
44

Optimizing Tensor Contractions for Embedded Devices with
Racetrack and DRAM Memories

ASIF ALI KHAN and NORMAN A. RINK, Technische Universität Dresden, Germany

FAZAL HAMEED, Institute of Space Technology, Islamabad, Pakistan

JERONIMO CASTRILLON, Technische Universität Dresden, Germany

Tensor contraction is a fundamental operation in many algorithms with a plethora of applications ranging

from quantum chemistry over fluid dynamics and image processing to machine learning. The performance

of tensor computations critically depends on the efficient utilization of on-chip/off-chip memories. In the con-

text of low-power embedded devices, efficient management of the memory space becomes even more crucial,

in order to meet energy constraints. This work aims at investigating strategies for performance- and energy-

efficient tensor contractions on embedded systems, using racetrack memory (RTM)-based scratch-pad memory

(SPM) and DRAM-based off-chip memory. Compiler optimizations such as the loop access order and data lay-

out transformations paired with architectural optimizations such as prefetching and preshifting are employed

to reduce the shifting overhead in RTMs. Optimizations for off-chip memory such as memory access order,

data mapping and the choice of a suitable memory access granularity are employed to reduce the contention

in the off-chip memory. Experimental results demonstrate that the proposed optimizations improve the SPM

performance and energy consumption by 32% and 73%, respectively, compared to an iso-capacity SRAM. The

overall DRAM dynamic energy consumption improvements due to memory optimizations amount to 80%.

CCS Concepts: • Hardware → Emerging architectures; • Computer systems organization → Embed-

ded systems; • Software and its engineering → Source code generation;

Additional Key Words and Phrases: Compiler optimization, data transformation, tensors, tensor contraction,

matrix multiplication, racetrack memory, preshifting, prefetching, embedded systems, DRAM mapping

ACM Reference format:

Asif Ali Khan, Norman A. Rink, Fazal Hameed, and Jeronimo Castrillon. 2020. Optimizing Tensor Contractions

for Embedded Devices with Racetrack and DRAM Memories. ACM Trans. Embed. Comput. Syst. 19, 6, Article

44 (September 2020), 26 pages.

https://doi.org/10.1145/3396235

1 INTRODUCTION

Tensors are multi-dimensional data structures that generalize matrices. Consequently, tensor con-
traction generalizes the operation of matrix multiplication. The abstractions offered by tensors

This work was partially funded by the German Research Council (DFG) through the TraceSymm project CA 1602/4-1 and

the Cluster of Excellence ‘Center for Advancing Electronics Dresden’ (cfaed).

Authors’ addresses: A. A. Khan, N. A. Rink, and J. Castrillon, Technische Universität Dresden, 01069, Dresden, Germany;

emails: {asif_ali.khan, norman.rink, jeronimo.castrillon}@tu-dresden.de; F. Hameed, Institute of Space Technology, 44000,

Islamabad, Pakistan; email: fazal.hameed@ist.edu.pk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2020/09-ART44 $15.00

https://doi.org/10.1145/3396235

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

https://doi.org/10.1145/3396235
mailto:permissions@acm.org
https://doi.org/10.1145/3396235

44:2 A. A. Khan et al.

Fig. 1. Applications domains for embedded systems in the Internet of Things.

and their operations are central to many algorithms in modern application domains such as signal
and media processing, computer vision, and machine learning. Recent years have seen a surge
in the emergence of new programming languages and frameworks specifically designed for the
handling of tensor-based computations in these application domains [1, 5, 30, 52], also targeting
heterogeneous platforms, e.g., [11] and [29]. In the age of the Internet of Things, media processing,
computer vision, and machine learning are key application domains for embedded devices, which
enable ubiquitous computing in environments that call for extremely low energy footprint and tiny
form factors. Examples of such environments are wearables and autonomous vehicles or aircraft,
where tensor processing on the device allows for efficient inference in intelligent applications,
cf. Figure 1.

The typical constraints on size, power, and energy consumption in the embedded domain make
the design of systems for processing large multi-dimensional tensors especially challenging. Par-
ticular pressure is put on the design of the memory subsystem, which must accommodate large
tensorial data structures within the given constraints. This pushes traditional approaches and
technologies to their limits. For example, as was already observed in the mid-2000s, traditional
SRAM-based memory is power hungry and suffers from severe leakage power consumption that
is responsible for up to 33.7% of the total memory energy consumption [22, 23]. Similarly, the data
mapping and the memory access order, if not managed properly, not only degrade performance
but also exacerbate energy consumption.

A radically new approach to the design of memory hierarchy is to use a combination of DRAM
and NVM memories to exploit their relative benefits while avoiding their disadvantages. One
particularly promising NVM technology is the spin-orbitronics-based racetrack memory (RTM),
which is more reliable and has lower read/write latency than alternative NVM technologies [6, 43,
44]. Moreover, RTM is very energy-efficient, which is why it is particularly interesting for deploy-
ment in embedded devices. This article extends the work in [28] and proposes data layouts and
architecture support for optimizing the important tensor contraction operation for RTM-based
scratch-pad memory (SPM) in conjunction with DRAM-based off-chip memory.

Unlike conventional memories, a single memory cell in RTM stores data in a tape-like magnetic
nanowire called track. Each track is equipped with a read/write port, and accessing data on a
track requires shifting and aligning it to the port position. If the programmer or compiler does not
manage data layout judiciously, additional shifts become necessary which degrade performance
and energy efficiency. Similarly, to reduce contention in the off-chip DRAM, it is important to
devise contention-aware techniques that take into account the underlying DRAM architecture
and the tensor data.

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

Optimizing Tensor Contractions for Embedded Devices 44:3

Fig. 2. RTM horizontal and vertical placement.

Specifically, this article makes the following contributions.

(1) For tensors that fit entirely into the SPM, we derive a data layout that reduces the number
of shifts necessary for a tensor contraction to the absolute minimum.

(2) We discuss how contractions of large tensors are handled by processing tiles of the ten-
sors in SPM. We show how, in the presence of tiling, the number of shifts can also be
reduced to the bare minimum by switching the data layout when bringing new tiles into
the SPM.

(3) We present an optimized mapping of tensor data to off-chip DRAM that saves energy by
reducing the number of DRAM operations compared to a conventional tensor mapping.

(4) We propose a contention-aware memory access schedule that reduces the impact of dif-
ferent contentions (i.e., read-write interference and row buffer conflict) in DRAM memory
by efficiently overlapping computation with memory access that simultaneously improves
performance and energy efficiency.

(5) We investigate the impact of large memory access granularity on performance and energy
consumption. We found that a large memory access granularity saves energy compared
to a smaller one when using our contention-aware memory access schedule and layout.

The rest of this article is organized as follows: Section 2 gives a brief overview of the RTM
technology, the SPM layout, off-chip memory, and the tensor contraction operation. Section 3 dis-
cusses how various SPM data layouts impact the overall shifting overhead in RTM and presents the
best data layout for tensor contraction. Section 4 explains the proposed contention-aware memory
layout and efficient scheduler for the off-chip memory. Section 5 and Section 6 provide the evalu-
ation results and comparison with the state-of-the-art. Section 7 discusses the state of the art and
Section 8 concludes the article.

2 BACKGROUND

This section briefly explains the working principle and architecture of racetrack and DRAM memo-
ries. In addition, it provides background on the tensor contraction operation and layout of scratch-
pad memories.

2.1 Racetrack Memory

Racetrack memories have evolved significantly over the last decade. Unlike in conventional memo-
ries, a single cell in RTM is a magnetic nano-wire (track) that can have up to 100 magnetic domains

where each domain represents a bit. Domains in a nano-wire are separated by magnetic domain
walls (DWs). The track can be placed vertically (3D) or horizontally (2D) on the surface of a silicon
wafer as shown in Figure 2. While the vertical placement of tracks achieves the storage density of
today’s magnetic disk drives, it faces several design challenges. In the horizontal configuration, the

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

44:4 A. A. Khan et al.

Fig. 3. System and scratch-pad memory architecture.

cell size can be much smaller than the smallest memory cell today. With state-of-the-art materials,
the RTM cell size can be 1.5 F2 compared to 120–200 F2 in SRAM and 4–8 F2 in DRAM [37, 53].

2.2 Scratch-Pad Memory

Scratch-pad memory is a faster on-chip memory, usually based on SRAM. Compared to hardware-
managed on-chip caches, the SPMs, which are managed by software (i.e., by the programmer or
compiler), offer a number of advantages. SPMs have relatively simple architecture and do not re-
quire the complex peripheral circuitry of caches; saving both area and energy. SPMs do not need
any tag comparison, making access to the on-chip memory faster. Particularly in the embedded do-
main, SPMs perform better than caches because embedded applications often have regular memory
access patterns. With SPMs, it is very easy to efficiently choreograph the data movement between
the on-chip and off-chip memories. This also enables better predictability of the application tim-
ings, a key feature of embedded systems.

Figure 3 shows a typical embedded system architecture with the address space partitioned be-
tween the off-chip memory and the SPM. Typically, the off-chip memory is accessed via cache.
However, in this work, we are only interested in the data layout in SPM and the data movement
between the off-chip memory and SPM. Therefore, we drop the on-chip cache from our design
consideration. We assume that scalar variables can be stored in registers and only focus on the
tensor layouts in SPM. SPMs have been successfully used already in the design of accelerators for
machine learning, e.g., in [10].

Figure 3 also shows the detailed SPM architecture. Since the typical SRAM-based SPMs have
small capacity [10], we consider a comparable 48 KiB SPM which is divided into three banks. Each
bank stores one tensor and is made up of 64 domain wall block clusters (DBCs). A DBC is a group
of w tracks with each track storing n domains. Similar to [56], we assume that each w-bit value is
stored in an interleaved fashion across the w tracks of a DBC and that the tracks in DBC can be
moved together in a lock-step fashion. For this work, we assume one access port per track (pointing
to location 0 initially), dynamic port access policy and lazy port update policy [6]. Further, we
consider w equals 32 and n to be 64. This implies that each bank in the SPM can store a 64 × 64
tensor. Larger tensors can be partitioned into tiles, as explained in Section 3.4.

2.3 Off-Chip Memory (DRAM)

A typical DRAM memory is a hierarchical pyramid of structures composed of channels, banks,
rows, columns, and cells. Each (channel, bank, row, column) consists of many (banks, rows,
columns, cells), respectively. Each bank contains a row buffer that keeps the recently accessed row
from the bank. The DRAM controller issues one or many commands to read/write data to/from
DRAM memory. A precharge (PRE) command is required to make the bank ready for a new

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

Optimizing Tensor Contractions for Embedded Devices 44:5

access. This command is not issued in the scenario when the bank is already in the precharged

state. An activate (ACT) command is required to fetch the relevant row to the row buffer of the
DRAM bank. A DRAM row buffer hit occurs when the requested row resides in the row buffer.
In this scenario, the controller does not issue the activate command. A DRAM row buffer conflict

occurs when a request is made to a row Rowi of the bank while another row Rowj resides in the
row buffer. Finally, a read/write command is issued to access the requested data from the row
buffer when the desired row exists in the row buffer. A DRAM row buffer conflict causes high
DRAM energy consumption compared to a row buffer hit. This is due to the fact that the DRAM
controller issues more commands (precharge, activate, and read/write) to service a request with
a row buffer conflict compared to a row buffer hit (i.e., read/write) request.

Read-write interference occurs in DRAM due to read-to-write and write-to-read penalties in
terms of latency and energy. Read-to-write latency is the minimum latency between a read request
and write request which is incurred to change the mode of the DRAM channel pins from read to
write state. Therefore, the DRAM channel will be idle during this time. Write-to-read latency is
the latency incurred to change the mode of the DRAM channel from the write to read state plus
an additional latency required to correctly update the data in the row buffer. The write-to-read
latency is higher compared to read-to-write latency which makes the DRAM channel idle for a
longer duration.

2.4 Tensor Contraction

Tensors are multi-dimensional data structures. Special cases of tensors are vectors (1-dimensional
tensors) and matrices (2-dimensional tensors). Matrix-vector and matrix-matrix multiplication are
low-dimensional instances of the more general operation of tensor contraction. To introduce ten-
sor contractions, let us consider the example of a 5-dimensional tensor A and a 3-dimensional
tensor B. Five indices are required to access an entry in A, and the entry at indices i1, i2, i3, i4, i5
is denoted as Ai1i2i3i4i5 . Analogously, Bi6i7i8 is an entry in the tensor B, at indices i6, i7, i8. Each in-
dex can take values in a fixed integer domain, say iα ∈ {1, . . . ,Mα } for α = 1, . . . , 8. The Mα are
the dimensions of the tensors A and B. That is, A has dimensions M1,M2,M3,M4,M5, and B has
dimensions M6,M7,M8. An example contraction of A and B along two dimensions is the following
sum-of-products that yields a tensor C ,

Cj1 j2 j3 j4 =

M5∑
n=1

M2∑
m=1

Aj1mj2 j3n · Bj4mn . (1)

Here the contraction is over the dimensions indexed with m and n. For this contraction to make
sense, certain dimensions ofA and B must match. Specifically,M2 = M7 andM5 = M8 must hold. In
other words, the pairs of dimensions that are indexed withm and n, respectively, must match. The
tensor C that results from the contraction in Equation (1) then is 4-dimensional, with dimensions
M1,M3,M4,M6.

Equation (1) can be rearranged to emphasize that tensor contraction is indeed a generalized

version of matrix multiplication. To this end, let Ã, B̃ be tensors that are obtained from A, B by
permuting indices as follows:

Ãi1i3i4i2i5 = Ai1i2i3i4i5 ,

B̃i7i8i6 = Bi6i7i8 .

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

44:6 A. A. Khan et al.

The same tensor C as in Equation (1) is obtained by contracting Ã and B̃ as follows:

Cj1 j2 j3 j4 =

M5∑
n=1

M2∑
m=1

Ãj1 j2 j3mn · B̃mnj4 . (2)

If indices are further arranged into groups k1,k3, l such that k1 = (j1 j2 j3), k3 = (j4), and l = (mn),
then C can be written as

Ck1k3
=

M2 ·M5∑
l=1

Ãk1l · B̃lk3
. (3)

Equation (3) is readily recognized as matrix multiplication.
Reorganizing the tensor contraction from Equation (1) into the form of matrix multiplication is a

standard trick that is commonly referred to as TTGT, e.g., [50]. The key problem with TTGT is that

the reorganization of the original tensors A, B into Ã, B̃ requires costly transposition operations,

i.e., costly changes of data layout. Moreover, the need for the new tensors Ã, B̃ in TTGT doubles
the memory footprint of tensor contraction. In the presence of SPM, the copying of tensors to the
SPM is necessary anyway before the contraction operation itself can be carried out. This offers an
opportunity for hiding the latency of transposition, provided transfers between off-chip memory
and the SPM have uniform latency and can be carried out with a stride.1

3 SPM LAYOUT FOR MINIMAL SHIFTING

In this section, we explain the impact that data layout and access order in RTM-based SPM have
on the shifting overhead. We move from a naive layout to an optimized layout by successively
removing unnecessary shifts that do not do any useful work. To process large tensors in the SPM,
they must be broken up into tiles. Switching between tiles generally comes with a latency but also
offers further opportunities for reducing the number of shifts by overlapping data transfers and
computation, and for latency hiding by prefetching.

3.1 Overview

The operation we implement for SPM is tensor contraction in the form specified by Equation (3).

If the dimensions of tensors Ã, B̃ are very small, these tensors can fit entirely in the SPM. We focus
on this situation in Sections 3.2 and 3.3, deriving an optimized data layout and access order for a
minimal number of shifts.

However, in the relevant application domains of media processing and machine learning, ten-
sors are typically large to begin with. Even if one starts out with moderately sized tensors, after

grouping dimensions as in the derivation of Equation (3), the resulting matrices Ãk1l , and B̃lk3

will have large dimensions. To still carry out tensor contraction with a fixed-size SPM, the tensors
involved must be tiled [39] (or blocked [2]).

We assume that the SPM can fit three quadratic n × n-matrices. Then, the tensors Ã, B̃, and C
must be divided into tiles of size n × n. To ease the discussion of tiling, we introduce new labels

for the dimensions of Ã, B̃, and C in Equation (3):

dimensions of Ã : N1, N2

dimensions of B̃ : N2, N3

dimensions of C : N1, N3

1One typically speaks of gather and scatter accesses to memory when referring to reads or writes with a stride.

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

Optimizing Tensor Contractions for Embedded Devices 44:7

Fig. 4. Tensor contraction with a naive memory layout.

We further assume that n evenly divides these dimensions, i.e., that there are natural numbers
T1,T2,T3 such that N1 = T1 · n, N2 = T2 · n, and N3 = T3 · n. If this is not the case initially, one can

always pad Ã, B̃, and C with rows or columns of zeros, which does not affect the result of tensor

contraction.2 The tensor C now consists of T1 ×T3 tiles, Ã of T1 ×T2 tiles, and B̃ of T2 ×T3 tiles,
and the tiled version of Equation (3) is:

C (t1 ·n+k1)(t3 ·n+k3) =

T2−1∑
t=0

n∑
l=1

Ã(t1 ·n+k1)(t ·n+l) · B̃ (t ·n+l)(t3 ·n+k3) . (4)

For a fixed value of t (in the outer summation), the inner summation (over l) can now be carried
out inside the SPM. When the inner summation for fixed t has been completed, new tiles of Ã and

B̃ must be brought into the SPM. Specifically, the tiles for the next value of t , i.e., t + 1, are needed.
The tile ofC stays in the SPM and accumulates the results of the inner summations for each fixed
t = 0, . . . , (T2 − 1). The tile ofC is written back to off-chip memory only after all summations over
t and l have been completed. At this point, the evaluation of tensor contraction moves on to the
next entry in the rows or columns of tiles of C .

As we will see in Section 3.2, a sizeable portion of the shifts in tensor contraction may be spent on

resetting access ports of DBCs to their initial positions for processing again a row of Ã or a column

of B̃ that has previously been traversed in computing an entry of C . While Section 3.3 discusses
how the portion of these shifts can be reduced, Section 3.4 demonstrates how unnecessary shifts
can be fully eliminated in tiled tensor contraction. Section 3.5 explains that although prefetching

parts of the next tiles cannot further reduce the number of shifts, it can hide latencies in the full
tensor contraction operation. The same statement applies to preshifting, cf. Section 3.6.

3.2 Naive SPM Layout

In a naive layout, the tensors Ã, B̃, and C are stored in RTM in their order of access. Specifically,

tensor Ã is accessed row-wise and is stored in the RTM with each DBC storing one row. Similarly,

tensor B̃ is accessed column-wise and is stored column-wise in DBCs. The resultant tensor C is
computed and stored row-wise. Figure 4 sketches this layout, which is assumed to be the starting
point for the tensor contraction operation. All access ports of all DBCs are aligned with the first

entries in rows (for Ã and C) or the first entries in columns (for B̃).
To compute the entry C00 in the resultant tensor C , the first row of Ã (stored in DBC-0) is

multiplied with the first column of B̃ (stored in DBC-n). More explicitly, Ã00 is multiplied with

B̃00 and both DBCs are shifted once so that the access ports point to next elements Ã01 and B̃10,

2This is because contraction is a linear operation.

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

44:8 A. A. Khan et al.

respectively. Next, Ã01 and B̃10 are multiplied and the DBCs are shifted once again. This continues

until Ã0(n−1) and B̃ (n−1)0 are reached and multiplied. The blue arrows in Figure 4 demonstrate this
process that results in the entry C00 of the tensor C , which is marked by a blue dot. At this point,
each of DBC-0 and DBC-n have been shifted n − 1 times, resulting in a total number of 2(n − 1)
shifts. These shifts cannot be avoided as they are required to access the entries in the first row of

Ã and the first column of B̃. Hence, we refer to these shifts as compulsory shifts.
The access ports of both DBC-0 and DBC-n now point to locations n − 1. Before computingC01,

DBC-0 needs to be shifted n − 1 times in order to align its access port to location 0, i.e., to the

entry Ã00. These shifts do not perform any useful work, and we call them overhead shifts. With
these overhead shifts, the total amount of shifts increases to 2(n − 1) + (n − 1). The exact same
process is repeated to compute the remaining n − 1 elements in the first row of tensor C . After
computing the last element (C0n−1) in the first row of C , the port position of DBC-0 is restored to
position 0. Thus, the total amount of shifts required for computing R0 in C is

Shifts′R0 = 2n(n − 1) + n(n − 1), (5)

with the second term in the expression on the right-hand side representing the overhead shifts.

After computing the first row of C , the access ports of all DBCs of tensor B̃ point to location
n − 1. They must be shifted back to location 0 before the computation of the next row of C can
start. This incurs n(n − 1) overhead shifts. The updated sum of the total number of shifts then
becomes

ShiftsR0 = 2n(n − 1)︸�����︷︷�����︸
compulsory shifts

+ n(n − 1) + n(n − 1)︸������������������︷︷������������������︸
overhead shifts

. (6)

Computing each of the remaining n − 1 rows of C incurs the same amount of shifts, leading to

the total number of shifts required for contracting the n × n tensors Ã, B̃,

Total shifts′ = n · (2n(n − 1)︸�����︷︷�����︸
compulsory shifts

+ 2n(n − 1)︸�����︷︷�����︸
overhead shifts

). (7)

For writing the entries ofC , which result from the computations, n(n − 1) compulsory shifts are
needed. The same amount of overhead shifts is required to reset the port position to location 0 in
all DBCs for tensor C . Adding these to Equation (7) and expanding yields

Total shifts (naive) = 2n3 − n2 − n︸���������︷︷���������︸
compulsory shifts

+ 2n3 − n2 − n︸���������︷︷���������︸
overhead shifts

(8)

From Equation (8), it is clear that half of the total number of shifts are overhead shifts. Thus,
avoiding the overhead shifts can improve the memory system’s performance by as much as 2×.

3.3 Optimized SPM Layout

The large proportion of overhead shifts in the naive layout of tensors in the RTM occur due to the

uni-directional accesses of the tensors’ entries: rows of Ã are always accessed from left-to-right

and columns of B̃ from top-to-bottom. In this section, we eventually fully eliminate the overhead
shifts by laying out tensors in the RTM so that bi-directional accesses become possible.

First, instead of always accessing R0 of Ã from left to right to compute a new entry in the first
row of C , we can access R0 in a back and forth manner, and thus completely avoid the overhead
shifts for R0. Specifically, after computing C00, the access port of DBC-0 is not reset to location 0.

Instead, C01 is computed by accessing the elements of R0 (in Ã) in the reverse order. For this to

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

Optimizing Tensor Contractions for Embedded Devices 44:9

Fig. 5. Tensor contraction with the partially optimized and optimized memory layouts (note the layouts and

access orders of R1 in Ã and C1 in B̃).

produce the correct result, the column C1 of B̃ must be stored in reverse order in DBC-(n+1), as
depicted in Figure 5(a). Note that this way of computingC01 relies on the associativity of addition.3

The same procedure works for the computations of all elements of C , provided the columns

of B̃ are stored in DBC-n to DBC-(2n-1) with alternating directions. Since the rows of Ã are now

accessed in a back-and-forth manner, no overhead shifts are incurred for accessing Ã. However,

the DBCs that store the columns of B̃ must be fully reset after computing each row ofC , leading to
a total of n(n − 1) overhead shifts per row of C . The numbers of compulsory and overhead shifts
required for accesses to C are the same as in the naive layout. Thus, the total number of shifts for

the alternating layout of columns of B̃ is

Total shifts (partial-opt) = 2n3 − n2 − n︸���������︷︷���������︸
compulsory shifts

+ n3 − n︸︷︷︸
overhead shifts

, (9)

which one arrives at by subtracting the n2 (n − 1) overhead shifts for resetting the rows of Ã from
the right-hand side of Equation (8).

The vast majority of overhead shifts in the previously discussed alternating column layout of B̃
occurs when the computation of one row of C has been completed and one advances to the next

row. At this point, all access ports for the DBCs that store columns of B̃ point to the last entry in

each column. To compute the next row ofC , the next row of Ã, say R1, must be multiplied into the

columns of B̃. The access port for DBC-1 points to the first entry in R1 of Ã, which necessitates

that the access ports for the columns of B̃ (DBC-n to DBC-(2n-1)) be reset to point at the first entry
of the columns. However, this resetting of DBC-n to DBC-(2n-1) can be avoided, if the next row of

Ã is stored in reverse order. Then, multiplication of R1 into a column of B̃ can be carried out in a

backwards fashion. This alternating row layout for Ã is depicted in Figure 5(b), in combination with

the alternating column layout of B̃. The total number of shifts is now comprised of the compulsory
shifts and only those n(n − 1) overhead shifts that are needed to reset the DBCs for the rows of C
after the full contraction operation has been completed, i.e.,

Total shifts (opt) = 2n3 − n2 − n︸���������︷︷���������︸
compulsory shifts

+ n2 − n︸︷︷︸
overhead shifts

. (10)

Note, in particular, that no overhead shifts are required to reset the DBCs for Ã, B̃ after completing

the full tensor contraction. Since the rows of Ã and the columns of B̃ are traversed in a back
and forth manner, the access ports for their DBCs point back to the first entries in the rows of

3For floating-point numbers, associativity of addition is typically also assumed when aggressive compiler optimizations

are enabled with fast-math compiler flags.

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

44:10 A. A. Khan et al.

Fig. 6. Tile-wise tensor contractions (tile-size: n × n).

Ã and columns of B̃, respectively, exactly when the computation of the last entry in C has been
completed. This reasoning relies on n being even. In practice, n is actually a power of two, for
efficient utilization of address bits.

By comparing Equation (10) with the corresponding equation for the naive layout, i.e., Equa-
tion (8), we see that the alternating row and column layout asymptotically cuts the total number
of shifts necessary to implement tensor contraction in half.

3.4 Contraction of Large Tensors

We now use the optimized layout from the previous section to optimize the number of shifts
needed for contracting large tensors that must be processed in the SPM tile by tile, as explained in

Section 3.1. Equation (3) says that each pair of tiles from Ã and B̃ is contracted exactly as discussed

in the previous sections, where it was assumed that Ã and B̃ fit entirely into the SPM. Equation (3)
also says that each tile of C is computed by accumulating the results of contracting a row of tiles

of Ã with a column of tiles of B̃. This is depicted by Figure 6, where T1,T2,T3 are the respective
numbers of tiles in each dimension, as in Section 3.1.

Based on Equation (10), the overall number of shifts needed to contract all tiles of Ã with all

tiles of B̃ is

Shifts′tiled = T1T2T3 ·
{
(2n3 − n2 − n) + (n2 − n)

}
. (11)

This accounts for resetting the access ports of the DBCs that hold a tile of C after the contraction

of each pair of tiles of Ã, B̃. What is not yet accounted for are the number of shifts needed to bring
new tiles into the SPM.

To copy a new tile of Ã or B̃ into the SPM, n(n − 1) compulsory shifts are required. The same
number of shifts is needed to reset the access ports for the newly copied tile. The computation of
each new tile ofC must start with a zero-initialized tile. This initialization requires again n(n − 1)
compulsory shifts and n(n − 1) overhead shifts. After the computation of a tile ofC has completed,
the tile must be copied back to off-chip memory, incurring once again n(n − 1) compulsory shifts
and n(n − 1) overhead shifts. Bearing in mind that the tensorC consists ofT1T3 tiles, adding all of
these shifts to Equation (11) yields

Total shiftstiled =

T1T2T3 · (2n3 − n2 − n)
+T1T2T3 · 2n(n − 1)
+T1T3 · 2n(n − 1)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
compulsory
shifts

+T1T2T3 · (n2 − n)
+T1T2T3 · 2n(n − 1)
+T1T3 · 2n(n − 1)

⎫⎪⎪⎬⎪⎪⎭
overhead
shifts

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

Optimizing Tensor Contractions for Embedded Devices 44:11

Although the number of overhead shifts only grows quadratically with n, for a fixed n they can
still accumulate to a noticeable number. We eliminate them by judiciously laying out tiles that are
newly brought into the SPM. Instead of restoring the positions of access ports to location 0 before
and after loading/writing each tile, the rows and columns of tiles are loaded and processed in a
back-and-forth manner, completely analogous to our discussion in Section 3.3. This completely
removes the shifting overhead caused by tiling. Furthermore, the initialization of a tile of C with
zeros can take place at the same time as the writing back to off-chip memory of the previously
computed tile. Thus, the final total number of shifts required for tiled tensor contraction in the
RTM-based SPM is

Total shifts (opt)tiled = T1T2T3 · {2n3 + n2 − 3n}
+T1T3 · {n2 − n}. (12)

3.5 Hiding Tile-Switch Latency with Prefetching

For large tensors, as soon as the result of contracting the current tiles of Ã and B̃ has been com-
puted, these tiles need to be replaced, requiring 2n2 off-chip reads. In addition, after everyT2 tiles,
the contents of the resultant tile ofC must also be written back to the off-chip memory, incurring
another n2 off-chip writes. For the access latencies, let us assume that the off-chip access latency,
including the data transfer, is toff and both the off-chip memory and the SPM are read/write sym-
metric. The tile-switch latency then becomes

Tile-switch latency = β +

{
2n2 × toff, every tile,
3n2 × toff, after every T2 tiles,

(13)

where β represents the transfer initiation cost. Since the off-chip latency toff is significantly higher
than the access latency of the SPM, the tile-switch latency contributes significantly to the total
latency and can thus pose a serious performance problem. The value of β and toff are not fixed
and depends upon memory layout, memory access schedule, and memory access granularity (cf.
Section 4).

To reduce the impact of the off-chip latency on the embedded system’s performance, we can use
compiler-guided prefetching to overlap the off-chip access latency with the computation latency.
Specifically, as soon as the computation of the first row in the resultant tile has been completed,

the first row of Ã can already be replaced with the elements of the new tile. This replacement can

happen while the processing unit operates on the next row of Ã. Thus, the load latency of Ã can
be overlapped with the computation latency. Since every element in the resultant tensor requires
n scalar multiplications and n − 1 additions, computation of the entire row of the resultant tile
provides sufficient time for accessing n elements from the off-chip memory.

When the computation of the last row of the resultant tensor C starts, some of the rows in the

next tile of Ã have already been loaded into the SPM. The compiler can then start prefetching the

remaining rows of Ã and the columns of the next tile of B̃. One new column of B̃ can be loaded
into the SPM after the computation of each entry in the last row of C . After computing the last
entry in the resultant tile ofC , the processing unit can immediately start multiplying the first row

in the next tile of Ã with the first column in the next tile of B̃. This way, the significant tile-switch
latency can be reduced by overlapping it with computations. In Section 4, we explain how data
from the off-chip memory can be efficiently accessed to improve performance and energy.

3.6 Overlapping Shift and Compute Latency with Preshifting

In Section 3.3, we described an optimized memory layout and access order that incurs zero over-
head shifts. In Section 3.5, we introduced prefetching to completely hide the tile-switch latency

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

44:12 A. A. Khan et al.

Fig. 7. Overlapping shift latency with computation (DBC X and Y store the elements of Ã and B̃, respectively).

(for off-chip memory accesses) by overlapping the loading of tiles with the computation process.
In this section, we explain how preshifting optimizes the access latency of the on-chip RTM-based
SPM.

Typically, SRAM-based SPMs have a fixed access latency of one cycle. Since RTMs are sequential
in nature, even with the best memory layout, the DBCs in RTM-based SPM must be shifted once
before the next entry can be accessed. This shifting typically takes one cycle, and another cycle is
needed to read out the next entry. Hence, the access latency of the RTM-based SPM is 2 cycles.

Fortunately, in the case of tensor contractions, the access pattern is known and the compiler
can accurately determine the next memory location to be accessed. We take advantage of this and
completely hide the shift latency by preshifting, an operation that aligns the access ports of the
active DBCs with the memory locations to be accessed next. For instance, when the processing unit

is busy multiplying Ã00 with B̃00, both DBCs storing the current row and column are preshifted to

point to the next entries, i.e., Ã01 and B̃10. The next memory request made by the program will ask

for these entries, and the ports will already be aligned to positions of Ã01 and B̃10 in their respective
DBCs. This effectively hides the shift overhead and halves the SPM access latency, as illustrated in
Figure 7. Note that this does not interfere with the prefetching operation which affects different
DBCs.

3.7 Code Generation for Tensor Contractions

The memory layout and access order that we have identified to reduce the number of shifts in
tensor contractions can be automatically generated by a compiler. This includes the appropriate
handling of tiling, and even the prefetching and preshifting operations. The major complication in
getting a compiler to automatically generate efficient code for tensor contractions is the detection
of contractions in the program source code. For programs written in a general-purpose language,
this is a non-trivial task: the way in which loop nests and multi-dimensional tensor accesses are
structured may obscure the true nature of a tensor operation.

Previous work has suggested methods for detecting matrix multiplication and, more recently,
tensor contraction in programs written in general-purpose programming languages. For the For-
tran programming language, this is described in [36]. A suggestion for detecting tensor contrac-
tions in general-purpose languages has been made in [16], relying on polyhedral methods for the
analysis of loop nests [15]. To the best of our knowledge, no assessment exists of how effective

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

Optimizing Tensor Contractions for Embedded Devices 44:13

Fig. 8. (a) Illustrative example, (b) naive memory layout, (c) contention-aware memory layout.

the described detection techniques are in detecting contractions in real application domains such
as signal and media processing, computer vision, and machine learning.

Domain-specific languages (DSL), on the other hand, offer an alternative approach that makes
the nature of domain-specific operations, such as tensor contraction, obvious to the compiler or,
more generally, to any code analysis. This is achieved by making tensor contraction a primitive
operation of the language, as is the case in virtually all DSLs that are in wide-spread use in the area
of machine learning [1, 5, 45]. In the form of MATLAB/Simulink, DSLs are also commonly used in
the signal-processing domain. Note that the method for detecting matrix multiplication in [36] is
also applicable to MATLAB programs. New DSLs for signal processing [46, 49] have recently been
developed, in particular also for embedded applications [32].

In the area of scientific computing, DSLs for tensor operations have been in use for some time,
e.g., [4]. Continued interest and recent new developments in this area show that DSLs for ten-
sors are a practically relevant approach to increasing programmer productivity and application
performance [30, 47].

4 OFF-CHIP LAYOUT AND ACCESSED ORDER FOR IMPROVED PERFORMANCE

AND ENERGY CONSUMPTION

This section describes how an optimized SPM access data from the off-chip DRAM in a perfor-
mance and energy-friendly way. The proposed optimizations for the off-chip DRAM include: a
contention-aware memory layout, an intelligent memory access schedule, and the choice of a
suitable memory access granularity. Further, we discuss the impact of these optimizations on the
overall energy consumption of the DRAM memory.

4.1 Contention-Aware Memory Layout

To explain our contention-aware memory layout, we consider an illustrative example showing
A × B = C in Figure 8(a). For the given example, we make the following assumptions. Each tensor
consists of 16 elements (i.e., A00 to A15 for tensor A and B00 to B15 for tensor B) and each tensor fits
into its corresponding SPM bank. The off-chip DRAM has 4-banks while each bank has its row-
buffer (see Figure 8(b)). For instance, the Row-Buffer0 in Figure 8(b) can accomodate any Rowi of
Bank0. We further assume that each DRAM row stores four elements. For instance, Row0 of Bank0

in Figure 8(b) accomodates the first row of tensor A and so on. We start with a naive layout in
Figure 8(b) where tensors are mapped to different banks in a row/column interleaved fashion. In

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

44:14 A. A. Khan et al.

Table 1. Comparing Naive Memory Layout (Figure 8(b)) and Contention-Aware Optimized Memory

Layout (Figure 8(c)) for Sequence of Read Commands to Compute the Result of C00 Using

the (a) Naive Schedule and the (b) Contention-Aware Schedule

Fig. 9. Sequence of commands for (a) naive memory layout using naive memory access schedule, (b)

contention-aware memory layout using naive memory access schedule, and (c) naive memory layout us-

ing contention-aware memory access schedule; to compute C00.

this layout, the entries of tensors A, B, and C are stored in row-major, column-major, and row-
major order, respectively.

To compute the first entry in the resultant tensor, all elements in the first row of A and first
column of B need to be referenced. This computation requires read accesses to physical DRAM
rows corresponding to elements A00 to A03 (i.e., RowA0) and B00 to B03 (i.e., ColB0) for tensors A
and B, respectively, and write accesses to RowC0 for writing the entry C00 of tensorC . The second
column of Table 1(a) shows the sequence of read accesses for the naive memory layout to compute
C00.

The DRAM controller translates each memory request to a series of sub-commands (cf. Sec-
tion 2.3). For the given read access sequence in the naive layout, the memory controller has to
issue the sequence of commands for each request. Figure 9(a) shows the sequence of commands to
read elements of tensor A and B for the naive layout. For brevity, the write command to C00 is not
shown. For this read sequence, a total of eight ACT-PRE commands is required due to row buffer
conflicts between different rows of the same bank, resulting in high DRAM energy consumption.
These row buffer conflicts are highlighted in red in the second column of Table 1(a).

In the naive memory layout, the row buffer conflicts occur due to interference between tensor
A and B. This is due to the fact that the data of tensor A and B are mapped to different rows of the
same bank. To eliminate inter-tensor interference, our contention-aware optimized memory layout
maps the data of tensors A, B, and C to disjoint banks. From the implementation perspective, our
mechanism requires the following information from the application layer for each tensor: (1) the
bank-id of the first bank Bstar t , and (2) the bank-id of the last bank Blast . The above information
is communicated to the memory allocation unit which in turn will perform bank assignment in a

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

Optimizing Tensor Contractions for Embedded Devices 44:15

Fig. 10. Interleaving of prefetch and read requests when they belong to different banks using (a) element-

level Memory Access Granularity (MAG) and (b) row-level MAG.

round robin fashion among the banks that lies in the range between Bstar t and Blast . To enable
the application to specify this information, we assume that the system software supports a new
variant of the malloc system call which includes the above-mentioned two additional parameters.
The memory allocation unit in turn will translate virtual pages into physical rows of the off-chip
memory.

For the example contention-aware memory layout in Figure 8(c) and the illustrative example in
Figure 8(a), the (Bstar t , Blast) bank-ids for tensors A, B, and C are (bank0, bank0), (bank2, bank3)
and (bank1, bank1), respectively. In this layout, the data of tensor A and C are assigned to bank0

and bank1, respectively. Similarly, for this example, the data of tensor B is assigned to bank2 and
bank3 in a round robin manner. The data of tensor B can be assigned to a single bank if it entirely
fits into a single bank. In this scenario, the bank3 can be completely turned off for leakage power
reduction. However, we do not consider this optimization as we primarily focus on reducing the
row buffer conflicts. The third column of Table 1(a) shows the sequence of read accesses for the
contention-aware memory layout to compute the results of C00. By eliminating the interference
between tensor A and B, the row buffer conflicts in our proposed solution are two in contrast
to eight row buffer conflicts in the naive memory layout. Consequently, the contention-aware
memory layout results in off-chip DRAM energy saving compared to the naive memory layout. In
the results section, we vary these different parameters and tensor sizes and report the impact on
performance and energy consumption of the off-chip memory.

4.2 Contention-Aware Memory Access Schedule

This section describes our contention-aware memory access schedule that reduces the number of
row buffer conflicts for any memory layout including the naive one. The conflict-aware memory
access schedule is shown in the first column of Table 1(b) when computing the result of C00. The
proposed schedule reorders the accesses to the elements of tensors A, B, and C in a way that
minimizes the row buffer conflicts. In our conflict-aware memory access schedule, the number of
ACT-PRE commands are curtailed to 2 (Figure 9(c)) compared to 8 when using the naive memory
access schedule (Figure 9(a)). Besides, it intelligently interleaves prefetch and read requests to
different banks using different granularities (Figure 10) to mitigate the impact of serialization in
the contention-aware memory layout (Figure 9(b)).

4.2.1 Loading the First Tile. The major drawback of contention-aware schedule using the naive
memory layout is that the computation and memory access cannot be fully overlapped when load-
ing SPM for the first tile. For instance, RowA0 (i.e., A00 to A03) and ColB0 (i.e., B00 to B03) are serially
accessed (i.e., assigned to different rows of the same bank) one after another to compute the result
of C00 (Figure 9(c)). To reduce the impact of serialization and to efficiently overlap computation
with memory fetch for the first tile, our contention-aware memory access schedule makes the fol-
lowing optimizations. First, it fetches all the elements of the first row of tensor A (e.g., RowA0)

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

44:16 A. A. Khan et al.

followed by loading all columns of tensor B (e.g., ColB0 to ColB3) into SPM. After that, all remain-
ing rows of tensor A (i.e., RowA1 to RowA3) are fetched into SPM. The resulting computation of
the elements in the first row of tensor C (i.e., C00, C01, C02, C03) starts immediately with the fetch of
the first element in the corresponding rows of tensor B (ColB0, ColB1, ColB2, ColB3), respectively.
A row of tensor C is scheduled for off-chip memory write after the computation of last entry in
that row. The write to a row of tensor C is scheduled after loading all elements of tensor A and B
in the SPM.

4.2.2 Hiding Off-Chip Latency with Access Overlapping. The contention-aware memory access
schedule is based on the following principles to effectively overlap computation with memory
access.

(1) To reduce the impact of access serialization, two requests (read or prefetch) are scheduled
together if they belong to different banks (cf. Figure 10(a)).

(2) Prefetch requests are scheduled to load the rows of the next tile as discussed in Section 3.5.
(3) Write requests of the current tile that belong to the first half of SPM C (e.g., C00 to C07)

are scheduled before prefech request of the next tile to avoid write starvation.
(4) To reduce the impact of read-write interference (cf. Section 4.2.3), write requests are not

scheduled together with read or prefetch requests.
(5) Less-critical write request that belongs to the second half of SPM C (e.g., C08 to C15) in the

current tile are scheduled after all elements of the next tile in SPM A and B are fetched.

4.2.3 Comparison with FR-FCFS Scheduler. We employ a First-Come-First-Serve (FCFS) access
scheduler in the DRAM controller for our contention-aware memory access schedule. The FCFS is
simpler to implement compared to state-of-the-art First-Ready-First-Come-First-Serve (FR-FCFS)
scheduler [48]. The FR-FCFS prioritizes a request that hits in the row buffer (i.e., the requested row
is in the row buffer) over a request that misses in the row buffer. Using a naive memory layout, the
drawbacks of the FR-FCFS scheduler compared to our contention-aware memory access schedule
are as follows.

First, the FR-FCFS may cause more occurences of read-to-write and write-to-read latency penal-
ties (cf. Section 2.3). The negative impact of these penalties on latency using FR-FCFS scheduler is
explained with the following illustrating example. Using the naive memory access schedule, the
sequence of commands sent to DRAM controller after reading B03 will be write C00, read B04, read
B05, read B06, read B07, write C01, read B08, read B09, read B10, read B11, write C02, read B12, read
B13, read B14, read B15, write C03. For the above schedule a write-to-read penalty will be incurred
between the pairs (C00, B04), (C01, B05), (C02, B06), and (C03, B07). Similarly, a read-to-write penalty
will be incurred between pairs (B03, C00), (B07, C01), (B11, C02), (B15, C03). During these times, the
DRAM channel will remain idle, thus hurting performance. In our contention-aware memory ac-
cess schedule, the write requests to off-chip DRAM are only scheduled when the computation of
the last element in the relevant row is completed. For instance, the write to C00, C01, C02, and
C03 are scheduled together after the result of last element (i.e., C03) in RowC0 is available. Fur-
thermore, all write request to a particular row are scheduled together and they are not overlapped
with a read or prefetch request. This reduces the number of DRAM channel idle cycles by reducing
the occurences of read-to-write and write-to-read penalties. Note that these penalties also exists
in contention-aware memory layout when a naive memory access schedule is used. Second, the
FR-FCFS may unecessarily prioritize non-critical prefech and write requests (that hit in the row
buffer) over critical read request (that miss in the row buffer) which may hurt the performance.

4.2.4 Efficient Selection of the Memory Access Granularity. The memory access granularity

(MAG) is defined as the number of bytes that can be read from or written to off-chip memory

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

Optimizing Tensor Contractions for Embedded Devices 44:17

Table 2. Configuration Details for SRAM, RTM,

and Off-Chip Memory

Technology (SRAM and RTM) 32 nm
SPM size 48 KiB

Number of banks 3
Word size 32 bits (4 B)

Off-chip Memory DDR2-800
Number of RTM ports per track 1

Number of tracks per DBC in RTM 32
Number of domains per track in RTM 64

using a single memory request. The off-chip energy consumption and performance of tensor con-
traction for the contention-aware memory layout is largely influenced by MAG as explained in
the following. We define two types of MAG, namely element-level and row-level MAG. The pro-
cessing of any MAG type starts with a row-decoding stage, where the entire row is loaded into
the row buffer using an activate (ACT) command. In the subsequent column-decoding stage, the
item in the row buffer corresponding to the column address is accessed using a read, a write, or a
prefetch command. Considering that each DRAM row contains 4 elements, the number of access
commands required for element-level and row-level MAG are 4 and 1, respectively.

Since a larger MAG requires fewer access commands, memory consumes less power for a large
MAG compared to a smaller one. A larger MAG also reduces the impact of serialization if two
requests belongs to different banks. This observation is highlighted in Figure 10 which shows the
timing diagram of element-level and row-level MAG requests. For this figure, we assume that the
relevant rows of these requests belongs to different banks. The DRAM memory (e.g., DDR2, DDR3,
and DDR4 [17] allows multiple MAGs which provides the capability to access multiple data within
the same row with automatic address generation. It is worth mentioning that a typical memory
controller uses a small MAG because majority of applications suffer from inefficient bandwidth
utilization due to limited data reuse. In these applications, not all data of a DRAM row are needed
and the unnecessary data is subsequently discarded, which lowers DRAM power efficiency.

5 SPM LAYOUT EVALUATION

This section describes our experimental setup for both on-chip SPM and off-chip DRAM eval-
uation. Based on this, we compare the performance and energy consumption of the optimized
RTM-based SPM with that of the naive and the SRAM-based SPM.

5.1 Experimental Setup

The architectural simulations are carried out in the racetrack memory simulator RTSim [26].
The configuration details for SRAM- and RTM-based SPM are listed in Table 2. Given that access
sequences are independent of data, we synthetically generate memory traces for the naive and
optimized layouts and fed them to RTSim for the architectural evaluation. The off-chip memory
used is JEDEC-compliant DDR2-800 memory 512 MiB composed of a single channel, single rank,
eight banks, 64-bit channel and 2 KiB row size.

The latency, energy and area numbers for iso-capacity SRAM and RTM are extracted from
Destiny [38] and are provided in Table 3. These values include the latency incurred and the
energy consumed by the row/column decoders, sense amplifiers, multiplexers, write drivers,

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

44:18 A. A. Khan et al.

Table 3. SRAM and RTM Values for

a 48 KiB SPM

Memory type SRAM RTM
Leakage power [mW] 160.9 25.3

Write energy [pJ] 38.6 35.4
Read energy [pJ] 58.7 22.5
Shift energy [pJ] 0 18.9
Read latency [ns] 1.24 1.01
Write latency [ns] 1.17 1.38
Shift latency [ns] 0 1.11

Area [mm2] 0.84 0.24

Fig. 11. Latency comparison.

and shift drivers (only for RTM). The DRAM energy consumption results are obtained using the
DRAMPower tool [8].

For SPM evaluation, we compare the following configurations:

• RTM-naive: The naive RTM-based SPM, cf. Section 3.2.
• RTM-opt: The optimized RTM-based SPM, cf. Section 3.3.
• RTM-opt-preshift (RTM-opt-ps): RTM-opt with preshifting.
• SRAM: Conventional SRAM-based SPM.

We apply prefetching (cf. Section 3.5) on top of all configurations with the assumption of a
contention-aware off-chip memory layout (cf. Section 4.1), contention-aware memory access
schedule (cf. Section 4.2) and using row level memory access granularity (cf. Section 4.2.4).

5.2 Performance and Energy Evaluation

The main performance and energy consumption results of our evaluation are summarized in
Figure 11 and Figure 12, respectively. As depicted, our RTM-opt-preshift improves the average
performance by 1.92×, 96% and 32% compared to RTM-naive, RTM-opt, and SRAM, respectively.
Likewise, the energy improvement translates to 28%, 10%, and 73%, respectively.

5.2.1 Comparing RTM-naive and RTM-opt. We compare the number of shifts incurred by the
naive and the optimized layouts. Our optimized layout (Section 3.3) approximately cuts the num-
ber of shifts in half. As a result, the optimized layout reduces the average runtime by 96% and
the overall energy consumption by 18% compared to the naive layout. The energy reduction is
delivered by simultaneous improvement in both shift and leakage energy (cf. Figure 12). The shift
energy gain comes from reducing the number of shifts while the reduction in leakage energy is
due to shorter runtime.

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

Optimizing Tensor Contractions for Embedded Devices 44:19

Fig. 12. Overall energy breakdown.

5.2.2 Impact of Preshifting. Although RTM-opt is more efficient in terms of performance and
energy consumption compared to RTM-naive, it still suffers from shift-read serialization latency as
depicted in Figure 7(a). To completely eliminate this serialization latency, the preshift optimization
(Section 3.6) entirely overlaps the shift and the read latency (cf. Figure 7(b)). This improves the
average runtime and energy consumption by 96% and 10%, respectively, compared to the RTM-opt
configuration. The decrease in the energy consumption comes from the reduced leakage energy
which stems from the reduction in runtime.

5.2.3 Comparison with SRAM. The performance comparison with SRAM shows that naively
replacing RTM by SRAM for tensor contraction does not provide any benefits in terms of perfor-
mance, at least for the same capacity. Employing RTM-naive, we witness an average 1.65× runtime
degradation compared to SRAM. This runtime degradation is caused by the increased shift cost (cf.
Section 5.2.1) and the shift-read serialization latency (cf. Figure 7(a)). Although RTM-opt reduces
the shift cost, its average runtime is still 65% worse compared to SRAM. Our combined optimiza-
tions (i.e., RTM-opt-preshift), employing the optimized RTM layout and preshifting, reduce the
average runtime by 32% compared to SRAM.

The energy results in Figure 12 clearly indicate that each variant of RTM greatly outperforms
SRAM in terms of energy consumption. As highlighted, the SRAM leakage energy is the major
contributor (i.e., 78%) to the overall energy consumption. The SRAM energy degradation is due
to significantly higher leakage power consumed in the larger SRAM cells compared to RTM cells.
Finally, since an SRAM cell is significantly larger than an RTM cell, the overall area used by SRAM
is 71% larger compared to the iso-capacity RTM, cf. Table 3.

6 OFF-CHIP MEMORY EVALUATION

In this section, we provide a comprehensive evaluation of the off-chip DRAM-based memory in
terms of performance and DRAM energy consumption. For evaluation, we compare the following
configurations:

• NaiveSCH-NaiveML-FCFS: A combination of naive memory access schedule, naive memory
layout and First-Come-First-Serve DRAM scheduler.

• NaiveSCH-NaiveML-FRFCFS: Similar to above except the DRAM scheduler is First-Ready-
First-Come-First-Serve (FR-FCFS) DRAM scheduler [48].

• CASCH-NaiveML-FCFS: Our contention-aware memory access schedule (cf. Section 4.2) ap-
plied on top of naive memory layout using FCFS DRAM scheduler.

• CASCH-CAML-FCFS: Similar to above except the naive memory layout is replaced by
contention-aware memory layout (cf. Section 4.1). For this configuration, three banks are
dedicated to tensor A and B each, while two banks are assigned to tensor C since we assume
an 8-bank DDR2 DRAM memory (cf. Section 5.1).

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

44:20 A. A. Khan et al.

Fig. 13. Latency results for the evaluated configurations.

Fig. 14. Off-chip DRAM dynamic energy consumption results.

• CASCH-CAML-FCFS-RowMAG: Similar to above except the memory access granularity is
equal to the size of DRAM row (i.e., 2 KiB).

Except NaiveML-NaiveSCH-FCFS-RowMAG, the memory access granularity of other configura-
tions is 64-bytes. For all of the above configurations, we assume an RTM-opt-ps configuration
which represent optimized RTM-based SPM layout with support of preshifting and prefetching.
Figure 13 and Figure 14, respectively, show the latency and DRAM dynamic energy consumption
results for all evaluated configurations.

6.1 Impact of Contention-aware Memory Access Schedule

This section qualitatively and quantitatively analyzes a naive (i.e., NaiveSCH-NaiveML-FCFS) and
contention-aware (i.e., CASCH-NaiveML-FCFS) memory access schedules applied to a naive mem-
ory layout. As depicted, our contention-aware memory access schedule improves the latency by
18.2% and DRAM dynamic energy consumption by 58.6% compared to the naive one. The energy
and latency benefits are achieved by reducing the row buffer conflicts while latency reduction
is provided through optimizations discussed in Section 4.2.1 and 4.2.2. These optimizations re-
duces the impact of serialization by effectively overlapping computation with memory access. We
also compare our contention-aware memory access schedule with state-of-the-art FR-FCFS DRAM
scheduler [48]. Our proposal reduces the impact of read-write interference by 16.7% compared to
FR-FCFS scheduler. As a result, our proposal provides improved latency (2.2%) and energy saving
(6.2%) compared to FR-FCFS DRAM scheduler.

6.2 Impact of Contention-aware Memory Layout

To show the effectiveness of our contention-aware memory layout (i.e., CASCH-CAML-FCFS) we
compare it with a naive memory layout (i.e., CASCH-NaiveML-FCFS). As shown in Figure 13 and
Figure 14, the latency and energy behavior of both configurations is almost similar. This implies
that the memory access serialization and row buffer conflict problem can be either solved using a
contention-aware memory access schedule or a contention-aware memory layout.

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

Optimizing Tensor Contractions for Embedded Devices 44:21

As shown in Figure 13, the combination of contention-aware memory layout and access schedule
provides noticeable latency reduction for a smaller tensor size compared to the larger one. This
is due to the fact that these optimizations reduces the access serialization while loading the SPM
for the initial tiles. The access serialization is reduced via request interleaving where the data to
disjoint banks are accessed in parallel. For larger tiles, the negative impact of access serialization is
primarily offset by prefetching. Therefore, our optimizations does not play a major role in reducing
the access latency when the tensor size is large.

6.3 Impact of Memory Access Granularity

This subsection provides an analysis of our joint optimizations by choosing a suitable memory
access granularity (MAG) and observing its impact on performance and off-chip DRAM dynamic
energy consumption. Figure 13 and Figure 14 shows that the memory requires lower latency and
energy when a row-level MAG (i.e., 2 KiB in CASCH-CAML-FCFS-RowMAG) is employed com-
pared to 64-byte MAG (i.e., in CASCH-CAML-FCFS). The energy reduction using row-level MAG
is achieved because a larger MAG requires less number of DRAM access commands compared to
the smaller one (cf. Figure 10). It is worth mentioning that our access interleaving optimizations in
Section 4.2.2 efficiently overlap computations with off-chip memory access for latency reduction.
The basic idea is to interleave requests that belong to different banks to be served in parallel.

7 RELATED WORK

This section reviews the relevant literature on tensor and matrix processing, the recent develop-
ments in RTM and the state of the art in the utilization of SPM in embedded systems.

7.1 Matrix and Tensor Processing

Matrix multiplication (MM), its applications and optimized implementations have been widely
studied for a long time. In numerical linear algebra, MM is a key operation and a major bottleneck
in a large class of matrix problems such as the least-square and the eigenvalue problems. By clever
algorithm design, the computational complexity of multiplying two n × n-matrices can be reduced
from O (n3) to less than O (n2.376) [14, 55]. MM has been implemented on almost all novel and
parallel compute platforms [18, 31, 41, 64].

Various linear algebra libraries exist that efficiently implement MM. For instance, the standard
basic linear algebra subprograms (BLAS) library offers efficient and portable implementations of
common operations on matrices and vectors [33]. The automatically tuned linear algebra software

(ATLAS) library auto-detects the underlying architecture and automatically optimizes algorithms
for it [13, 60]. Other work [18, 19] focuses on the partitioning of matrices that best suits the memory
hierarchy. All these implementations are optimized for conventional random access memories. The
challenges that are introduced by the sequential but energy- and area-efficient RTMs have not been
addressed.

The present work even goes one step further: instead of addressing MM in RTMs, we have
studied the more general operation of tensor contraction. On conventional platforms, i.e., with
traditional random access memory, implementing tensor contraction efficiently has been ap-
proached in ways similar to ours [29, 50]. Alternative approaches that avoid transpositions [35]
or are based on polyhedral compilation methods [16] have also been explored. It has also
recently been demonstrated that, instead of relying on polyhedral methods for the analysis and
transformation of loops, meta-programming techniques can be used at least as effectively in
optimizing tensor kernels [52], including parallelization for multi-core platforms. Frameworks
that attempt to optimize tensor-based computations by auto-tuning, analogous to ATLAS for

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

44:22 A. A. Khan et al.

computations involving low-dimensional linear algebra, also exist and can target diverse and
heterogeneous architectures [11, 54].

7.2 Racetrack Memory

RTMs, being a promising alternative to existing conventional and non-conventional memory tech-
nologies, have been explored all across the memory hierarchy including GPU register file [34],
lower-cache [62] and last-level-cache levels [56, 63]. In these works, RTM has been reported to be
both energy as well as area efficient compared to traditional SRAM and STT-RAM based architec-
tures. Despite being energy and area efficient, RTMs can severely degrade the memory system’s
performance and energy footprint if the shifting operation is not handled properly. Shifting con-
sumes more than 50% of the RTM energy [63] and can increase the access latency by up-to 26×, in
the worst case, compared to the SRAM [57]. Even in our small-size RTM-based SPM, we observed
an average 1.33× performance degradation in the naive layout compared to the SRAM.

To mitigate the impact of the shifting overhead, isolated efforts have been made and hard-
ware/software solutions have been proposed. At the architectural front, researchers have pro-
posed techniques such as pre-shifting, data-swapping and re-ordering of the memory requests to
minimize the number of shifts [3, 34, 51, 56, 58]. However, these solutions are infeasible in the em-
bedded domain as they require additional hardware that costs area, latency, and energy. Similarly,
the software techniques presented in [12, 25, 27], and [40] are not ideal fits to optimize tensors
applications. To the best of our knowledge, this is the first work that explores tensors’ layout in
RTMs for the contraction operation.

7.3 Scratch-Pad and Off-chip Memory

On-chip SPMs have long been used in embedded systems [22, 24]. Compared to caches, SPMs are
faster, consume less power and are under the full control of the programmer/compiler. Histori-
cally, SRAMs have remained the lone choice of realizing SPMs because of their low access latency.
However, with the emergence of NVMs such as STT-RAM [20] and PCM [61], researchers have
proposed NVM-based SPMs because they consume less static power and offer higher storage ca-
pacity [59]. Nevertheless, these emerging NVMs suffer from higher access latency and endurance.

To minimize the data transfer between the off-chip DRAM and the on-chip SPM, Kandemir
et al. [24] first proposed techniques that analyze the application, perform loop and layout transfor-
mations and dynamically partition the SPM space in a way that reduces the number of off-chip ac-
cesses. To improve the life-time of hybrid SPMs, Hu et al. [21] proposed a dynamic data-allocation
algorithm that allocates read-intensive program objects to the PCM-based SPM and write-intensive
objects to SRAM. The RTM-based SPMs do not suffer from any of the limitations mentioned above.
However, they incur the unique shift operations which, if not handled properly, can severely de-
grade their performance (cf. Section 7.2). The proposed layout effectively diminishes the amount
and impact of RTM shifts in tensor contractions.

Complex and non-linear memory layouts such as recursive layouts [9] and block data lay-
outs [42] for matrix multiplications have been investigated for cache-based architectures to im-
prove the cache hit rate. However, in this article, we explore a simple contention-aware memory
layout to reduce the energy consumed in the off-chip DRAM for SPM-based embedded architec-
tures. In the past, several memory access schedulers have been proposed for DRAM. However, in
this article, we showed that the widely used FR-FCFS scheduler [48] is not an ideal fit to optimize
tensors applications and performs worse compared to our contention-aware scheduler (combined
with simple FCFS DRAM scheduler). To the best of our knowledge, this is the first work that ex-
plores memory access schedules for joint off-chip DRAM and SPM-based architectures for the
tensor operation.

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

Optimizing Tensor Contractions for Embedded Devices 44:23

8 CONCLUSIONS

In this article, we present techniques to find optimal tensor layouts in RTM-based SPMs for the
tensor contraction operation. We propose an efficient memory access schedule and layouts for
DRAM to reduce contention in the off-chip DRAM. We show that the proposed SPM layout re-
duces the number of RTM shifts to the absolute minimum and the proposed contention-aware
memory access schedule and memory layout considerably improve DRAM’s performance and en-
ergy consumption. To enable contractions of large tensors, we divide them into smaller tiles and
employ prefetching to hide the tile-switch latency. We put tile switching to good use by alternating
the tiles’ layout, which further diminishes the number of shifts. Moreover, to improve the access
latency of the on-chip SPM, we employ preshifting that suppresses the shift-read serialization.
We employ a contention-aware memory access schedule that largely overlaps tensor computa-
tion with memory access. Finally, the use of a suitable memory access granularity on top of our
DRAM optimizations further reduces the on-chip SPM access latency and off-chip DRAM energy
consumption. Our experimental evaluation demonstrates that the proposed SPM layout, paired
with suitable architecture support and DRAM optimizations for off-chip memory, improves the
RTM-based SPM’s performance by 31%, energy consumption by 73% and area by 71% compared
to the SRAM-based SPM. Furthermore, the off-chip DRAM energy savings translates to 80%. The
demonstrated benefits substantiate that RTM is a promising alternative to SRAM. In addition,
DRAM optimizations are important to achieve performance and energy efficiency, particularly in
embedded devices that process large tensorial data structures. We believe that the insights pro-
vided by this work can be generalized and integrated into larger hardware-software programming
stacks for emerging computing systems [7].

REFERENCES

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael

Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Mike Schuster,

Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,

Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,

Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems. http://download.tensorflow.org/paper/whitepaper2015.pdf.

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2014. Compilers: Principles, Techniques, and Tools.

Pearson.

[3] Ehsan Atoofian. 2015. Reducing shift penalty in domain wall memory through register locality. In Proceedings of the

2015 International Conference on Compilers, Architecture and Synthesis for Embedded Systems (CASES’15). IEEE Press,

Piscataway, N.J., 177–186. http://dl.acm.org/citation.cfm?id=2830689.2830711.

[4] G. Baumgartner, A. A. Auer, D. E. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva, X. Gao, R. J. Harrison, S. Hirata,

S. Krishnamoorthy, S. Krishnan, Chi-Chung Lam, Q. Lu, M. Nooijen, R. M. Pitzer, J. Ramanujam, P. Sadayappan,

and A. Sibiryakov. 2005. Synthesis of high-performance parallel programs for a class of ab initio quantum chemistry

models. Proc. IEEE 93 (2005), 276–292.

[5] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume Desjardins, Joseph

Turian, David Warde-Farley, and Yoshua Bengio. 2010. Theano: A CPU and GPU math expression compiler. In Pro-

ceedings of the Python for Scientific Computing Conference (SciPy).

[6] R. Bläsing, A. A. Khan, P. C. Filippou, C. Garg, F. Hameed, J. Castrillon, and S. S. P. Parkin. 2020. Magnetic racetrack

memory: From physics to the cusp of applications within a decade. Proc. IEEE 108, 8 (2020), 1303–1321. DOI:10.1109/

JPROC.2020.2975719

[7] Jeronimo Castrillon, Matthias Lieber, Sascha Klüppelholz, Marcus Völp, Nils Asmussen, Uwe Assmann, Franz Baader,

Christel Baier, Gerhard Fettweis, Jochen Fröhlich, Andrés Goens, Sebastian Haas, Dirk Habich, Hermann Härtig,

Mattis Hasler, Immo Huismann, Tomas Karnagel, Sven Karol, Akash Kumar, Wolfgang Lehner, Linda Leuschner,

Siqi Ling, Steffen Märcker, Christian Menard, Johannes Mey, Wolfgang Nagel, Benedikt Nöthen, Rafael Peñaloza,

Michael Raitza, Jörg Stiller, Annett Ungethüm, Axel Voigt, and Sascha Wunderlich. 2018. A hardware/software stack

for heterogeneous systems. IEEE Transactions on Multi-Scale Computing Systems 4, 3 (July 2018), 243–259. DOI:
https://doi.org/10.1109/TMSCS.2017.2771750

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

http://download.tensorflow.org/paper/whitepaper2015.pdf
http://dl.acm.org/citation.cfm?id=2830689.2830711
https://doi.org/10.1109/JPROC.2020.2975719
https://doi.org/10.1109/JPROC.2020.2975719
https://doi.org/10.1109/TMSCS.2017.2771750

44:24 A. A. Khan et al.

[8] K. Chandrasekar, C. Weis, Y. Li, S. Goossens, M. Jung, O. Naji, B. Akesson, N. Wehn, and K. Goossens. [n.d.]. DRAM-

Power: Open-source DRAM Power and Energy Estimation Tool. http://www.drampower.info.

[9] S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thottethodi. 2002. Recursive array layouts and fast matrix multipli-

cation. IEEE Transactions on Parallel and Distributed Systems 13, 11 (Nov 2002), 1105–1123.

[10] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier Temam. 2014. DianNao: A

small-footprint high-throughput accelerator for ubiquitous machine-learning. In Proceedings of the 19th International

Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’14). ACM, New York,

269–284. DOI:https://doi.org/10.1145/2541940.2541967

[11] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan

Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An automated end-to-end

optimizing compiler for deep learning. In Proceedings of the 13th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 578–594. https://www.usenix.org/conference/osdi18/

presentation/chen.

[12] Xianzhang Chen, Edwin Hsing-Mean Sha, Qingfeng Zhuge, Chun Jason Xue, Weiwen Jiang, and Yuangang Wang.

2016. Efficient data placement for improving data access performance on domain-wall memory. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems 24, 10 (Oct. 2016), 3094–3104. DOI:https://doi.org/10.1109/TVLSI.2016.

2537400

[13] R. Clinton Whaley, Antoine Petitet, and Jack Dongarra. 2001. Automated empirical optimizations of software and the

ATLAS project. Parallel Comput. 27 (01 2001), 3–35. DOI:https://doi.org/10.1016/S0167-8191(00)00087-9

[14] D. Coppersmith and S. Winograd. 1987. Matrix multiplication via arithmetic progressions. In Proceedings of the 19th

Annual ACM Symposium on Theory of Computing (STOC’87). ACM, New York, 1–6. DOI:https://doi.org/10.1145/28395.

28396

[15] Paul Feautrier and Christian Lengauer. 2011. Polyhedron Model. Springer US, Boston, MA, 1581–1592. DOI:
https://doi.org/10.1007/978-0-387-09766-4_502

[16] Roman Gareev, Tobias Grosser, and Michael Kruse. 2018. High-performance generalized tensor operations: A

compiler-oriented approach. ACM Trans. Archit. Code Optim. 15, 3, Article 34 (Sept. 2018), 27 pages. DOI:
https://doi.org/10.1145/3235029

[17] S. Goossens, T. Kouters, B. Akesson, and K. Goossens. 2012. Memory-map selection for firm real-time SDRAM con-

trollers. In Proceedings of the Design, Automation Test in Europe Conference Exhibition (DATE). 828–831.

[18] Kazushige Goto and Robert A. van de Geijn. 2008. Anatomy of high-performance matrix multiplication. ACM Trans.

Math. Softw. 34, 3, Article 12 (May 2008), 25 pages. DOI:https://doi.org/10.1145/1356052.1356053

[19] John A. Gunnels, Greg M. Henry, and Robert A. van de Geijn. 2001. A family of high-performance matrix mul-

tiplication algorithms. In Proceedings of the International Conference on Computational Sciences - Part I (ICCS’01).

Springer-Verlag, Berlin, 51–60. http://dl.acm.org/citation.cfm?id=645455.653765.

[20] F. Hameed, A. A. Khan, and J. Castrillon. 2018. Performance and energy-efficient design of STT-RAM last-level cache.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26, 6 (June 2018), 1059–1072. DOI:https://doi.org/10.

1109/TVLSI.2018.2804938

[21] J. Hu, C. J. Xue, Q. Zhuge, W. Tseng, and E. H. Sha. 2013. Data allocation optimization for hybrid scratch pad memory

with SRAM and nonvolatile memory. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 21, 6 (June

2013), 1094–1102. DOI:https://doi.org/10.1109/TVLSI.2012.2202700

[22] M. Kandemir, M. J. Irwin, G. Chen, and I. Kolcu. 2004. Banked scratch-pad memory management for reducing leak-

age energy consumption. In Proceedings of the 2004 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD’04). IEEE Computer Society, Washington, DC, 120–124. DOI:https://doi.org/10.1109/ICCAD.2004.1382555

[23] M. Kandemir, M. J. Irwin, G. Chen, and I. Kolcu. 2005. Compiler-guided leakage optimization for banked scratch-

pad memories. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 13, 10 (Oct, 2005), 1136–1146. DOI:
https://doi.org/10.1109/TVLSI.2005.859478

[24] M. Kandemir, J. Ramanujam, J. Irwin, N. Vijaykrishnan, I. Kadayif, and A. Parikh. 2001. Dynamic management of

scratch-pad memory space. In Proceedings of the 38th Annual Design Automation Conference (DAC’01). ACM, New

York, 690–695. DOI:https://doi.org/10.1145/378239.379049

[25] Asif Ali Khan, Andrés Goens, Fazal Hameed, and Jeronimo Castrillon. 2020. Generalized data placement strategies for

racetrack memories. In Proceedings of the 2020 Design, Automation and Test in Europe Conference (DATE) (DATE’20).

EDA Consortium, 1502–1507.

[26] A. A. Khan, F. Hameed, R. Bläsing, S. Parkin, and J. Castrillon. 2019. RTSim: A cycle-accurate simulator for racetrack

memories. IEEE Computer Architecture Letters 18, 1 (Jan 2019), 43–46. DOI:https://doi.org/10.1109/LCA.2019.2899306

[27] Asif Ali Khan, Fazal Hameed, Robin Bläsing, Stuart S. P. Parkin, and Jeronimo Castrillon. 2019. Shiftsreduce: Mini-

mizing shifts in racetrack memory 4.0. ACM Transactions on Architecture and Code Optimization (TACO) 16, 4 (2019),

1–23.

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

http://www.drampower.info
https://doi.org/10.1145/2541940.2541967
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.org/10.1109/TVLSI.2016.2537400
https://doi.org/10.1109/TVLSI.2016.2537400
https://doi.org/10.1016/S0167-8191(00)00087-9
https://doi.org/10.1145/28395.28396
https://doi.org/10.1145/28395.28396
https://doi.org/10.1007/978-0-387-09766-4_502
https://doi.org/10.1145/3235029
https://doi.org/10.1145/1356052.1356053
http://dl.acm.org/citation.cfm?id=645455.653765
https://doi.org/10.1109/TVLSI.2018.2804938
https://doi.org/10.1109/TVLSI.2018.2804938
https://doi.org/10.1109/TVLSI.2012.2202700
https://doi.org/10.1109/ICCAD.2004.1382555
https://doi.org/10.1109/TVLSI.2005.859478
https://doi.org/10.1145/378239.379049
https://doi.org/10.1109/LCA.2019.2899306

Optimizing Tensor Contractions for Embedded Devices 44:25

[28] Asif Ali Khan, Norman A. Rink, Fazal Hameed, and Jeronimo Castrillon. 2019. Optimizing tensor contractions for

embedded devices with racetrack memory scratch-pads. In Proceedings of the 20th ACM SIGPLAN/SIGBED Interna-

tional Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES 2019). Association for Computing

Machinery, New York, 5–18. DOI:https://doi.org/10.1145/3316482.3326351

[29] J. Kim, A. Sukumaran-Rajam, V. Thumma, S. Krishnamoorthy, A. Panyala, L. Pouchet, A. Rountev, and P. Sadayappan.

2019. A code generator for high-performance tensor contractions on GPUs. In Proceedings of the 2019 IEEE/ACM

International Symposium on Code Generation and Optimization (CGO 2019). IEEE Press, Piscataway, N. J., 85–95.

[30] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe. 2017. The tensor algebra

compiler. Proc. ACM Program. Lang. 1, OOPSLA, Article 77 (Oct. 2017), 29 pages. DOI:https://doi.org/10.1145/3133901

[31] Jakub Kurzak, Wesley Alvaro, and Jack Dongarra. 2009. Optimizing matrix multiplication for a short-vector SIMD

architecture—CELL processor. Parallel Comput. 35 (03 2009), 138–150. DOI:https://doi.org/10.1016/j.parco.2008.12.010

[32] Nikolaos Kyrtatas, Daniele G. Spampinato, and Markus Püschel. 2015. A basic linear algebra compiler for embedded

processors. In Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE’15). EDA

Consortium, San Jose, CA, 1054–1059. http://dl.acm.org/citation.cfm?id=2757012.2757058.

[33] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. 1979. Basic linear algebra subprograms for Fortran usage.

ACM Trans. Math. Softw. 5, 3 (Sept. 1979), 308–323. DOI:https://doi.org/10.1145/355841.355847

[34] Mengjie Mao, Wujie Wen, Yaojun Zhang, Yiran Chen, and Hai Li. 2017. An energy-efficient GPGPU register file

architecture using racetrack memory. IEEE Trans. Comput. 66, 9 (2017), 1478–1490.

[35] Devin Matthews. 2016. High-performance tensor contraction without BLAS. CoRR abs/1607.00291 (2016).

arxiv:1607.00291 http://arxiv.org/abs/1607.00291.

[36] Vijay Menon and Keshav Pingali. 1999. High-level semantic optimization of numerical codes. In Proceedings of the 13th

International Conference on Supercomputing (ICS’99). ACM, New York, 434–443. DOI:https://doi.org/10.1145/305138.

305230

[37] S. Mittal, J. S. Vetter, and D. Li. 2015. A survey of architectural approaches for managing embedded DRAM and

non-volatile on-chip caches. IEEE Transactions on Parallel and Distributed Systems 26, 6 (June 2015), 1524–1537.

[38] S. Mittal, R. Wang, and J. Vetter. 2017. DESTINY: A comprehensive tool with 3D and multi-level cell memory modeling

capability. Journal of Low Power Electronics and Applications 7, 3 (2017).

[39] Steven S. Muchnick. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann.

[40] Joonas Multanen, Asif Ali Khan, Pekka Jääskeläinen, Fazal Hameed, and Jeronimo Castrillon. 2019. SHRIMP: Efficient

instruction delivery with domain wall memory. In Proceedings of the International Symposium on Low Power Electronics

and Design (ISLPED’19). ACM, New York, 1. DOI:https://doi.org/10.1109/ISLPED.2019.8824954

[41] S. Ohshima, K. Kise, T. Katagiri, and T. Yuba. 2006. Parallel processing of matrix multiplication in a CPU and GPU het-

erogeneous environment. In Proceedings of the Conference on High Performance Computing for Computational Science

- VECPAR 2006. 305–318.

[42] N. Park, W. Liu, V. K. Prasanna, and C. S. Raghavendra. 2000. Efficient matrix multiplication using cache conscious

data layouts. In Proceedings of HPCMO User Group Conference.

[43] S. Parkin, M. Hayashi, and L. Thomas. 2008. Magnetic domain-wall racetrack memory. Science 320, 5873 (2008), 190–

194.

[44] Stuart Parkin and See-Hun Yang. 2015. Memory on the racetrack. Nature Nanotechnology 10, 3 (2015), 195–198.

[45] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban

Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch. In NIPS-W.

[46] M. Puschel, J. M. F. Moura, J. R. Johnson, D. Padua, M. M. Veloso, B. W. Singer, Jianxin Xiong, F. Franchetti, A. Gacic,

Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo. 2005. SPIRAL: Code generation for DSP transforms. Proc. IEEE

93, 2 (Feb 2005), 232–275. DOI:https://doi.org/10.1109/JPROC.2004.840306

[47] N. A. Rink, I. Huismann, A. Susungi, J. Castrillon, J. Stiller, J. Fröhlich, and C. Tadonki. 2018. CFDlang: High-level

code generation for high-order methods in fluid dynamics. In Proceedings of the Real World Domain Specific Languages

Workshop 2018 (RWDSL2018). ACM, New York, Article 5, 10 pages. DOI:https://doi.org/10.1145/3183895.3183900

[48] S. Rixner, W. Dally, U. Kapasi, P. Mattson, and J. Owens. 2000. Memory access scheduling. In Proceedings of the 32nd

International Symposium on Computer Architecture (ISCA). 128–138.

[49] Daniele G. Spampinato and Markus Püschel. 2016. A basic linear algebra compiler for structured matrices. In Proceed-

ings of the 2016 International Symposium on Code Generation and Optimization (CGO’16). ACM, New York, 117–127.

DOI:https://doi.org/10.1145/2854038.2854060

[50] Paul Springer and Paolo Bientinesi. 2018. Design of a high-performance GEMM-like tensor-tensor multiplication.

ACM Trans. Math. Softw. 44, 3, Article 28 (Jan. 2018), 29 pages. DOI:https://doi.org/10.1145/3157733

[51] Z. Sun, Wenqing Wu, and Hai Li. 2013. Cross-layer racetrack memory design for ultra high density and low power

consumption. In Proceedings of the 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6.

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

https://doi.org/10.1145/3316482.3326351
https://doi.org/10.1145/3133901
https://doi.org/10.1016/j.parco.2008.12.010
http://dl.acm.org/citation.cfm?id=2757012.2757058
https://doi.org/10.1145/355841.355847
http://arxiv.org/abs/1607.00291
https://doi.org/10.1145/305138.305230
https://doi.org/10.1145/305138.305230
https://doi.org/10.1109/ISLPED.2019.8824954
https://doi.org/10.1109/JPROC.2004.840306
https://doi.org/10.1145/3183895.3183900
https://doi.org/10.1145/2854038.2854060
https://doi.org/10.1145/3157733

44:26 A. A. Khan et al.

[52] Adilla Susungi, Norman A. Rink, Albert Cohen, Jeronimo Castrillon, and Claude Tadonki. 2018. Meta-programming

for cross-domain tensor optimizations. In Proceedings of the 17th ACM SIGPLAN International Conference on Generative

Programming: Concepts and Experiences (GPCE 2018). ACM, New York, 79–92. DOI:https://doi.org/10.1145/3278122.

3278131

[53] L. Thomas, See-Hun Yang, Kwang-Su Ryu, B. Hughes, C. Rettner, Ding-Shuo Wang, Ching-Hsiang Tsai, Kuei-Hung

Shen, and S. S. P. Parkin. 2011. Racetrack memory: A high-performance, low-cost, non-volatile memory based

on magnetic domain walls. In Proceedings of the 2011 International Electron Devices Meeting. 24.2.1–24.2.4. DOI:
https://doi.org/10.1109/IEDM.2011.6131603

[54] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito, William S. Moses,

Sven Verdoolaege, Andrew Adams, and Albert Cohen. 2018. Tensor comprehensions: Framework-agnostic high-

performance machine learning abstractions. CoRR abs/1802.04730 (2018). arxiv:1802.04730

[55] Virginia Vassilevska Williams. 2012. Multiplying matrices faster than Coppersmith-Winograd. In Proceedings of the

Annual ACM Symposium on Theory of Computing, 887–898. DOI:https://doi.org/10.1145/2213977.2214056

[56] Rangharajan Venkatesan, Vivek Kozhikkottu, Charles Augustine, Arijit Raychowdhury, Kaushik Roy, and Anand

Raghunathan. 2012. TapeCache: A high density, energy efficient cache based on domain wall memory. In Proceedings

of the 2012 ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED’12). ACM, New York,

NY, USA, 185–190. DOI:https://doi.org/10.1145/2333660.2333707

[57] Rangharajan Venkatesan, Shankar Ganesh Ramasubramanian, Swagath Venkataramani, Kaushik Roy, and Anand

Raghunathan. 2014. STAG: Spintronic-tape architecture for GPGPU cache hierarchies. In Proceeding of the 41st Annual

International Symposium on Computer Architecuture (ISCA’14). IEEE Press, 253–264.

[58] D. Wang, L. Ma, M. Zhang, J. An, H. Li, and Y. Chen. 2017. Shift-optimized energy-efficient racetrack-based main mem-

ory. Journal of Circuits, Systems and Computers 27 (09 2017), 1–16. DOI:https://doi.org/10.1142/S0218126618500810

[59] Z. Wang, Z. Gu, M. Yao, and Z. Shao. 2015. Endurance-aware allocation of data variables on NVM-based scratch-

pad memory in real-time embedded systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 34, 10 (Oct 2015), 1600–1612. DOI:https://doi.org/10.1109/TCAD.2015.2422846

[60] R. Clint Whaley and Jack J. Dongarra. 1998. Automatically tuned linear algebra software. In Proceedings of the 1998

ACM/IEEE Conference on Supercomputing (SC’98). IEEE Computer Society, Washington, DC, USA, 1–27.

[61] H.-S. Philip Wong, Simone Raoux, Sangbum Kim, Jiale Liang, John Reifenberg, Bipin Rajendran, Mehdi Asheghi, and

Kenneth Goodson. 2010. Phase change memory. 98 (12 2010).

[62] H. Xu, Y. Alkabani, R. Melhem, and A. K. Jones. 2016. FusedCache: A naturally inclusive, racetrack memory, dual-level

private cache. IEEE Transactions on Multi-Scale Computing Systems 2, 2 (April 2016), 69–82. DOI:https://doi.org/10.

1109/TMSCS.2016.2536020

[63] Chao Zhang, Guangyu Sun, Weiqi Zhang, Fan Mi, Hai Li, and W. Zhao. 2015. Quantitative modeling of racetrack

memory, a tradeoff among area, performance, and power. In Proceedings of the 20th Asia and South Pacific Design

Automation Conference. 100–105. DOI:https://doi.org/10.1109/ASPDAC.2015.7058988

[64] P. Zhang and Y. Gao. 2015. Matrix multiplication on high-density multi-GPU architectures: Theoretical and experi-

mental investigations. Lecture Notes in Computer Science, vol. 9137, 17–30. DOI:https://doi.org/10.1007/978-3-319-

20119-1_2

Received November 2019; revised April 2020; accepted April 2020

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 6, Article 44. Publication date: September 2020.

https://doi.org/10.1145/3278122.3278131
https://doi.org/10.1145/3278122.3278131
https://doi.org/10.1109/IEDM.2011.6131603
https://doi.org/10.1145/2213977.2214056
https://doi.org/10.1145/2333660.2333707
https://doi.org/10.1142/S0218126618500810
https://doi.org/10.1109/TCAD.2015.2422846
https://doi.org/10.1109/TMSCS.2016.2536020
https://doi.org/10.1109/TMSCS.2016.2536020
https://doi.org/10.1109/ASPDAC.2015.7058988
https://doi.org/10.1007/978-3-319-20119-1_2
https://doi.org/10.1007/978-3-319-20119-1_2

