
Category-Theoretic Foundations of “STCLang: State Thread
Composition as a Foundation for Monadic Dataflow Parallelism”

SEBASTIAN ERTEL∗, Huawei Technologies, Germany

JUSTUS ADAM, Technische Universität Dresden, Germany

NORMAN A. RINK, Technische Universität Dresden, Germany

ANDRÉS GOENS, Technische Universität Dresden, Germany

JERONIMO CASTRILLON, Technische Universität Dresden, Germany

This manuscript gives a category-theoretic foundation to the composition of State Threads as a Foundation for Monadic

Dataflow Parallelism. It serves as a supplementary formalization of the concepts introduced in the Article “STCLang: State

Thread Composition as a Foundation for Monadic Dataflow Parallelism", as published in the Proceedings of the 12th ACM

SIGPLAN International Symposium on Haskell (Haskell’19) [1].

1 CATEGORY-THEORETICAL FOUNDATION FOR STATE THREADS
This manuscripts develops in some detail a formalization of state threads in STCLang [1]. Our development relies

on the formalism of category theory. This manuscript aims to serve as supplementary material for [1], and

presumes familarity with concepts presented therein.

The two key ideas underlying STCLang are that (1) each state thread operates on its own private state, and (2)

the composition of state threads retains enough information to extract parallelism from composed state threads.

Once these ideas have been made precise, they naturally lead to the introduction of the smap functor, which

generalizes map to situations where state must be kept track of. The smap functor introduces enough structure

into our state threads to let us extract (pipeline) parallelism. We also identify other structures in state threads

that are inherently parallel.

1.1 Foundations
STCLang is a typed λ-calculus extended with state threads. The details of the λ-calculus are not important, and

almost any typed λ-calculus can be augmented with state threads to yield an implementation of STCLang. For
our formal model of state threads presented in this section it is only relevant that the semantics of the λ-calculus
can be interpreted in category-theoretic terms.

Let H be the category whose objects obj(H) are the types in the λ-calculus and whose morphismsmorph(H)

are the functions of the λ-calculus. The category H is required to be cartesian closed, which essentially means

that for any types a,b ∈ obj(H), the product type a×b and the function type a → b exist, i.e. a×b ∈ obj(H) and

a → b ∈ obj(H). Examples of cartesian closed categories are the categories of domains typically encountered in

denotational semantics.

In more concrete terms, since most functional programming languages are fancy λ-calculi, STCLang can be

built on top of almost any functional language. In the case of Haskell, for example, the category H is known as

Hask.
1

∗
Work done while at TU Dresden.

1
See https://wiki.haskell.org/Hask, although full Hask is not cartesian closed, and may in fact not even be a category (cf. http://math.andrej.

com/2016/08/06/hask-is-not-a-category/).

https://wiki.haskell.org/Hask
http://math.andrej.com/2016/08/06/hask-is-not-a-category/
http://math.andrej.com/2016/08/06/hask-is-not-a-category/

2 • Sebastian Ertel, Justus Adam, Norman A. Rink, Andrés Goens, and Jeronimo Castrillon

1.2 State threads
In STCLang, every state thread has its own private state that it operates on. Hence, state threads and their

respective states are both indexed by the same index set, henceforth denoted as N . In practice, N is typically

finite, but it is generally sufficient to assume that N is countable, i.e. N � N.
For the formal development of STCLang in the present section, it is convenient to require not only that each

state thread has its own state, but also that every state is of a distinct type. Types are objects in the category H ,

leading to the following definition.

Definition 1.1 (State objects, global state). Let N be a countable index set. For n ∈ N , let sn ∈ obj(H) be pairwise

distinct (i.e. sn = sm ⇒ n =m).

(1) For I ⊆ N , define sI =
∏

n∈I sn . The sI are called state objects.

(2) The state objects sn , for n ∈ N , are called fundamental.

(3) The state object sN =
∏

n∈N sn is called the global state.

Note that s {n } =
∏

m∈{n } sm = sn , n ∈ N , i.e. the fundamental state objects are precisely the state objects sI for
which I ⊆ N has cardinality 1. We also use the convention s∅ = (), i.e. the unit type.

The requirement that the sn be pairwise distinct is not a restriction of STCLang’s programming model. In

Haskell, one can use the newtype keyword to generate new and distinct types. Typically, λ-calculi with less

advanced type systems also offer ways of constructing new types in similar ways, e.g. by suitably tagging types.

Having introduced state objects, we can now define STCLang’s state threads. It is then readily seen that state

threads form a subcategory of H , which we refer to as the category of sate threads.

Definition 1.2 (State thread). Let {sn}n∈N be the set of fundamental state objects. A state thread is a morphism

f ∈ morph(H) such that

f : (a × sI) → (b × sI) , (1)

where I ⊆ N . A fundamental state thread is a state thread f : (a × sn) → (b × sn), i.e. a state thread for which

I = {n}, n ∈ N , in Equation (1).

Lemma 1.3. The following define the objects and morphisms of a subcategory S of H ,

obj(S) = {a × sI | a ∈ obj(H), I ⊆ N } , (2)

morph(S) = { f : (a × sI) → (b × sI) | f ∈ morph(H), I ⊆ N } . (3)

Proof. Clearly, ida×sI ∈ morph(S).S inherits composition of morphisms fromH . Now, let f ,д ∈ morph(S).

Whenever д ◦ f is defined in H , then д ◦ f ∈ morph(S) follows directly by inspecting the signatures of f , д,
and д ◦ f . □

Definition 1.4 (Category of state threads). The category S from Lemma 1.3 is called the category of state

threads.

The intuition is that the function that corresponds to the state thread f : (a × sI) → (b × sI) in the underlying

λ-calculus only manipulates the part sI of the global state sN , I ⊆ N . The proof of Lemma 1.3 relies on the fact

that state threads f : (a × sI) → (b × sI) and д : (b × s J) → (c × s J) can be composed (in H or S) if and only

if I = J . (This observation relies on the pairwise distinctness of the {sn}n∈N .) In the intuition just given, this

means that f and д operate on the exact same part of the global state. Without additional information about the

structure of f and д, an implementation of STCLang is then forced to evaluate the composition д ◦ f sequentially.

However, an implementation can potentially exploit parallelism if I ∩ J = ∅, i.e. when f and д operate on disjoint

parts of the global state. The next section explains how STCLang facilitates the composition of state threads

f : (a × sI) → (b × sI) and д : (b × s J) → (c × s J) with arbitrary I , J ⊆ N .

Category-Theoretic Foundations of STCLang • 3

a b

c

e

d

1

2

3

4

5

6

7

Fig. 1. Example of a multi-graph ∆M of funda-
mental state threads for N = {1, . . . , 7}.

a × sN b × sN

c × sN

e × sN

d × sN

ϕ∗
M

(1)

ϕ∗
M

(2)

ϕ∗
M

(3)

ϕ∗
M

(4)

ϕ∗
M

(5)

ϕ∗
M

(6)

ϕ∗
M

(7)

Fig. 2. The corresponding subcategory CM in S .

1.3 Composition of state threads
At a high level, STCLang programs are composed of state threads, and compositions can ultimately be broken

down into fundamental state threads. From now on, we assume that the fundamental state threads that occur in

a given STCLang program are in 1-1 correspondence with the index set N . The following definition introduces

the symbol M to refer to the set of fundamental state threads in a program, i.e. the state threads of interest.

Definition 1.5 (Fundamental state threads of interest). Let N be an index set and let {sn}n∈N be the (pairwise

distinct) fundamental state objects, as in the previous section. Let M ⊆ morph(S), and assume there is a bijective

map ϕM : N → M (i.e. a 1-1 correspondence) such that

ϕM (n) : (an × sn) → (bn × sn) , (4)

where an ,bn ∈ obj(H). Then the elements of M are the fundamental state threads of interest.

STCLang handles state implicitly. This motivates the organization of the fundamental state threads in M into

a graph that hides the state objects but makes the possibility of composition explicit.

Definition 1.6 (Multi-graph of fundamental state threads). Let M and ϕM as in Definition 1.5. The directed

(multi-)graph ∆M has the following vertices (V) and edges (E),

V (∆M) = {an ,bn | ϕM (n) : (an × sn) → (bn × sn),n ∈ N } , (5)

E(∆M) = N , (6)

and the maps src, tgt : E(∆M) → V (∆M) are defined as follows,

src(n) = an , if ϕM (n) : (an × sn) → (bn × sn) , (7)

tgt(n) = bn , if ϕM (n) : (an × sn) → (bn × sn) . (8)

Note that directed multi-graphs are also referred to as quivers in the literature. Also note that in the light of

Equations (7) and (8), the signature of ϕM (n) can be written without referring to the (arbitrary) objects an , bn :

ϕM (n) : (src(n) × sn) → (tgt(n) × sn) . (9)

Figure 1 gives an example of a multi-graph ∆M for seven fundamental state threads. Note how the state objects

do not appear explicitly; they are, however, implicit in the naming of the edges. By contrast, composition of the

state threads ϕM (m) and ϕM (n) is explicitly suggested whenever either tgt(n) = src(m) or tgt(m) = src(n).
The composition of state threads is natural in S , and we would like to use this composition also for the state

threads in M . To facilitate this, we now construct a suitable embedding of the graph ∆M into the category S .

Our language is deliberately imprecise here to convey the right intuition. More correctly, we should speak of

embedding ∆M into the graph underlying S . Said yet another way, we are looking for a way to identify the free

category over ∆M inside S ; and this is precisely what is achieved by the remaining definitions and lemma in

the present section.

4 • Sebastian Ertel, Justus Adam, Norman A. Rink, Andrés Goens, and Jeronimo Castrillon

Definition 1.7 (Free category over a graph). The free category F (∆M) over ∆M is the category whose objects

are the vertices of ∆M and whose morphisms are precisely the paths in ∆M , i.e.

obj(F (∆M)) = V (∆M), (10)

morph(F (∆M)) = {nknk−1 . . .n2n1 | k ∈ N,ni ∈ N , tgt(ni) = src(ni+1) for 1 ≤ i ≤ k − 1}

∪ {ϵv | v ∈ V (∆M)} . (11)

This definition of the free category over a graph is completely standard. Note that we take a separate copy of

the empty path ϵ for each vertex v of ∆M . In categorical terms, ϵv : v → v is the identity morphism at the object

v . The morphisms morph(F (∆M)) can be thought of as words over the alphabet N . In the following, we adopt

this point of view. Note that there is then a separate copy of the empty word for each vertex v of ∆M .

By the universal property of the product, any state thread f : (a × sI) → (b × sI), with I ⊆ N , has a natural

(and unique) extension to a state thread that operates on the global state sN .

Definition 1.8 (Extension of state threads). Let f : (a × sI) → (b × sI) be a state thread. The state thread

f ∗ : (a × sN) → (b × sN) is obtained from f by extending f with the identity on sN \I .

Using this extension of state threads to the global state sN , we can finally define the functor that identifies the

graph ∆M inside the category of state threads.

Definition 1.9. The functor ΦM : F (∆M) → S is defined by ΦM (v) = v × sN for objects v ∈ obj(F (∆M))

and by

ΦM (ϵv) = idv×sN , (12)

ΦM (nknk−1 . . .n2n1) = ϕ
∗
M (nk) ◦ ϕ

∗
M (nk−1) ◦ · · · ◦ ϕ

∗
M (n2) ◦ ϕ

∗
M (n1) (13)

for morphisms in morph(F (∆M)). The composition on the right-hand side of Equation (13) is the composition

in S (which is the same as in H).

Based on Equations (12) and (13), the functor properties are readily verified for ΦM . More interestingly, ΦM

picks out a subcategory in S .

Lemma 1.10. The image of ΦM forms a subcategory of S .

Proof. Straightforward. The only subtle aspect is that for two wordsw1,w2 ∈ morph(F (∆M)) such that the

composition ΦM (w2) ◦ ΦM (w1) is in S , one must show that ΦM (w2) ◦ ΦM (w1) is in the image of ΦM . Now, if

ΦM (w2) andΦM (w1) can be composed inS , then tgt(w1) = src(w2), with natural extensions of src, tgt from letters

in N to words inmorph(F (∆M)). But then,w2w1 ∈ morph(F (∆M)), and hence ΦM (w2)◦ΦM (w1) = ΦM (w2w1)

is in the image of ΦM . □

Definition 1.11 (Image of ΦM). The subcategory of S that is the image of ΦM is denoted as CM .

In summary, by extending the state threads of interest to operate on the global state sN , it has become possible

to compose state threads f ∗ : (a × sN) → (b × sN) and д
∗
: (b × sN) → (c × sN) even if the original state threads f ,

д operate on disjoint parts sI and s J of the global state. At the same time, the information that the extended state

thread f ∗ leaves the state sN \I unchanged is retained by the fact f ∗ = ΦM (w), for somew ∈ morph(F (∆M)). In

fact, the letters from N that occur inw are precisely the elements of the subset I ⊆ N . An analogous statement

holds for д∗.
Moreover, we have identified the subcategory CM of S that is generated by the state threads of interest in

M . Figure 2 visualizes how CM is related to the multi-graph ∆M from Figure 1.

Category-Theoretic Foundations of STCLang • 5

1.4 The smap functor
The functor ΦM from Definition 1.9 is not the only way of identifying F (∆M) as a subcategory in S . Recall

that the objects of F (∆M) are the vertices of the multi-graph ∆M , which in turn are objects of H , i.e. types in

the λ-calculus on that STCLang is based. An alternative way of identifying F (∆M) in S is obtained by mapping

the objects of F (∆M) to list types. By making this precise we will naturally be led to the smap functor, i.e. the

functor that generalizes map to state threads.

Definition 1.12. Let M be the set of state threads of interest, and let ϕM : N → M be the corresponding

bijective map. For each n ∈ N , recursively define a state threadψM (n) as follows,

ψM (n) : ([src(n)] × sn) → ([tgt(n)] × sn) (14)

ψM (n) ([],σ) = ([],σ) (15)

ψM (n) (x : xs,σ) = let (y,σ ′) = ϕM (n)(x ,σ)

(ys,σ ′′) = ψM (n) (xs,σ ′)

in (y : ys,σ ′′) , (16)

where src and tgt are the maps defining the multi-graph ∆M from Definition 1.6.

Definition 1.13. The functor ΨM : F (∆M) → S is defined by ΨM (v) = [v] × sN for objects v ∈ obj(F (∆M))

and by

ΨM (ϵv) = id[v]×sN , (17)

ΨM (nknk−1 . . .n2n1) = ψ
∗
M (nk) ◦ψ

∗
M (nk−1) ◦ · · · ◦ψ

∗
M (n2) ◦ψ

∗
M (n1) (18)

for morphisms in morph(F (∆M)).

Exactly as in Lemma 1.10 one verifies that the image of ΨM is a subcategory of S .

Definition 1.14 (Image of ΨM). The subcategory of S that is the image of ΨM is denoted as C []

M
.

The smap functor will be defined to mediate between the categories CM and C []

M
. This means that, analogously

to the map functor, smap takes a state thread with signature (a × sN) → (b × sN) and returns a state thread with

signature ([a]×sN) → ([b]×sN). Additionally, if the argument of smap is composed of multiple fundamental state

threads, smap implements the appropriate plumbing of state in the resulting state thread ([a] × sN) → ([b] × sN).
Before we can define smap, we need a lemma that states that, under certain conditions, the value of the functor

ΦM fully determines ΨM .

Lemma 1.15. Letw1,w2 ∈ morph(F (∆M)) be such that no letter of N occurs more than once in eitherw1 orw2.

Then,

ΦM (w1) = ΦM (w2) ⇒ ΨM (w1) = ΨM (w2) . (19)

Proof. The proof appears in Section 1.6. It relies on an algebraic manipulation that is known as let floating in

the context of functional language compilers [2]. □

Theorem 1.16 (and definition of smap). If the multi-graph ∆M has no cycles, then the following define a

functor smap : CM → C []

M
,

smap (v × sN) = [v] × sN , for v ∈ obj(F (∆M)) (20)

smap (ΦM (w)) = ΨM (w) , forw ∈ morph(F (∆M)) . (21)

6 • Sebastian Ertel, Justus Adam, Norman A. Rink, Andrés Goens, and Jeronimo Castrillon

Proof. Since ∆M has no cycles, no letter from N can occur more than once in any w ∈ morph(F (∆M)).

Hence, Lemma 1.15 guarantees that smap is well-defined.

Verifying the functor properties is mechanical. Let w1,w2 ∈ morph(F (∆M)), and assume w1 = nk . . .n1,
w2 =ml . . .m1, withml . . .m1,nk . . .n1 ∈ N . Then,

smap (ΦM (w2) ◦ ΦM (w1)) = smap

(
ϕ∗M (ml) ◦ · · · ◦ ϕ

∗
M (m1) ◦ ϕ

∗
M (nk) ◦ · · · ◦ ϕ

∗
M (n1)

)
(22)

= smap (ΦM (w2w1)) (23)

= ΨM (w2w1) (24)

= ΨM (ml . . .m1nk . . .n1) (25)

= ψ ∗
M (ml) ◦ · · · ◦ψ

∗
M (m1) ◦ψ

∗
M (nk) ◦ · · · ◦ψ

∗
M (n1) (26)

= ΨM (w2) ◦ ΨM (w1) (27)

= smap (ΦM (w2)) ◦ smap (ΦM (w1)) . (28)

□

1.5 Extracting parallelism from the structure of state threads
Having defined state threads in STCLang and the smap functor, we now investigate opportunities for extracting

parallelism based on the structure of state threads. We show that pipeline parallelism arises naturally from smap,

and we identify structures that exhibit data and task-level parallelism.

1.5.1 Pipeline parallelism. The smap functor is defined in terms of ΨM , for which Equation (18) suggests a

very sequential implementation: to evaluate ΨM (nk . . .n1) on an input (xs,σ) ∈ [a] × sN , one should first apply

ψ ∗
M (n1), thenψ

∗
M (n2), and so on. By Definition 1.12, this means that ϕM (n1) is first applied to every element of

the list xs before ϕM (n2) is applied etc. To obtain pipeline parallelism, this order must be relaxed.

How this can be done is illustrated in Figure 3 fork = 2. The top diagram in Figure 3 is a graphical representation

of Equation (18) applied to the argument ([x1, . . . ,xl], (σn1
,σn2
, σ̃)) ∈ [a] × sN . Red and blue arrows indicate

which components of this argument are modified by applications of ϕM (n1) and ϕM (n2) respectively. Note that
each application of ϕM (n1) and ϕM (n2) modifies two components, and hence there are two arrows in every

column of the top diagram. The bottom diagram in Figure 3 can be thought of as a squeezed version of the top

diagram. In all but the first and the last column there are now four arrows: one pair of red arrows and one pair of

blue arrows. This indicates that ϕM (n1) and ϕM (n2) can be evaluated in parallel, yielding pipeline parallelism.

Note that while the top diagram has 2l columns, the bottom one only has l+1. The data flowing through the

pipeline are the elements of the lists [x1, . . . ,xl], [y1, . . . ,yl], and [z1, . . . , zl].
Squeezing the top diagram of Figure 3 into the bottom diagram is possible since ϕM (n1) and ϕM (n2) operate

on different fundamental state objects, i.e. n1 , n2. That n1 , n2 follows from the fact that the multi-graph ∆M is

acyclic, which was required to ensure that smap is well-defined by Equation (21). When ∆M has cycles, pipeline

parallelism can still be exploited in evaluating ΨM (nk . . .n1) provided the n1, . . . ,nk ∈ N are pairwise distinct.

More generally, forw1,w2,w2 ∈ morph(F (∆M)) such that onlyw2 contains multiple occurrences of the same

letter in N , the functor property, i.e. ΨM (w3w2w1) = ΨM (w3) ◦ ΨM (w2) ◦ ΨM (w1), can be used to still exploit

the parallelism in ΨM (w1) and ΨM (w3).

1.5.2 Data parallelism. When fundamental state threads have certain additional structure, smap reduces to

map, enabling the exploitation of data parallelism. In the following, two structures for which this is possible are

presented.

First, consider a morphism in H of the form f : a × sn → b, which uses the state object sn in a read-only

fashion (similar to Haskell’s Reader type). By the universal property of the product, we can extend f to a state

Category-Theoretic Foundations of STCLang • 7

smap (ΦM (n2n1)) ([x1, . . . , xl], (σn1, σn2, σ̃)) = ΨM (n2n1) ([x1, . . . , xl], (σn1, σn2, σ̃)) =

([x1, −−−→([y1, ([y1, ([y1, ([y1, −−−→([z1, ([z1, ([z1, ([z1,

x2, x2, −−−→ y2, y2, y2, y2, · · · z2, z2, z2,

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

xl−1, xl−1, xl−1, · · · yl−1, yl−1, yl−1, yl−1, −−−→ zl−1, zl−1,

xl], xl], xl], xl], −−−→ yl], yl], yl], yl], −−−→ zl],

(σn1, −−−→ (σ (1)
n1 −−−→ (σ (2)

n1 · · · (σ (l−1)
n1 −−−→ (σ (l)

n1 , (σ (l)
n1 , (σ (l)

n1 , (σ (l)
n1 , (σ (l)

n1 ,

σn2, σn2, σn2, σn2, σn2, −−−→ σ (1)
n2 , · · · σ (l−2)

n2 ,−−−→ σ (l−1)
n2 ,−−−→ σ (l)

n2 ,

σ̃)) σ̃)) σ̃)) σ̃)) σ̃)) σ̃)) σ̃)) σ̃)) σ̃))
=

([x1, −−−→([y1, −−−→([z1, ([z1, ([z1, ([z1,

x2, x2, −−−→ y2, · · · z2, z2, z2,

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

xl−1, xl−1, xl−1, · · · yl−1, −−−→ zl−1, zl−1,

xl], xl], xl], xl], −−−→ yl], −−−→ zl],

(σn1, −−−→ (σ (1)
n1 , −−−→ (σ (2)

n1 , · · · (σ (l−1)
n1 ,−−−→ (σ (l)

n1 , (σ (l)
n1 ,

σn2, σn2, −−−→ σ (1)
n2 , · · · σ (l−2)

n2 ,−−−→ σ (l−1)
n2 ,−−−→ σ (l)

n2 ,

σ̃)) σ̃)) σ̃)) σ̃)) σ̃)) σ̃))

Fig. 3. Graphical representation of the smap functor. Red arrows indicate applications of ϕM (n1), blue arrows indicate
applications of ϕM (n2). The top diagram is a direct representation based on the definition of ΨM in Equation (18). The
equivalent diagram on the bottom exhibits the inherent pipeline parallelism of smap.

a × sn

b b × sn sn

f π2
π1 π2

˜f

a × sn

b b × sn sn

д ◦ π1 h ◦ π2
π1 π2

д×h

Fig. 4. Universal diagrams for the product b × sn with the natural projections π1 and π2.

thread, i.e. to a morphism
˜f in S by setting

˜f (x ,σ) = (f (x ,σ),σ) for x ∈ a and σ ∈ sn . The left pane of Figure 4

gives the corresponding universal diagram. If, in the notation introduced in Section 1.2,
˜f ∈ M , then

˜f = ϕM (n),

and hence
˜f ∗ = ΦM (n). Evaluating smap(˜f ∗) requiresψM (n), whose defining Equation (16) reduces to

ψM (n) (xs,σ) = let ys = map (x 7→ f (x ,σ)) xs

in (ys,σ) , (29)

and data parallelism can be exploited in evaluating map.

The second instance of data parallelism arises if a fundamental state thread (a × sn) → (b × sn) operates
independently on a and sn . To see this, let д : a → b and h : sn → sn be morphisms in H . Again, the universal

property of the product can be used to construct a fundametal state thread д×h = ϕM (n), as in the right

pane of Figure 4. Alternatively, д×h is characterized by (д × h)(x ,σ) = (д(x),h(σ)). Now, Equation (16) for the

8 • Sebastian Ertel, Justus Adam, Norman A. Rink, Andrés Goens, and Jeronimo Castrillon

correspondingψM (n) reduces to

ψM (n) (xs,σ) = let ys = map д xs

σ ′ = (h ◦ · · · ◦ h︸ ︷︷ ︸
length(xs) times

) σ

in (ys,σ ′) . (30)

Again, data parallelism can be exploited in evaluating map.

Observe that whilemapд xs in Equation (30) is data-parallel, the values of ys and σ ′
can be computed in parallel

too, which is an instance of task-level parallelism.

1.5.3 Task-level parallelism. The simplest case of task-level parallelism occurs if a state threadh : (a×b×sI×s J) →
(c × d × sI × s J) with I , J ⊆ N and I ∩ J = ∅ decomposes into f : (a × sI) → (c × sI) and д : (b × s J) → (d × s J),
i.e. h = f×д using the same construction and notation as in the right diagram in Figure 4. Then, h can be evaluated

by executing f and д in parallel. Here smap is not required to arrive at parallelism.

A more interesting case occurs when the underlying category H has coproducts, i.e., if for any a,b ∈ obj(H),

there exists an object a + b ∈ obj(H) and natural injections inl : a → a + b, inr : b → a + b. Then, consider the
following fundamental state threads, together with their extensions to sN ,

f1 : a × sn1
→ (b + c) × sn1

, f ∗
1
: a × sN → (b + c) × sN ,

f2 : b × sn2
→ b ′ × sn2

, f ∗
2
: b × sN → b ′ × sN ,

f3 : c × sn3
→ c ′ × sn3

, f ∗
3
: c × sN → c ′ × sN ,

f4 : (b
′ + c ′) × sn4

→ d × sn4
, f ∗

4
: (b ′ + c ′) × sN → d × sN .

(31)

From the universal property of the coproduct, we obtain the state thread

[f ∗
2
, f ∗

3
] : (b + c) × sN → (b ′ + c ′) × sN (32)

[f ∗
2
, f ∗

3
](inl xb , (σn2

,σn3
,σN \{n1,n2 })) = let (x ′

b ,σ
′
n2

) = f2(xb ,σn2
)

in (inl′ x ′
b , (σ

′
n2

,σn3
,σN \{n1,n2 })) (33)

[f ∗
2
, f ∗

3
](inr xc , (σn2

,σn3
,σN \{n1,n2 })) = let (x ′

c ,σ
′
n3

) = f3(xc ,σn3
)

in (inr′ x ′
c , (σn2

,σ ′
n3

,σN \{n1,n2 })) . (34)

We can then form the composed state thread

f ∗
4
◦ [f ∗

2
, f ∗

3
] ◦ f ∗

1
: a × sN → d × sN . (35)

To define how smap acts on this state thread, we need two helper morphisms, split and join, that use the

boolean type B with values T and F. The morphism split decomposes a list of coproduct values, i.e. [b + c], into
two lists of types [b] and [c] respectively. This decomposition is completely natural. However, in defining the

inverse operation of split, one faces a choice: The elements in the lists [b] and [c] can be arranged in different

orders to form a list of coproduct values, [b + c]. This choice introduces a source of non-determinism, which

must be avoided since STCLang is meant to be deterministic. Therefore, split and join operate on an additional

data structure, namely a list of booleans, that encodes the order in which join must form a list [b + c] from the

Category-Theoretic Foundations of STCLang • 9

two lists [b], [c].

split : [b + c] → [b] × [c] × [B] (36)

split ([]) = ([], [], []) (37)

split ((inl xb) : xs) = let (bs, cs,flags) = split xs

in (xb : bs, cs, T : flags) (38)

split ((inr xc) : xs) = let (bs, cs,flags) = split xs

in (bs, xc : cs, F : flags) (39)

join : [b] × [c] × [B] → [b + c] (40)

join ([], [], []) = [] (41)

join (xb : bs, cs, T : flags) = (inl xb) : join (bs, cs,flags) (42)

join (bs, xc : cs, F : flags) = (inr xc) : join (bs, cs,flags) (43)

The action of smap on f ∗
4
◦ [f ∗

2
, f ∗

3
] ◦ f ∗

1
is then defined as follows,

smap

(
f ∗
4
◦ [f ∗

2
, f ∗

3
] ◦ f ∗

1

)
: [a] × sN → [d] × sN (44)

smap

(
f ∗
4
◦ [f ∗

2
, f ∗

3
] ◦ f ∗

1

)
(as, (σn1

,σn2
,σn3
,σn4
, σ̃)) =

let (as′, (σ ′
n1

,σn2
,σn3
,σn4
, σ̃)) = smap

(
f ∗
1

)
(as, (σn1

,σn2
,σn3
,σn4
, σ̃))

(bs, cs,flags) = split as
′

(bs′, (σ ′
n1

,σ ′
n2

,σn3
,σn4
, σ̃)) = smap

(
f ∗
2

)
(bs, (σ ′

n1

,σn2
,σn3
,σn4
, σ̃))

(cs′, (σ ′
n1

,σn2
,σ ′

n3

,σn4
, σ̃)) = smap

(
f ∗
3

)
(cs, (σ ′

n1

,σn2
,σn3
,σn4
, σ̃))

ds = join (bs′, cs′,flags)

in smap

(
f ∗
4

)
(ds, (σ ′

n1

,σ ′
n2

,σ ′
n3

,σn4
, σ̃)) , (45)

where σ̃ ∈ sN \{n1,n2,n3,n4 } . Note how flags is used to ensure determinism by communicating the order of list

elements between split and join. Task-level parallelism can be utilized in Equation (45) by concurrently executing

smap(f ∗
2
) and smap(f ∗

3
), which is possible since there are no dependencies between the data and state components

operated on by f ∗
2
and f ∗

3
.

A special case of the previous construction is obtained for b ′ = d , c ′ = d , and

f4 : (d + d) × sn4
→ d × sn4

(46)

f4(inl xd ,σ) = (xd ,σ) (47)

f4(inr xd ,σ) = (xd ,σ) . (48)

With this f4, smap(f ∗
4
◦ [f ∗

2
, f ∗

3
] ◦ f ∗

1
) yields a task-parallel version of an if-expression. Conditionals with more

than two options are obtained by repeatedly applying the construction from this section.

1.6 Proof of Lemma 1.15
Recall that Lemma 1.15 states that the functorΦM fully determinesΨM . As a preliminary step towards establishing

this, we derive a recursive formula for ΨM .

10 • Sebastian Ertel, Justus Adam, Norman A. Rink, Andrés Goens, and Jeronimo Castrillon

Lemma 1.17. Letw ∈ morph(F (∆M)) be such that no letter of N occurs more than once inw . LetW be the set of

letters inw , and let σW ∈ sW , σN \W ∈ sN \W . Then,

ΨM (w) (x : xs, (σW ,σN \W)) = let (y, (σ ′
W ,σN \W)) = ΦM (w) (x , (σW ,σN \W))

(ys, (σ ′′
W ,σN \W)) = ΨM (w) (xs, (σ ′

W ,σN \W))

in (y : ys, (σ ′′
W ,σN \W)) . (49)

Proof. By induction on the length of w . For w = ϵv , v ∈ obj(F (∆M)), Equation (49) holds trivially since

ΨM (ϵv) = id and ΦM (ϵv) = id. For the induction step, let w = nw ′
with n ∈ N and w ′ ∈ morph(F (∆M)). Let

W ′
be the set of letters inw ′

, and let σW = (σn ,σW ′) with σn ∈ sn , σW ′ ∈ sW ′ . Then,

ΨM (nw ′) (x : xs, (σn ,σW ′,σN \W)) = ψ ∗
M (n) ◦ ΨM (w ′) (x : xs, (σn ,σW ′,σN \W)) (50)

= let (y : ys, (σn ,σ
′′
W ′,σN \W)) = ΨM (w ′) (x : xs, (σn ,σW ′,σN \W))

in ψ ∗
M (n) (y : ys, (σn ,σ

′′
W ′,σN \W)) (51)

= let (y, (σn ,σ
′
W ′,σN \W)) = ΦM (w ′) (x , (σn ,σW ′,σN \W))

(ys, (σn ,σ
′′
W ′,σN \W)) = ΨM (w ′) (xs, (σn ,σ

′
W ′,σN \W))

in let (z, (σ ′
n ,σ

′′
W ′,σN \W)) = ϕ∗M (n)(y, (σn ,σ

′′
W ′,σN \W))

(zs, (σ ′′
n ,σ

′′
W ′,σN \W)) = ψ ∗

M (n) (ys, (σ ′
n ,σ

′′
W ′,σN \W))

in (z : zs, (σ ′′
n ,σ

′′
W ′,σN \W)) (52)

= let (z, (σ ′
n ,σ

′
W ′,σN \W)) = ΦM (nw ′) (x , (σn ,σW ′,σN \W))

(zs, (σ ′′
n ,σ

′′
W ′,σN \W)) = ΨM (nw ′) (xs, (σ ′

n ,σ
′
W ′,σN \W))

in (z : zs, (σ ′′
n ,σ

′′
W ′,σN \W)) , (53)

where the induction hypothesis was used in going from Equation (51) to Equation (52). The manipulation

required to go from Equation (52) to Equation (53) is known as let floating in the context of functional language

compilers [2]. The assumption that no letter occurs more than once inw = nw ′
is used whenever elements of

state objects are decomposed into components and to determine on which of these components ΦM and ΨM act

as the identity. □

Proof of Lemma 1.15. Let a = src(w1) = src(w2). Let xs ∈ [a] and let σ ∈ sN . The proof proceeds by induction

on the length of xs. For xs = [], one finds immediately that ΨM (w1) ([],σ) = ([],σ) = ΨM (w2) ([],σ). Now, let
xs = x : xs

′
, with x ∈ a, xs′ ∈ [a]. From Lemma 1.17,

ΨM (w1) (x : xs
′,σ) = let (y,σ ′) = ΦM (w1) (x ,σ)

(ys,σ ′′) = ΨM (w1) (xs,σ
′)

in (y : ys,σ ′′) (54)

= let (y,σ ′) = ΦM (w2) (x ,σ)

(ys,σ ′′) = ΨM (w2) (xs,σ
′)

in (y : ys,σ ′′) (55)

= ΨM (w2) (x : xs
′,σ) . (56)

Going from Equation (54) to Equation (55) uses both the assumption ΦM (w1) = ΦM (w2) and the induction

hypothesis. Equation (56) is arrived at by applying Lemma 1.17 again. □

Category-Theoretic Foundations of STCLang • 11

ACKNOWLEDGMENTS
This work was supported in part by the German Research Foundation (DFG) within the Collaborative Research

Center HAEC and the Center for Advancing Electronics Dresden (cfaed).

REFERENCES
[1] Sebastian Ertel, Justus Adam, Norman A. Rink, Andrés Goens, and Jeronimo Castrillon. 2019. STCLang: State Thread Composition As a

Foundation for Monadic Dataflow Parallelism. In Proceedings of the 12th ACM SIGPLAN International Symposium on Haskell (Haskell

2019). ACM, New York, NY, USA, 146–161. DOI:http://dx.doi.org/10.1145/3331545.3342600
[2] Simon Peyton Jones, Will Partain, and André Santos. 1996. Let-floating: Moving Bindings to Give Faster Programs. In Proceedings

of the First ACM SIGPLAN International Conference on Functional Programming (ICFP ’96). ACM, New York, NY, USA, 1–12. DOI:
http://dx.doi.org/10.1145/232627.232630

http://dx.doi.org/10.1145/3331545.3342600
http://dx.doi.org/10.1145/232627.232630

	Abstract
	1 Category-Theoretical Foundation for State Threads
	1.1 Foundations
	1.2 State threads
	1.3 Composition of state threads
	1.4 The smap functor
	1.5 Extracting parallelism from the structure of state threads
	1.6 Proof of Lemma 1.15

	Acknowledgments
	References

