, creates a platform model of
the ODROID XU4 leveraging the platform designer, generates a ran-
dom mapping, and simulates the application executing accordingly
on the platform. This flow is executed by the following command:

mocasin s imu l a t e graph= t g f f _ r e a d e r t r a c e = t g f f _ r e a d e r \
p l a t f o rm= d e s i g n e r _ o d r o i d mapper=random

Each of the configuration keys can be adjusted as needed. For in-
stance, the flow could also run the static CFS mapping heuristic
by specifying mapper=static_cfs or read the application from
SDF3 by specifying graph=sdf3_reader. Note that the selectable
modules are not limited to the modules provided by Mocasin. Lever-
aging hydra’s plugin mechanism, external modules can be easily
defined and included in the configuration. Also note that users
can create customized configurations for their use case to avoid
specifying all parameters as command line arguments.

4 EVALUATION
The flexible infrastructure of Mocasin can be leveraged to quickly
prototype tools for new use-cases. Mocasin has been an invalu-
able tool in our research and implements the flows and solutions
described in [14–18, 24, 30].

In this paper, we illustrate Mocasin’s capability for rapid creation
of new flows by investigating a new use-case and describing a plu-
gin supporting it while leveraging the research approaches already
integrated. Concretely, we investigate a telecommunications appli-
cation from Long Term Evolution (LTE), to enable research into 5G
and beyond. The main challenge we want to tackle for these upcom-
ing technologies is their dynamic nature, where the computational
requirements depend strongly on the current workload.
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simulate
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Figure 6: Simulation of an LTE uplink receiver in Mocasin

4.1 LTE Simulation in Mocasin
Physical Layer baseband processing in an LTE base station is a
computationally demanding task. An argument can be made for
a formal, MoC-based approach to deal with these demands [51].
Especially in the context of Cloud Radio Access Networks (Cloud
RANs), parallelization of processes and good mapping strategies are
central to an efficient execution that meets the real-time deadlines
of the protocol [5, 19, 49]. In this section we leverage Mocasin to
prototype a tool flow for mapping an LTE baseband processing
application using SDF.

Our LTEmodel is based on the open-source PHY benchmark [45],
which provides an implementation of an LTE physical layer uplink
receiver. From this benchmark, we extracted an SDF model. A cen-
tral aspect of this model is that the concrete size and topology of the
SDF graphs depend on the workload they are processing. For the
workloads we investigate in this paper, the graphs have between
78 and 234 actors and between 1096 and 3228 communication chan-
nels. In upcoming technologies, like 5G and beyond, we expect the
variability of the workloads to increase and, correspondingly, their
computational aspects to become more dynamic as well.

By measuring the execution times of individual actors in the
benchmark on an ODROID-XU4, we enriched our model with re-
alistic performance characteristics. While general-purpose archi-
tectures like this are not ideal for baseband processing, it has been
proposed to use them for small base stations (e.g. Femtocells) [4].
For the purposes of prototyping, this allows us to use realistic num-
bers to assess the general trends. Modelling a more realistic scenario
including specialized hardware and real workloads is beyond the
scope of this paper.

Leveraging Mocasin’s configurable infrastructure, we extrapo-
late from the single SDF instances to simulate the processing of a
continuous stream of incoming data. We achieve this with a plu-
gin providing two new modules, the workload generator and the
LTE simulation manager (c.f. Figure 6). The workload generator
continuously reads data from a workload description and produces
new SDF graphs and traces according to the arriving data. We only
consider synthetic workloads in this paper, but workloads can also
be recorded from traffic observed at real base stations [5]. The LTE
simulation manager hooks into Mocasin’s simulator to resemble
a dynamic runtime. It requests a new workload every 1 ms, ac-
cording to the LTE protocol. The simulate module works together
with a runtime mapper by passing the system state to it and re-
ceiving mappings for the current workload. In Figure 6 we depict
the MKKP-MDP algorithm [24] using the TETRiS approach [17],
which leverages the symmetries representation module. Since in
Mocasin the mapper is fully exchangeable we can leverage any
of the existing mappers to generate on the fly and prototype new
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Figure 7: Validation of our LTE prototype in Mocasin. Every
point represents the simulated and its corresponding mea-
sured execution time for a random workload.

strategies tailored specifically for the LTE use-case. This simple
plugin elevates Mocasin’s simulator from a tool for estimating the
performance of static mappings to a tool for researching dynamic
runtime strategies for mapping an LTE workload.

In order to validate our model, we compared the high-level sim-
ulation in Mocasin with the real execution of the PHY benchmark
on the ODROID-XU4. The results of our comparison are shown in
Figure 7. The red line shows the ideal behavior, where the measured
and simulated times coincide, whereas the blue dotted line shows
the result of a linear regression. We see that the values are slightly
inaccurate, albeit systematically so (by a factor of ≈ 1.4). This is
less problematic since we want to compare mapping/scheduling
approaches, not simulate precise timings (the PHY benchmark is
not optimized for production). A better way of assessing the quality
of the results is thus to evaluate the fidelity of the simulation. In
terms of fidelity, a linear regression yields a 𝑝-value < 10−15 and
the data also features a high Spearmann’s correlation of 𝜌 = 0.978.
This indicates that we can reliably compare the effects of various
mapping strategies in Mocasin, since a lower estimated simulation
time also indicates a better performance in the real platform.

4.2 Evaluating Mappings
Our goal in this use-case is to investigate how best to cope with the
dynamic workload-dependent nature of the application. For this, we
evaluate different mapping methodologies on varying workloads.
Most mapping strategies described in Section 3.6 assume a single,
static application (with possibly multiple tasks, processes or actors).
The tool prototype, however, enables us to use these static mappers
at run-time by generating the SDF graphs and applying themapping
algorithm on-the-fly during the simulation (cf. Figure 6). Clearly,
these algorithms are not designed to be used at run-time. However,
this method enables us to assess how well they could work in
principle and allows us to focus on better-performing methods for
designing run-time heuristics.

For evaluation, we generate random Poisson-distributed LTE
workloads and compare the performance of the benchmark using
different mapping algorithms. Baseband processing in LTE is a firm
real-time application—after the real-time deadlines have passed
the results are useless. We model this by terminating a running
application once 2.5ms have passed. Figure 8 shows the miss rates
for two scenarios with comparatively lower and higher workloads.
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Figure 8: Comparison of multiple mapping approaches for
the LTE benchmark on different scenarios.

We see how both the random and random walk strategies per-
form badly. For the lower workload, the meta-heuristics genetic
and tabu search perform significantly better. However, out of the
static mapping approaches, the static CFS mapper performs best.
This is because the meta-heuristics are parameterized for a quick
execution, and they struggle with a large number of actors as the
mapping space grows exponentially. Since the dependencies in the
SDF graphs are not complex and the number of actors is large,
a load-balancing strategy as realized by the static CFS mapper
seems to works best. This is different from applications with more
coarse-grained actors and complex interdependencies, where meta-
heuristics significantly outperform static CFS. However, the results
also show that the hybrid mapping approach (concretely, the sched-
uling algorithm of [24]) worked better than all static approaches.

Overall, the rapid prototyping approach of Mocasin allowed us
to reach a conclusion quickly, namely that hybrid strategies work
better for the LTE use case, even compared to the (computationally)
costly static mapping strategies. This shows us where to focus
our efforts and provides a platform for researching more elaborate
scheduling strategies in future work.

5 CONCLUSION
In this paper we introduced Mocasin, a flexible open-source frame-
work for prototyping tools for mapping software to heterogeneous
multi-cores. In particular, we showed its modular architecture that
weaves together commonalities between different mapping algo-
rithms and data structures using different dataflow MoCs. The
chosen generalizations allow us to combine and compare these
methods, including different static mapping heuristics and meta-
heuristics with KPN, SDF and task-graph models, or even hybrid
compile-time/run-time strategies. We showed the flexibility of Mo-
casin by prototyping a tool flow for scheduling dynamic workloads
in LTE baseband processing, which enables us to rapidly compare
different mapping strategies for this use-case.
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