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—— Abstract

With the increase of voice-controlled systems, speech based recognition applications are gaining more
attention. Such applications need to adapt to hardware platforms to offer the required performance.
Given the streaming nature of these applications, dataflow models are a common choice for model-
based design and execution on parallel embedded platforms. However, most of today’s models are
built on top of classical static dataflow with adaptivity extensions to express data parallelism. In
this paper, we define and describe an approach for algorithmic adaptivity to express richer sets
of variants and trade-offs. For this, we introduce multi-Alternative Process Network (mAPN), a
high-level abstract representation where several process networks of the same application coexist. We
describe an algorithm for automatic generation of all possible alternatives. The mAPN is enriched
with meta-data serving to endow the alternatives with annotations in terms of a specific metric,
helping to extract the most suitable alternative depending on the available computational resources
and application/user constraints. We motivate the approach by the automatic subtitling application
(ASA) as use case and run the experiments on an mAPN sample consisting of 12 randomly selected
possible variants.
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1 Introduction

With the proliferation of digitalization and the easy access to storage capacity, large volumes
of audio data including broadcasts and meetings are increasingly generated and stored. As a
result, a growing need for automated processing of human language has emerged, leading
to the advent of many audio processing applications. One example is Audio Indexing,
enabling the search and retrieval of who spoke what from an audio source. Another example
is the Automatic Subtitling Application (ASA)[1, 11], where Speaker Recognition (SpkR),
Speech Recognition (SpR), and Speaker Diarization (SD) are all combined. For the design of
such complex applications, embedded programmers need to understand algorithmic variants
implementing the same functionality (i.e. algorithmic adaptivity) and how can they be
deployed in parallel into possibly different many-core platforms (i.e. parallelism adaptivity).
In any given situation, characterized by available hardware resources and application/user
constraints, it is difficult to manually select the adequate algorithm while delivering the
required performance.

These streaming applications can exploit the parallelism of embedded many-core platforms
especially when described using appropriate Models of Computation (MoC [18]). For example,
Synchronous Dataflow (SDF) work well for describing one particular algorithmic variant.
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Figure 1 Representation of the Automatic Subtitling Application.
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However, it is ill-suited to express the adaptivity required today. For static models (e.g.,
Cyclo-Static Dataflow (CSDF) [4] and Parameterized Synchronous Dataflow (PSDF) [3])
adaptivity is at the token production and consumption levels. However, Dynamic models
allow for topology updates. A prominent example is Scenario-Aware Dataflow (SADF) [21]
which expresses behavioral adaptivity by modifying the application graph or varying the
amount of parallelism. However, this model suffers from limitations with regard to the size
and complexity of the model itself [5, 12]. Otherwise, one option would be to have a different
graph for every single variant of the ASA algorithms to be arbitrated at run time. Obviously,
such a solution may not be practical and would lead to a combinatorial explosion on top
of being prohibitively complex to manage. In this paper, we propose a novel model for
compact representation and exploration of multiple algorithmic variants in one single-source
specification. Our model, called mAPN, extends the well-known Kahn Process Network
(KPN) [15] model. mAPN carries annotations on metrics and enables automatic exploration
of the different implementations to choose a well-suited variant. The main contributions of
this paper are:

We introduce mAPN to capture multiple algorithmic variants, beyond what existing

models allow, in a compact single-source specification (cf. Sec. 3.1).

We present an algorithm for the automatic exploration of several variants based on mAPN

annotations and the constraints introduced by the designer (cf. Sec. 3.2).

We demonstrate the analysis fidelity of our approach for the ASA use case. cf. Sec. 4

2 Motivational example

In this paper we use ASA as a case study to demonstrate the need for parallelism and
algorithmic adaptivity. ASA is a complex application that combines the functionality of
SpkR, SD and SpR, to recognize who is speaking, when s/he is speaking, and what s/he
is saying, respectively. The different functionalities share common phases (e.g., Feature
Extraction (FE)), as well as common algorithms serving different phases (i.e. Classification,
Pattern Matching (PM), and Speaker Change Detection (SCD)). Fig. 1 illustrates a coarse-
grained representation of ASA. To better grasp the scale at which the number of possible
implementations can grow, we will detail the VAD, FE, and PM phases. For FE, speaker
characteristics can be categorized based on different features. Prominent algorithms for feature
extraction are MFCC, FBCC, PLP, and LPC [24, 23, 17]. These possible implementations
are schematically shown in Fig. 1. For each particular phase, processes with the same
number represent common nodes of these algorithms. The PM phase exhibits three possible
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implementations: Euclidean Distance (ED) and Cosine Similarity (CS) (i.e. compact, or
expanded if we consider parallelism adaptivity). In absolute terms, no variant is better than
all the others. Which variant is best depends on the application/user constraints and the
desired target hardware.

Depending on these constraints, one has to specialize the phases for each functionality.

Phase reuse and algorithmic choices create a large space of possible variants for ASA. Some
researchers use classical techniques that are accurate and can run on embedded hardware
with resource constraints. Other approaches are based on deep learning, requiring large
databases. This gain in complexity makes it hard from a developer point of view to choose the
right implementation of the application beforehand. This becomes even harder considering
the diversity of possible target hardware, as the achieved performance of an implementation
may significantly differ from one hardware to another. In any given situation, it is difficult
to manually select an adequate algorithm under application/user/HW constraints. To ease
development, applications such as ASA are not written from scratch, but are built from
existing implementations. This is known as the Algorithm Selection Problem [19], which
shifts the burden from finding the right solution to identifying and composing appropriate
existing algorithms. In this paper we propose a novel model to support designers in this
process, named mAPN.

3 mAPN

3.1 mAPN Formalization

A KPN is a directed graph composed of a set of concurrent processes (nodes), communicating
through unidirectional unbounded First In First Out (FIFO) channels (edges) having blocking
reads and non blocking writes semantics. Formally, a KPN is a tuple G = (P, Ch), where
P is a set of processes, and Ch C P x P a set of channels. A Multi-Alternative Process
Network (mAPN) is a graph that concisely represents many different KPNs. We use colors

to tag and then generate all possible alternatives. Let = = {&1,£2, ..., £} be the set of colors.

&* € = denotes a particular neutral color and P(Z) the power set of Z. Similar to KPNs, an
mAPN is a directed graph composed of processes and channels. However, and unlike KPNs,
channels are annotated with colors indicating the local alternatives that the channel belongs
to. Formally,

» Definition 1 (mAPN). A multi-Alternative Process Network is a tuple G = (P,Ch,col),
where P is a set of processes, Ch is a set of channels Ch C P x P and col is a function that
maps each channel to a subset of colors, that is col : Ch — P(Z).

Let wr,rd : Ch — P be two functions that map each channel to the process that
writes into it, respectively reads from it. In a similar way, we define @r,rd : P — P(Ch)
that map each process into a subset of Ch it writes to, respectively, it reads from (i.e.,
wr(p) = {ch € Ch,wr(ch) = p}). We call source processes (Src) the subset of P that do not
read from any channel. Analogously, sink processes (Snk) do not write to any channel. That
is, Src = {p € P,rd(p) = 0}, and Snk = {p € P,wi(p) = 0}. The function colyq returns
the colors a process reads from. Analogously, c/o\lwr returns the colors a process writes to
(i.e., c/\olw(p) = UchaAT(p)col(ch)). In the sample mAPN of Fig. 2, the colors of the channel
that connects process v to « (ch?), has colors { =, m}, while col(ch}) = {m}. Note also that
Src = {a,v}, Snk = {u} and c/\olw,.(p) ={=, = =}

A colored subgraph G¢ = (P¢,Ch¢) of an mAPN G = (P, Ch) gathers all the channels
having the same color &, and the processes connected to them. The neutral color &*
(black color in Fig. 2) marks the nominal end-to-end implementation of the application
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Figure 2 mAPN of a synthetic example.

(cf. Definition 2). Colored subgraphs represent local alternatives. For example, the purple
subgraph connecting processes ¢ and f is a local alternative to the black subgraph, replacing
the functionality of d and e. For clarity reasons, nodes in the figure receive the colors of the
local alternative they belong to. Local alternatives can be nested, as is the case of the blue
and green ones. Consequently, the flow from b to d can go through ¢ (black), through p and
q (green), or through p and r (composition of green and blue).

» Definition 2 (Nominal alternative). A nominal alternative G¢ = (P¢",Ch¢") of an mAPN
G = (P,Ch,col) is an end-to-end subgraph of G where ¥ch € Chy,,£* € col(Chy), and
Sre, Snk C P,

We distinguish processes from/at which local alternatives fork/join. These processes are
important since they identify anchor nodes for generating alternatives. We classify them into
the following subsets:

F is the subset of processes of P that write different channels with different colors.

Formally, F = {p € P,3ch;, ch; € wr(p),i # j, col(ch;) # col(ch;)}.

J is the subset of processes of P that read different channels with different colors.

Formally, J = {p € P,3ch;,ch; € rd(p),i # j, col(ch;) # col(chj)}.

In the mAPN of Fig. 2, F = {b,¢,p,v,g9} and J = {d,e, f,j,u}. Based on the nominal
alternative and the collection of local alternatives forming an mAPN, one can generate all
possible alternatives. Generation is based on a set of assumptions that the mAPN is a
well-formed. Concretely:

» Definition 3 (Well-formed mAPN). A well-formed mAPN G = (P, Ch, col) has the following
properties: (i) existence of a nominal alternative, (i) every sink node of a colored subgraph
is a join node, (iit) every source node of a colored subgraph is a fork node, (iv) colors cannot
be re-used in disjoint subgraphs, and (v) preserving KPN semantics (that is, for a fork node,
the number of write channels per color must be the same).

KPN semantics preservation does not include a condition over the number of read channels
per color for a join node. Process u in Fig. 2 is a counter example, as we have two branches
of alternatives coming from two distinct source nodes.

We structure an mAPN so that alternatives are created from products over the sets of
generated sub-KPNs. These subsets are generated from mAPN subgraphs, and we call them
closed. Nesting alternatives occur only within such subgraphs. Three subgraphs are marked
by dashed gray boxes in Fig. 2, each one itself, a well-formed mAPN. By adding anchor
nodes to every element of the product of sub-KPNs, we get the set of all possible alternatives.
We define a closed mAPN as follows:
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Algorithm 1 Generation of Kahn Process Networks.

param: G : (P,Ch,col), M,V,C

return: KPNs: {kpn;};
1: procedure ALTGEN
2. KPNs, KPN! < 0
3 {GP}i + getClosedGraphs(G)
4: (Peom s Cheom) < rmCommon(G, {GZO}Z)
5: for every G do
6.
7
8

KPN! « AltGenRecur(G9)
KPNs <+ mizNmatch(KPNs, KPNY})
: for kpn; = (P;,Ch;) € KPNs do
9: kpni — (Pz U Pco7n7 Ch; U Chco’m)

10: v =v(kpn;, M, V) > Metrics evaluation of kpn;
11: if v # C then > Checking constraints
12: KPNs <+ KPNs)\ {kpn;}

13: return KPNs

» Definition 4 (Closed mAPN). A closed mAPN G© = (P9, Ch, col®) of a well formed
mAPN G = (P,Ch,col) has the following properties: (i) GO is a well formed mAPN,
Src® C F and Snk® C J, (ii) no loop backs are allowed across closed mAPNs, (iii) a closed
mAPN is minimal, that is it cannot include a composition of two or more closed sub-mAPNs,
and (iv) the set of colors that fork within a closed subgraph is the same that joins.

3.2 Exploration algorithm

Algorithm 1 describes the generation process by: (i) extracting closed graphs (line 3), (ii)
generating the set of KPNs for each one and mixing and matching them (lines 5-7), (iii)
adding anchor nodes for each partially constructed KPN (line 9). After adding adding anchor
nodes, the KPN is complete and can then be evaluated (line 10) using the rules of aggregation,
and checked against the given constraints (line 11). If the constraints are not satisfied, that
particular KPN is removed from the set of alternatives to return (line 12).

The recursive procedure AltGenRecur () (Algorithm 2) visits source nodes (line 4) and
generates a set of KPNs for each one. Given a source process p, the algorithm iterates
over the local alternatives, i.e., colors of the channels p writes to (for in line 6). For every
colored subgraph (kpn¢) having p as source (line 7), if kpne reaches sink processes without
including any fork, then it is a complete generated local KPN (lines 8, 9), and is added
to the set of generated KPNs starting from p (line 19). This is the example of the purple
colored subgraph starting from the fork source ¢ of G¢. Otherwise, a recursive call over the
computed subgraph G’ (line 17) will return alternatives, to be mixed and matched (line 18).
Computing G’ depends on whether there are nested alternatives, or a sink of G is not reached.
In the first case, G’ is the subgraph of G that starts from the immediately encountered fork
nodes of the colored subgraph kpng (lines 11-14). For example, if we consider the green
colored subgraph, G’ will be the entire subgraph of G{ that has process p as source. In the
second case, i.e. no sink is reached, G’ is the subgraph that starts from sink processes of
kpne (lines 16). This is the case of the three colored subgraphs of G§ starting from process
p. mixNmatch() takes two sets of KPNs and computes all possible combinations of their
elements (i.e., set product).
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Algorithm 2 Recursive generation of Kahn process networks.
param: G : (P,Ch,col)
return: KPNs: {kpn;};

1: procedure ALTGENRECUR
2. KPNs KPN! + 0
3 Src« {p € P,rd(p) = 0}
4 for p € Src do
5: KPN, <0
6 for ¢ € colwr(p) do > Iterate over colors
7 kpne = (Pe, Che) < subgraph(G,{p},§)
8 if (P NF = {p}) A (Snk/ppn, C Snk) then
9: KPN{ + {kpn¢}
10: else
11: if (P: N F # {p}) then > Nested alt.
12: {pj}; < getClosest(p, P: \ {p} N F)
13: G’ <+ subgraph(G,{p;};)
14: kpng < kpne \ {kpne N G'}
15: else > No sink is reached
16: G’ < subgraph(G, Snk/ipne)
17: KPN/ «+ AltGenRecur(G")
18: K PN/ «+ mizNmatch({kpn¢}, K PN})
19: KPN? < KPNYUKPN,
20: KPNs « mizNmatch(KPNs, K PN?)

21: return K PNs

4  Evaluation

4.1 The mAPN model of ASA

We demonstrate our approach on an ASA application. Recall the coarse-grained graph presen-
ted in Fig. 1. The figure shows an example of existing implementations and commonalities
across them, characterizing the large design space of algorithmic variants for this application.
Several approaches and algorithms for each phase can be found in the literature. Readers
may refer to [6] for a detailed survey. In this section we explain the most common algorithms
for SpkR, SR and SpR, and how they can be combined in one graph to create a different ASA
implementation. Each phase in Fig. 1 is replaced by one or more possible implementations
using different colors. Fig. 3 represents one possible compact graph for the ASA application.
The voice activity detection (VAD) has two different variants while FE has 7. By mixing and
matching these two phases, we generate 14 possible variants implementing the part ending at
node 13. So far, we have excluded adaptive parallelism in the variants. To exploit Task-level
parallelism (TLP), expanded/compacted versions of a Process Node (PN) can be added as an
additional algorithmic variants. This is similar to the work presented in [20]. The algorithm
that implements the MFCC FE can be executed by one PN (i.e. Node 28 ), or expanded
over several PNs (5 PNs:9-13). The same process can be applied to all the local variants
of the FE phase leading to 7 additional algorithmic variants just for this phase. Similarly,
Data-level parallel (DLP) versions of some phases can be deployed to balance the load across
application phases, as seen in [16]. For example, in the pattern matching phase (node 15), a
new alternative can be created where multiple Fuclidean Distance (ED) nodes run in parallel
and then send the results to the merge node. Every added possibility implementing a local
phase in the compact graph greatly enriches the space of implementation variants. After only
adding the discussed TLP/DLP alternatives, the number of possible variants reaches 672.
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Figure 3 Multi-Alternative Process Network for ASA.

4.2 Experimental Results

For the experimentation, we implemented for the VAD the black alternatives corresponding to
an MFCC-based VAD as presented in Fig. 3. In phase FE, we explore parallelism adaptivity

by applying TLP to the implementation of the MFCC algorithm (compact version, 28, vs.

expanded version, 8 to 13), and algorithmic adaptivity by adding an FBCC implementation
(9-29-30-31). SCD phase presents algorithmic adaptivity: ED (node 15) vs. CS (43); while
the k-means algorithm (18) is used for clustering. Finally, DLP is applied to the PM phase
by varying the number of ED-Compact nodes (21) to be either 1 or 4. We implemented these
algorithms and end up with 12 possible alternatives in total (combinations of 32 different
process ids).

We explore the space of alternatives to select feasible ones and compare it to a brute
force approach, where all implementations are generated and executed. As an evaluation
metric, we use the execution time as a metric under a constraint of 55s. To factor the errors
introduced by estimation, we use actual measurements using the estimator of the SLX tool
suite! on the target hardware. Based on these estimations, evaluation of alternatives are
performed using the max-plus algebra traditionally used for timing analysis of dataflow
graphs [13]. Experiments are made on a speech of 5 minutes of length, and considering two
platforms: Odroid XU4? and a GPP3 (GPP).

As shown in Table 1, column FEstimations contains the execution time estimates on
both platforms. Each assessed alternative is then considered feasible (v), or rejected (X)
depending on whether it respects the defined constraint or not (not exceeding 55s). Under
column Real Ezp.Results, we present the experimentally measured wall-clock time for these
alternatives. The column R/F (right/false decision) lists the correctness of the decision

! https://www.silexica.com/

2 Exynos 5422 big. LITTLE chip: 4 Cortex-A15 and 4 Cortex-A7 cores
3 3.40GHz quad-core Intel(R) Core(TM) i7-6700 CPU
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Table 1 Experimental results.

. . Real
Estimations Exp. Results
Odroid GPP Odroid | R/F | GPP | R/F

Alt 1: {VAD-FE(Bessel)-SCD(ED)-CI-PM(DLP-4)} 102.36 | X | 26.24 | V/ 56.43 R 20.66 | R
Alt 2: {VAD-FE(Exp.MFCC)-SCD(ED)-CI-PM(DLP-4)} 5211 | v | 11.53 | v/ 24.43 R 994 | R
Alt 3: {VAD-FE(Comp.MFCC)-SCD(ED)-Cl-PM(DLP-4)} 51.80 | v | 10.56 | v 23.66 R 9.66 | R
Alt 4: {VAD-FE(Bessel)-SCD(ED)-CI-PM(DLP-1)} 115.20 | X | 30.74 | v/ 67.69 R 25.73 | R
Alt 5: {VAD-FE(Exp.MFCC)-SCD(ED)-Cl-PM(DLP-1)} 64.95 | X | 16.03 | v/ 53.78 F 20.54 | R
Alt 6: {VAD-FE(Comp.MFCC)-SCD(ED)-Cl-PM(DLP-1)} 64.64 | X | 15.06 | v 52.78 F 19.51 | R
Alt 7: {VAD-FE(Bessel)-SCD(CS)-Cl-PM(DLP-4)} 102.35 | X | 26.23 | / 45.72 F 2093 | R
Alt 8: {VAD-FE(Exp.MFCC)-SCD(CS)-Cl-PM(DLP-4)} 52.10 | v | 11.52 | / 23.10 R 10.05 | R
Alt 9: {VAD-FE(Comp.MFCC)-SCD(CS)-CI-PM(DLP-4)} 51.79 | v/ | 10.55 | v/ 23.68 R 9.32 | R
Alt 10: {VAD-FE(Bessel)-SCD(CS)-Cl-PM(DLP-1)} 11519 | X | 30.73 | V/ 56.88 R 2042 | R
Alt 11: {VAD-FE(Exp.MFCC)-SCD(CS)-Cl-PM(DLP-1)} 64.94 | X | 16.02 | v/ 53.74 F 1994 | R
Alt 12: {VAD-FE(Comp.MFCC)-SCD(CS)-CI-PM(DLP-1)} | 64.63 | X | 15.05 | v/ 55.47 R 20.01 | R

made about the feasibility of each alternative. By using a time constraint of 55s, Table 1
shows that estimations reaches a success rate of 66.66% and 100% on Odroid and GPP
respectively. Besides being able to decide on which alternative to use, we are also interested
on how fast such a decision can be made. For the brute force approach, and considering the
Odroid platform, choosing among the 12 alternatives requires an execution time of 537.37s.
By extrapolating to 672 alternatives, this would correspond to around 8h. Conversely, the
mAPN approach only requires to assess 32 different nodes to cover the 12 alternatives which
takes 206.2s. This extrapolates to 16m considering the 672 alternatives (covered by 49 nodes
as in Fig. 3). We notice that the estimations are generally slower than the real results,
which can be explained by the fact that we are not taking into consideration the pipelining
parallelism hidden in the KPN dataflow graph. In addition, using better assessment leads to
more accurate estimation. However, this is kept out of the scope of this paper.

Further analysis is done to show the fidelity of the estimation. Fig. 4 illustrates the
correlation plot between the estimated cost of an alternative and the actual execution time of
the real implementation. The grey area in the plot represents the 95% confidence intervals of
the results following the smoothing method. We also sort the results of the 12 alternatives and
compute the rank correlation to measure the ordinal association between them. This results
in 0.936 and 0.802, using the Spearman’s p and Kendall’s T methods respectively. Recall that
1 represents a perfect alignment between the two rankings. For both methods, very high
agreement levels are achieved, proving that our mAPN, ensure an acceptable ordering of the
alternatives in terms of the considered metric. Even with the noticed deviation between the
estimations and the measures, we are still able to say which alternative is better than the
other without a time consuming evaluation of all alternatives in the target hardware. This
helps the user to decide on the feasible and adequate ones in a large space of variants.

5 Related work

Many research works propose methods for parallelism adaptivity. Flextream [14] studied
adaptable compilation of a running application to the changing hardware characteristics.
Adaptivity is achieved by replicating stateless processes to form a more fine-grained graph.
Authors in [22] went further and proposed actor merging for sequentially executing processes.
Likewise, Lee et al [7] proposed an optimal method to adapt the running application to
available resources. Optimality refers to memory footprint under core-count constraints to
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reduce energy consumption. [10] extended the semantics of SDFs to increase expressiveness
and enable the specification of dynamic reconfigurable signal processing applications. They
exploit static and adaptive task, data and pipeline parallelism. The work in [9] determines
the minimal required performance of the hardware to be used for Macro Dataflow. Similarly,
authors in [16], vary parallelism at run-time for KPN applications by duplicating stateless

processes. Previous works considered one possible implementation of a particular application.

They expressed adaptivity by breaking its tasks further down, or consolidate them into less
tasks if few hardware resources are available. They do not support deeper implementation
changes where different algorithms can be used to perform the same task. Authors in [8]
present a methodology that allows for multiple algorithmic variants for a given actor in an
application. These algorithmic variants are passed as metadata to the compiler, which selects
the best implementation for a given platform. Authors in [2] introduce a new programming
language to ensure algorithmic choice at the language level. They provide algorithmic choices

to the compiler. However, these two approaches do not support adapting the graph topology.

Our approach is more general, combining parallelism adaptivity with algorithmic adaptivity.

6 Conclusion

In this paper we introduced mAPN, a novel model where multiple algorithmic variants are
concisely represented in one compact graph. The abstract high-level model we proposed is
built on top of KPN, taking advantage of its formal properties. Provided with additional
information (annotation in terms of chosen metric), this model enlarges the variant space and
eases the process of retaining feasible variants while meeting application/user/HW constraints.
Furthermore, our approach is generic, combining parallelism adaptivity with algorithmic
adaptivity. We motivated the mAPN approach with variants of ASA. We evaluated the
end-to-end paths of the co-existing algorithmic variants in the graph using annotation on
processes in terms of execution time. Being able to reason about these metrics and algorithmic
adaptivity with a concise model will be key to achieve the most suitable implementation in
terms of considered application/user/HW constraints. In future work, we will investigate
efficient run-time algorithmic switching mechanisms, and considering annotation over more
abstract domain-specific metrics like accuracy or robustness.
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