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ABSTRACT
The still increasing number of transistors per chip o�ered byMoore’s
law, together with the Post-Dennard scaling era shifted the per-
formance gain from frequency increase to multi-core processing.
Consequently, the support of parallel execution of applications is
becoming mandatory. Furthermore, the need for e�cient parallel
models and languages is more critical for the embedded domain, due
to power consumption andmemory constraints, among others. This
work focuses on parallelizing an embedded speaker recognition
application, which is a biometric technique for identi�cation. While
a lot of work has been done for speech recognition, fewer e�orts
have focused on recognizing who the speaker is. In this paper, we
analyze two implementations for speaker recognition applications
(SRA), namely data�ow and shared memory programming mod-
els. More precisely, we use Process Networks (PNs) as a data�ow
representation, which is an intuitive way to design streaming ap-
plications. We use the language “C for Process Networks” for the
data�ow implementation and OpenMP for the shared memory one.
For two di�erent target platforms, we compared two implementa-
tions using OpenMP (exploring data-level parallelism only and with
pipelining) against a data�ow-based compiled implementation that
allows for functional optimization. Despite faster communication
over shared memory, we show that the data�ow model is superior
in terms of performance (up to twice as fast).

CCS CONCEPTS
• Software and its engineering→ Parallel programming lan-
guages;Data� ow languages; •Theory of computation→Models
of computation; • Computing methodologies→ Speech recog.
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1 INTRODUCTION
According to Moore’s law, the number of transistors in integrated
circuits is doubling every 18 months. Mainly due to the break down
of Dennard’s scaling, the extra transistors are going into multi-
core architectures, rather than into a single monolithic core. As a
consequence, parallel programming stopped being a niche and be-
came mainstream through many domains in computing, including
embedded. Furthermore, as embedded computing has signi�cant
power budget constraints coupled with increasing needs for faster
processing, parallel programming is mandatory.

We are interested in the parallelization of embedded signal pro-
cessing applications for biometric authentication, that is, the pro-
cess of automatically recognizing a person based on physical or
personal behavior traits (e.g. iris,� ngerprint, voice). Automatic
speaker recognition, in particular, is generally related to the auto-
matic identi�cation of a person based on his vocal tract (i.e. voice).
This could be used for many applications based on authentication
such as in banking or building access control.

Many parallel programming models have been proposed in the
last years, most of them in the area of desktop and high-performance
computing. In the embedded domain, instead, there is a large body
of research on software synthesis [10], with a strong focus on data�ow
parallel programming models. These models are appropriate for
describing intrinsically parallel processing over streams of data that
�ow from one node to the other. Therefore, these kinds of models
are a good match for digital signal processing and multimedia ap-
plications. Furthermore, data�ow has been used for the synthesis
and analysis of real-time embedded systems [5, 6] and automatic
code generation from them has been investigated [8, 11].

Another prominent parallel programmingmodel is OpenMP [23],
a pragma-based approach for shared memory machines. OpenMP
o�ers a good migration path for sequential code and includes a
powerful runtime system to schedule threads in a transparent way
to the programmer. In the embedded domain, OpenMP is poorly
supported. For some platforms, the OpenMP stack alone consumes
most of the resources, leaving only little for the application code
and data. Parallel programs are thus still written by hand, using
low-level application programming interfaces (APIs) like Pthreads.

In this paper, we investigate the expressiveness along with the
performance, in terms of achieved speedup, of data�ow and shared
memory implementations for speaker recognition applications. For
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the data�ow implementation, we use theMAPS data�ow framework
(MPSOC Application Programming Studio), that uses an extension
of the C language called CPN (C for Process Networks) [9].

For the shared memory implementation, we use OpenMP. As
target systems, we use a 16-core desktop machine and an embedded
8-core Odroid board. We compare a� rst and intuitive implemen-
tation using OpenMP that explores data-level parallelism, against
the data�ow version. Despite a faster communication over shared
memory, the experimental results show that for the speaker recog-
nition application, a data�ow programming approach achieves a
better speedup. After modifying the OpenMP version to match the
data�ow-like execution, the performance of the OpenMP version
decreased even further. The experiments show that the OpenMP
implementation based only on Data Level Parallelism (DLP), reach
better speedup than the pipelined version.

The rest of this paper is organized as follows. In section 2 we
discuss related work. Section 3 provides background on speaker
recognition applications and Kahn Process Networks (KPNs). Sec-
tion 4 presents the sequential and the OpenMP implementations.
Section 5 describes the KPN model of the application, while sec-
tion 6 compares the results and attempts to interpret the reason
behind the performance gap between the di�erent implementations.
Finally, conclusions are drawn in Section 7.

2 RELATEDWORK
Many works in the literature focus on accelerating speaker recog-
nition process. This problem can be considered from di�erent an-
gles: modeling, software or hardware. From the modeling side, the
speedup is achieved at the expense of accuracy [3, 4, 19, 25]. The lack
of information about the execution platform and/or parallelization
in these approaches let us conclude that the process was running se-
quentially on general purpose processors. From the hardware side,
FPGA-based implementations, as well as custom hardware, have
been used to accelerate speaker recognition applications. Readers
may refer to [7] for a detailed survey.

In this paper we focus on a particular software implementation,
exploiting the parallel processing capabilities of modern proces-
sors. This is enabled by parallel programming models, which, in
an abstract way, allow shaping the parallel execution pattern of
the application. To the best of our knowledge, only shared memory
programming using OpenMP has been employed to accelerate, not
speaker, but rather speech recognition applications [28]. Authors in
[26] compare di�erent programming models (OpenMP, GCD, and
Pthreads) for speech and face recognition applications.

Others works have compared the performance of shared memory
versus message passing implementations. Authors in [20]� nd no
general conclusions w.r.t. performance. Factors like the load im-
balance of the application as well as the communication overhead
of the hardware have a great impact on the overall performance.
Authors in [13] present the performance of 11 parallel benchmarks.
They compare traditional shared memory against hybrid data�ow
implementations,� nding that data�ow o�ers higher� exibility than
task-based models.

In our work, we explore and compare two di�erent implemen-
tations of the target speaker recognition application, a shared-
memory programmingmodel (using OpenMP) and a data�ow-based
model (using CPN).

3 BACKGROUND
In this section, we describe the general scheme of a speaker bio-
metric recognition system. We then brie�y introduce the model of
computation used to specify the application as data�ow graph.

3.1 Speaker recognition applications
The generic process of speaker recognition is illustrated in Fig. 1. At
the highest level, all speaker recognition systems contain two main
modules: feature extraction and pattern matching. In the training
phase, the speech utterances of known speakers are analyzed to
extract their respective features. Speaker models are built based on
these features and are stored in a database. The pattern matching
phase consists in computing the similarity of an unknown speaker
to the speakers’ models in the database according to the speech
signal analysis. The tested speaker model is compared against all
the available models in the database. Once done, the system returns
an identi�er of the closest model to the input.

Identification

Feature 
Extraction

Speaker 
Modeling

Feature 
Extraction Pattern Matching Most likely 

Speaker Model

Speech 
Utterances 

Speech 
Utterances 

Database

Speaker 
Identified
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-VQ (Vector Quantization)
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Figure 1: Speaker recognition process
Several approaches and algorithms have been used to perform

recognition (as shown in Fig.1). Feature extraction can be performed
by algorithms such as Re�ection Coe�cient (RCs), Linear Predic-
tive Coding (LPC), Linear Prediction Cepstral Coe�cient (LPCCs)
or Mel-Frequency Cepstrum Coe�cients (MFCCs). For the classi�-
cation, the most used ones for speaker recognition include Hidden
Markov Model (HMM), Dynamic Time Wrapping (DTW), Vector
Quantization (VQ), Gaussian Mixture Model (GMM) and SVM (Sup-
port Vector Machine). Readers may refer to [7] for further details
about the pros/cons and complexity of these algorithms.

3.2 Data�ow programming
A Model of Computation (MoC) depends on several regulations in-
dicating how a concurrent execution of di�erent components of the
system and their mutual communication should be performed [24].
Such abstract models enable automated analysis that in turn en-
able automated optimization. For streaming applications such as SR,
data�owmodels, and/or their variants are well suited for describing
them.

Kahn Process Networks (KPNs), or Process Networks (PNs) are
an extension of data�owmodels. A PN is a graph connecting concur-
rent processes (represented by nodes). The computation is divided
among them and they communicate only through channels (rep-
resented by edges). When processes are arranged in a linear one
directional chain, describing pipelined applications becomes im-
plicit. Indeed, the use of bu�ers (channels) leads to pipelining in a
natural and convenient way. The data� ow between the processes,
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which makes them particularly suitable for describing streaming
applications. Kahn showed in [15] that KPNs with unbounded FI-
FOs are deterministic, i.e., they always produce the same output, if
provided with the same input.

For the implementation, we use the language “C for Process
Networks” (CPN), an extension of the C language [8]. It adds new
syntactic constructs to describe the data�ow graph. New keywords
were added to describe Processes, Channels and Channel Accesses
of the KPN data�ow model. Every process of the KPN graph ex-
ecutes code written in the standard C language. CPN is used as
input to MAPS (MPSoC Application Programming Studio) com-
piler framework [9]. The framework generates optimized spatial
and temporal process-to-core and logical to physical channel as-
signments for heterogeneous manycores. In our work, we use the
commercially available SLX tool suite [2] for data�ow modeling
and compilation.

4 SEQUENTIAL AND PARALLEL SHARED
MEMORY IMPLEMENTATIONS

For our implementation of the speaker recognition, we use MFCC
(Mel-Frequency Cepstrum Coe�cient) [27] for feature extraction
phase and VQ (Vector Quantization) [21] for the pattern matching.
The overall� ow of the speaker recognition is presented in Fig. 1.

For the feature extraction phase, the input speech utterance is
divided intoM overlapping frames of size N each (M being propor-
tional to the utterance length). Then, and in order to avoid spectral
e�ects, a Hamming window is applied to each of these frames that
emphasizes higher frequencies. Afterward, these frames are trans-
formed to the frequency domain by means of an FFT, just before a
triangular� lter bank is applied to estimate the human ear frequency.
All M input frames are transformed into M acoustic vectors of a
reduced size. Finally, applying DCT (Discrete Cosine Transform)
transform on these vectors delivers the MFCC coe�cients of each
vector. Extracted vectors from speaker utterances are used to build
the speaker model. This step is called the enrollment/training phase,
after which all built models are stored in a database. Now, and to
identify an unknown speaker utterance, the same steps, except for
the enrollment phase, are needed. Then, the resulting model is com-
pared to all the speaker models in the database. This comparison is
performed by the similarity phase. The similarity is expressed in
terms of a calculated distance, and the closest one to the unknown
speaker is selected.

For a� rst application analysis, we pro�le the sequential im-
plementation using Vtune1. The results showed that the pattern
matching step is the most computationally intensive part, account-
ing for up to 97% of the CPU time. This computation has a regular
structure with independent computations, i.e., it is highly data level
parallel (DLP).

Distances of the current speaker model to the set of saved models
are computed respectively. Finally, the matching computation is
also easily parallelized since it corresponds to a common reduction
pattern.

Introducing DLP to sequential code can be done in an easy and
intuitive way using OpenMP. The basic version of OpenMP im-
plementation, which is a fully static one, is shown in Algorithm 1.

1https://software.intel.com/en-us/get-started-with-vtune

The outer loop (line 6) iterates over the speakers to be recognized
(utterances). The utterances are meant to be received on runtime,
enabling thus stream processing. The computed model of the cur-
rent utterance (uttModel) is fed to the inner loop (line 10), which
iterates through all the models stored in the database, dbSize be-
ing the size of the database. The distance is calculated using the
function Similarity (line 11), and the closest speaker model in
terms of minimum distance is returned.

Here, the compiler OpenMP directive used at the outer loop
is pragma omp parallel and at the inner loop is the for work-
sharing construct with the reduction clause (line 9). The speaker
variable in line 15 is shared and updated by concurrent threads. To
ensure data integrity, we added the clause omp critical. Since
ComputeModel (line 8) and print (line 19) should be executed once
for each utter, we added two omp single clauses (lines 5 and 18).

In OpenMP, the for work-sharing construct supports di�erent
scheduling strategies, describing how and when iterations are as-
signed to threads. The aim is to adapt the behavior for reducing
threads idle time. Since Similarity has a� xed size computation,
the suitable schedule of the inner for loop is the default one, which
is static with chunk size equal to the number of iterations divided
by the number of threads.

We also considered another alternative, where we only annotate
the inner loop with pragma omp parallel for reduction. This
version, however, performs sometimes worse due to the additional
overhead of repeatedly opening and closing the parallel region.

A��������1
Speakers_Recognition_version_1
1: procedure P�������SRA(utterances , dbSize )
2: database  ReadDatabase (dbSize )
3: distMin  9999 . Initialize the minimal distance to an upper value
4: speaker  null . Recognized speaker in the database
5: #pragma omp parallel
6: for utter in utterances do
7: #pragma omp single private(utter)
8: uttModel  ComputeModel (utter )
9: #pragma omp for reduction(min:distMin)
10: formInDB = 1 to dbSize do
11: dist  Similar it� (uttModel, database[mInDB])
12: #pragma omp critical
13: if dist < distMin then
14: distMin  dist
15: speaker  mInDB
16: end if
17: end for
18: #pragma omp single
19: pr int (speaker ) . Print the identi�ed speaker
20: end for
21: end procedure

5 DATAFLOW IMPLEMENTATION
For the implementation of the SRA data�ow we use the SLX tool
suite. After adding CPN annotations to the sequential C code, we
generate the data�ow shown in Fig. 2. The communication channels
sizes are statically set by the tool, before generating the runtime.

Speaker identi�cation, presented by the graph in this� gure,
starts at the Source node. This node loads the speaker models stored
in the database and sends them (database) to the Shi f ter node. The
number of the tokens is the number of models in the database,
while each one is a 16 ⇥ 19 matrix of doubles model. The Shi f ter
distributes the tokens among Similarit� (Worker ) nodes while en-
suring a balanced distribution (in terms of number). The number of



PARMA-DITAM 2019, January 21, 2019, Valencia, Spain H. Bouraoui et al.

Shifter

Sink

database

Db
Si

ze
utt

er

utter

models

models

models

models

utter 
Model

utter 
Model

utter 
Model

utter 
Model

minDist
speaker

minDist
speaker

minDist
speaker

minDist
speaker

Similarity 
(worker)

Similarity 
(worker)

Similarity 
(worker)

Similarity 
(worker)

Compute
Model

Source

Figure 2: Process network of the speaker recognition application.

workers has been changed throughout the implementation, to see
the behavior of di�erent parallel granularities. Source node loads,
in addition, the utterances of the speakers to be recognized and
sends them (utter ) toComputeModel node.ComputeModel creates
the respective models of the speaker utterances to be recognized.
First, features are extracted and then form the utterance model
(uttModel ). As soon as the� rst model (uttModel ) is created by the
ComputeModel node, it is sent to all Similarit� (Worker ) nodes to
compare it against the models in the database (each node will com-
pare it to the speaker models it received from the Shi f ter ). The total
number of sent utterModel tokens is equal to the number of speak-
ers to recognize. This behavior describes the implicit pipelining in
the data�ow. While Similarit� (Worker ) node is working on the
current speaker, the previous nodes are computing the model of the
next utterance to recognize. For each Similarit� (Worker ) node, the
closest model will be returned to Sink which will print the speaker
ID with the smallest distance. Given that the worker nodes run in
parallel, the CPN model features the same data level parallelism
that we expressed in the OpenMP model (cf. Algorithm 1).

6 EVALUATION
For the experiments part, we deploy the speaker recognition appli-
cation on two di�erent platforms. In this section, we compare the
data�ow implementation discussed in Section 5 with the OpenMP
variant presented in section 4. And we analyze another openMP
implementation, that mimics the behavior of the CPN implementa-
tion.

6.1 Experimental setup
To compare the results, we use two di�erent platforms. The desk-
top platform is an x86-64 ISA general purpose platform (denoted
hereafter GPP). It has an Intel Xeon Processor X5550 with 16 cores
and 32GB of memory. The operating frequency of the processor is
1.5 GHz (and up to 2.6 GHz). For the embedded platform, we use
Odroid XU4 [1] board. This is an octa-core board with 4 Cortex A15
cores and 4 Cortex A7 cores. It has a 2 Gbyte LPDDR3 DRAM mem-
ory. The frequencies are 1.4 GHz and 2.0 GHz. Each core has an L1
cache memory level of 32KB. Besides, the 4 Cortex A15 and Cortex
A7 share an L2 cache memory level of 2Mb and 512KB respectively.

As a benchmark, recognition experiments are performed on the
TIMIT corpus [14]. TIMIT contains 630 speakers where 70% are
men and 30% are women.

For the experimental results, the input to the SRA is audio ut-
terances of these speakers. Models extracted from these speech

utterances are represented by a double-precision 16x19 matrix. In
addition to the database, the SR application takes as input speaker
utterances with a number of frames laying between 408 and 796
each. Every frame is of size 256 (25 ms) sampled at 16 kHz over-
lapped of 100 samples (16 ms).

6.2 CPN-OpenMP comparison
For comparing CPN and OpenMP, we want to explore di�erent
possibilities. We do this by modifying the following parameters:
(i) the platforms: GPP and Odroid, (ii) the size of the database:
2000, 8000 and 16000 speakers, (iii) the number of the speakers to
recognize: 1, 5 and 10, (iv) and the number of workers computing the
similarity (in the case of the CPN implementation), the number of
threads (in the case of the OpenMP implementation) and combined
with the number of cores to run on.

Fig.3 reports the speedup obtained with the OpenMP and the
CPN versions w.r.t. the sequential implementation on both plat-
forms (GPP and Odroid). On GPP, we achieve a higher speedup, for
a bigger number of speakers to recognize, also while maintaining
the same database size, the same number of workers/threads and
cores ((a) refers to 2 workers/threads on 4 cores, (b) refers to 4
workers/threads on 8 cores and (c) refers to 8 workers/threads on
8 cores). The experiments ran on Odroid platform showed similar
results. For space reasons, we only show the achieved speedup for
5 speakers in the same Fig.3.

All the experimental results revealed that the data�ow imple-
mentation performs better (in terms of achieved speedup) than the
shared memory implementation using OpenMP. This is unexpected,
considering the overhead involved in managing the FIFO communi-
cation in the generated code from CPN. In order to understand the
reason behind these results, we investigated the execution schema
of both implementations. For clarity reasons, we show the Gantt
charts of the executions using 4 workers on 6 cores for CPN and 4
threads for OpenMP. Both charts consider more than one speaker
to recognize.

The data�ow model behavior, shown in Fig.4 (based on the map-
ping of the nodes to the cores that is generated by the SLX tool
suite), re�ects the parallel behavior outlined by the data�ow. How-
ever, the shared memory model behavior outlines the DLP of the
inner loop, leading to a considerable overhead. This overhead is
due to synchronization and runtime jobs/threads management. In-
deed authors in [12] showed that OpenMP overheads increase in
importance with the number of cores, while authors in [22] demon-
strated that OpenMP 3.0 implementations exhibit poor behavior.
Additionally, as shown in Fig.4, the CPN version exposes more
parallelism than the OpenMP version does, due to the pipelining
enabled via the bu�ering in the communication channels. The next
section analyses a more involved OpenMP version of the code that
mimics the behavior of the CPN implementation.

6.3 Analysis of a data�ow-like OpenMP
implementation

To mimic the data�ow execution with OpenMP, we use a topmost
parallel region with the entire for loop being executed as single
and use tasks inside. Coming up with such solution required to go
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Figure 3: Comparing speedup of CPN and DLP-only OpenMP imple-
mentations on GPP recognizing 1 , 5 and 10 speakers and on Odroid
recognizing 5 speakers.(a) 2 workers/threads on 4 cores (b) 4 work-
ers/threads on 8 cores (c) 8 workers/threads on 8 cores
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(only DLP support).

through a complex structure and nesting of the tasks. Main addi-
tions to the parallel version that uses OpenMP with DLP support
only are colored in Algorithm 2. In this pseudocode, statements
in purple are OpenMP directives, while statements in blue high-
light the extra needed variables and processing. In this alternative,
tasks are created and scheduled at runtime, leading thus to dynamic
management compared to the static one in the� rst implementation.

As depicted in Algorithm 2, one main task (single thread in line
5) iterates over the utterances to recognize. For each utterance (i.e.
each iteration), it creates a separate big task (line 8 to line 33). We
notice here that whenever a big task is computing the similarity
of the current model in the current iteration, the main task starts

creating the next utterance model. This enables parallelism between
these two computations.

The big task structure is also complex. It starts computing the
dala level parallelism by applying the Similarity() function on a
chunk of the models existing in the database. Each chunk compu-
tation is ensured by a newly created subtask (line 15). In this case,
within each of these big tasks, nbrWorkers (i.e. line 3) subtasks are
created to execute this similarity function in parallel (i.e. DLP) and
synchronize by the end.

The chunk size is de�ned at runtime by two variables: istart
(lines 12 and 25) and iend (lines 13 and 26). Before applying the
reduction (line 30), the created subtasks need to synchronize. This
synchronization is ensured by the taskwait construct (line 28) that
imposes a barrier. In fact, the obtained runtime corresponds to as
many created big tasks as the given number of utterances. Despite
the fact that they are created in deferred instants, they still can be
scheduled in parallel. Finally, an additional subtask is created by
the main task (line 29 to 32) to perform the reduction and results
displaying.

A��������2
Speakers_Recognition_version_2
1: procedure ��������SRA_CPNL���(utterances , dbSize )
2: database  ReadDatabase (dbSize )
3: nbrW orkers  4
4: #pragma omp parallel {
5: #pragma omp single {
6: for utter in utterances do
7: uttModel  ComputeModel (utter )
8: #pragma omp task�rstprivate(model ) {
9: . distMin and speaker are tables of nbrWorkers local minimums
10: [nbrW orkers]distMin  [9999, 9999, ...]
11: [nbrW orkers]speaker  [null, null, ...]
12: istar t  0 . Explicitly compute the the model indexes of each worker
13: iend  dbSize/nbrW orkers
14: forwkInd = 1 to nbrW orkers do
15: #pragma omp task� rstprivate (dist, istart, iend) {
16: formInDB = istar t to iend do
17: dist  Similar it� (uttModel, database[mInDB])
18: #pragma omp critical
19: if dist < distMin[wkInd] then
20: distMin[wkInd] dist
21: speaker [wkInd] mInDB
22: end if
23: end for
24: }
25: istar t  iend
26: iend  iend + dbSize/nbrW orkers
27: end for
28: #pragma omp taskwait . synchronize distance computation
29: #pragma omp task {
30: r educe (distMin, speaker )
31: pr int (speaker ) . Print the identi�ed speaker
32: }
33: }
34: end for
35: }
36: }
37: end procedure

Getting a CPN-like behavior using OpenMP was achieved but at
the expense of a completely non-intuitive new OpenMP implemen-
tation. For the experimental results, we change the same parameters
for both implementations (i.e number of threads, number of work-
ers, etc.).

We compare in Fig.5 the old (and static) OpenMP version speedup
with the CPN-like (and dynamic) one while varying the hardware
platform. The experimental results show that the old OpenMP im-
plementation (with DLP support only) achieves better speedup than
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the new one on both platforms. Therefore, CPN implementation still
achieves better speedup. Besides being complex and not intuitive,
the overhead of the task construct is remarkable.

The CPN implementation is superior, justifying the extra e�ort
in using the right MoC for the task at hand.

Figure 5: Comparing speedup of CPN-like and DLP-only OpenMP
implementations recognizing 5 speakers on GPP and Odroid plat-
form. (a) 2 threads on 4 cores (b) 4 threads on 8 cores (c) 8 threads
on 8 cores.

7 DISCUSSION AND CONCLUSION
Model-based programming helps to address interactions schemes
over the system components in an abstract manner. In this paper,
we analyze data�ow and shared memory programming models for
speaker recognition applications. We� rst compare the data�ow
implementation using CPN with an intuitive shared memory im-
plementation, yet static, using OpenMP. For two di�erent target
platforms, a notable di�erence in achieved speedup in the exper-
imental results shows that despite a faster communication over
shared memory, the OpenMP runtime adds signi�cant overhead,
that is partially due to synchronization and runtime management.
Analyzing the Gantt Charts of both implementations, we went for
a fairer comparison by mimicking data�ow behavior in the shared
memory implementation. This version performs worse in all cases,

due to the overhead of dynamic task management. The CPN im-
plementation is superior, despite the slower communication using
channels.

In future work, we plan to further exploit the possibilities that
the data�ow model-based approach o�ers for speaker recognition.
We could exploit the symmetry-enabled predictable execution of
static mappings introduced in [16, 17].

We could also improve the run-time adaptability on a hetero-
geneous platform by providing implicit parallelism of the KPN, as
shown in [18]. Finally, we could vary the number of threads during
runtime with the di�erent levels of data parallelism.
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