Implicit Data-Parallelism in Kahn Process Networks: Bridging
the MacQueen Gap

Robert Khasanov
Chair for Compiler Construction
TU Dresden
Dresden, Germany
robert.khasanov@tu-dresden.de

ABSTRACT

Modern embedded systems are rapidly increasing their complexity,
both in terms of numbers of cores, as well as heterogeneity. To
generate efficient code for these systems, it is common to leverage
formal models of computation. Among these, the dataflow model
of Kahn Process Networks (KPN) is widespread because it is expres-
sive but guarantees a deterministic execution. However, the KPN
model is ill-suited to expose data-level parallelism, since this has
to be made explicit in the process network. This is aggravated by
the fact that its most common execution model, Kahn-MacQueen,
poses restrictive conditions on the scheduling of data-parallel pro-
cesses, leading to an inefficient execution. In this paper we present a
novel extension to the KPN model and a relaxed execution strategy
that addresses this problem, while keeping the deterministic KPN
semantics. It improves run-time adaptivity in malleable way and
provides implicit parallelism. We evaluate our approach on two
architectures, improving the performance of a benchmark by up to
25.6 % on an Intel chip with hyper-threading, and by up to 78.0 %
on a heterogeneous embedded ARM big.LITTLE architecture.

CCS CONCEPTS

» Theory of computation — Parallel computing models; -
Computing methodologies — Parallel programming languages;

KEYWORDS

Streaming applications, process networks, adaptivity, MPSoC, het-
erogeneous

ACM Reference Format:

Robert Khasanov, Andrés Goens, and Jeronimo Castrillon. 2018. Implicit
Data-Parallelism in Kahn Process Networks: Bridging the MacQueen Gap.
In PARMA-DITAM ’18: 9th Workshop on Parallel Programming and RunTime
Management Techniques for Manycore Architectures and 7th Workshop on
Design Tools and Architectures for Multicore Embedded Computing Platforms,
January 23, 2018, Manchester, United Kingdom. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3183767.3183790

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PARMA-DITAM ’18, January 23, 2018, Manchester, United Kingdom

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-6444-7/18/01...$15.00
https://doi.org/10.1145/3183767.3183790

Andrés Goens
Chair for Compiler Construction
TU Dresden
Dresden, Germany
andres.goens@tu-dresden.de

Jeronimo Castrillon
Chair for Compiler Construction
TU Dresden
Dresden, Germany
jeronimo.castrillon@tu-dresden.de

(=) o)

Figure 1: An example of a KPN Application: Calculating the
Mandelbrot Set.

1 INTRODUCTION

Most modern embedded systems consist of several cores, and the
number of cores in such systems only continues to grow. In fact,
while commercially widespread systems today dwell in the lower
ranges of four or eight cores, some recent many-core systems are
already reaching numbers in the thousands [18]. Other platforms,
like those based on ARM big.LITTLE™ [7], also consist of hetero-
geneous cores that offer better energy-effiency or in some cases
feature specialized cores for efficient execution of particular types
of code. These features offer high amounts of resources for applica-
tions to leverage, allowing them to use a high number of different
cores, or share resources with other applications. It is therefore
difficult to program these systems.

The current trend in compilers and programming languages is
to address this problem by using specific application models that
can help exploit the advantages of hardware platforms while hiding
low-level details from a programmer.

A typical application model in the embedded domain is that
of dataflow process networks [15], where continuously running
processes communicate through FIFO channels. A particularly im-
portant model in this family is that of Kahn Process Networks
(KPN) [9], which is the most general model which guarantees a de-
terministic execution [15], a property that is particularly desirable
in embedded systems [12]. This model is well-suited for streaming
applications, such as audio/video encoders or image recognition.

As an example, consider the KPN application in Figure 1. It
depicts a network to calculate the Mandelbrot set. In it, a source
(SRC) divides the complex plane in lines and sends those lines to four
different workers (W1-W4). The workers calculate the convergence
or divergence of points, and send them to a sink (SNK), which
reassembles the lines to output the set.

Besides showcasing how the KPN model can be used to express
parallelism, this example also shows two main difficulties with the

https://doi.org/10.1145/3183767.3183790
https://doi.org/10.1145/3183767.3183790

PARMA-DITAM ’18, January 23, 2018, Manchester, United Kingdom

Static
W, ‘ iz ‘ T ‘ ;
Wo | [T [T | Tio | } [
Wy ‘ Ts ‘ T ‘ T1‘[1 | }
w, | [T] Ts [T | ‘, ‘,
| I
Dynamic | |
B N s e s e .7 [
W, [T] Ts ‘ Tio H }
w, [[% [T
w, | [Ta [Tg | To | } }
I I

Figure 2: An Example of Sub-Optimal Scheduling in the
Static KPN Model.

KPN model. The first is that KPN lacks implicit data-level paral-
lelism. In order to express it, application developers have to explic-
itly specify a parallel topology of the process network, as well as
the workload distribution, at compile-time (W1-W4 in the exam-
ple). Similarly, another difficulty is that most KPN-based models
use the Kahn-MacQueen blocking-read semantics, which restrict
the order of execution. More precisely, when a process reads from
various channels in this execution model, it has to have a static
order to read from. Even if, at runtime, all other channels have data
which could be processed, if the first channel to be read blocks
because it does not have any tokens, the whole process will block
and execution will stop. This also means that workers in explicit
data parallelism have a static order for packages, and can lead to
sub-optimal scheduling, as can be seen in the example in Figure 2.
The figure shows a Gantt chart of the four workers calculating 12
different tokens. Because of the static, deterministic nature of the
KPN model, the workload is distributed poorly between workers.

These limitations have several additional consequences: First,
they hamper the portability of the application, since programmers
have to generate the network topology for each platform they are
targeting. Second, since the amount of available resources in a sys-
tem may vary due to other applications, explicit network topologies
cannot adapt to these variations. Such applications are also called
rigid [4], i.e. they run on a certain number of processors specified by
the user and this number does not change at run-time. At the same
time, heterogeneous platforms and dynamic frequency-voltage scal-
ing of cores make static strategies for workload distribution inef-
ficient. All of these make it harder to design a holistic approach
to determine an optimal amount of parallelism, because the model
cannot capture the semantic information that a process can be
executed in a data-parallel fashion. Thus, tuning data-parallelism
cannot be integrated in the compiler. This task necessarily falls on
the shoulders of the programmer.

Since data parallelism is a very common type of parallelism,
these issues need to be addressed in order to fully leverage the
capabilities of modern systems.

In this paper we present such an extension of implicit parallelism
to the KPN execution model, which preserves the formal semantics
of KPN [9]. We also show how we can relax the Kahn-MacQueen
execution semantics [10], with blocking reads and writes, and return
to the original semantics of a Kahn Process Network [9] which
are strictly more expressive [13]. We call this gap in execution

Robert Khasanov, Andrés Goens, and Jeronimo Castrillon

Original KPN Parallel Extension parallel
process
split interleave

O—@—®

Figure 3: The Parallel Process KPN Extension.
semantics, “the MacQueen Gap”. We present an implementation
of these extensions as efficient channel libraries using SLX [22], a
commercial spin-off of the MAPS framework [2]. We show how
our extended model has a higher degree of adaptability, especially
on heterogeneous platforms.

The rest of the paper is structured as follows: Section 2 describes
the extensions to the KPN model and their implementation. These
are evaluated in Section 3. Then, related work is discussed in Sec-
tion 4, and finally, Section 5 concludes the paper.

2 EXTENSION OF PARALLEL PROCESSES

In this section we present our extended execution model, based
on KPN and the typical Kahn-MacQueen execution model. Our
extension consists of several parts: a special type of process, a
parallel process, with a corresponding type of parallel channel.

2.1 Parallel Processes

For our extended execution model we first introduce a new type
of process, a parallel process. A parallel process is a process that
can be duplicated and which workload can thus be distributed
among diverse instances of the original process. Semantically, the
duplicated processes behave as a regular process. Figure 3 depicts
this, by showing an example where the process B is marked as
parallel and duplicated into four instances which can be executed
in parallel.

Not every process can be marked as parallel. We must introduce
special requirements for a process to be annotated as parallel. Con-
sider the formal semantics of KPN [9]. A KPN process can be seen
as a continuous function

f:D‘f)x...xDZ) —>D'1"’><...><D'l"’,
for the sequence domains D?’,D/.“),i =1,...,kj=1,...,L
To mark a process as parallel, it needs to fulfill two conditions

(1) It must be possible to consider the process as an actor with
constant rates, in the sense of dataflow with firing [15]. For-
mally, this means that f can be specified as a function

f:Iw—>Ow,

forasubsetI C DyX.. .XDZ and a subset O C D/I* X. . .XDII*,
where * denotes the Kleenee closure, such that the length of
each of the components for all elements in each of I and in

O is constant and finite, i.e.
Foralli=1,...,k: |[{length(w;) | (w1,...,wx) =wel}| =1,
Forallj=1,...,1: [{length(wj) | (wy,...,w;) =w € O} =1.

Note that the input and output rates themselves must not be
equal, just constant (and finite) for every channel.

Implicit Data-Parallelism in Kahn Process Networks: Bridging the MdRARi¥eA-DEPAM 18, January 23, 2018, Manchester, United Kingdom

()
Q<©

Output

)

Static (psfifo)

Input

Dynamic (pdfifo)

Output

HlEe o

Input

et B

Figure 4: The Different Execution Strategies for Split-
Interleave Primitives.

(2) The process must be stateless. Formally, this means that,
for any two sequences v,w € I, where v is a suffix of
w, i.e. w = w'v for some w’ € I?, it holds that f(w) =
f(w")f(v). In other words, that the output only depends
on the corresponding input in a firing, not on any previous
firings.

By considering dataflow actors with firing as KPN [15], these
conditions would be fulfilled by a stateless Synchronous Data Flow
(SDF) actor [14]. Note that the conditions are sufficient but not nec-
essary. For example, our approach could, in principle, be extended
to CSDF [1] actors. The requirement of statelessness is important
since in that case we ensure that there is no dependency between
different iterations.

2.2 Parallel Channels

When a parallel process expands to multiple instances, these in-
stances have to be connected with the predecessors and successors
of the original process. Moreover, the order of the tokens must be
the same, to respect the KPN semantics.

In this paper we introduce split and interleave primitives. Split
primitives distribute tokens among instances of the parallel pro-
cesses and interleave primitives gather all tokens from all channels
coming from parallel workers into a single channel. This interleave
functionality is similar to the well-known deterministic merge, albeit
less strict, as will be seen in this section. Thus, they are necessary
in order to implement data parallelism with parallel processes. The
split-interleave functionality can be included in three ways, as an
additional process, inside the predecessors and successors of paral-
lel process, or as part of the channels themselves. Figure 3 depicts
this last option.

If the primitives are included in processes, either as a standalone
process or in the successors/predecessors, then they come with
some additional restrictions. In order to keep tokens in the same
order, all split and interleave processes must be coordinated with
the same strategy. Additionally, a particular drawback of using split
and interleave nodes is the usage of additional memory for each
channel, as well as the overhead of copying tokens.

Thus, for our extended execution model, we introduce special
split and interleave channels. In this special type of FIFO chan-
nels, all tokens in the channel are distributed among the parallel
instances internally. When a parallel worker process reads data, a
worker identifier is used to determine the first token assigned to this
worker. When a parallel worker process writes data, its identifier is
again used to determine the position in the output channel. Thus,
the consumer of the output channel reads tokens in the same order
as if it would have been a single worker. The top part of Figure 4
depicts this for a static assignment of tokens to workers, in a round
robin fashion. We call this channel type psfifo, or parallel static
FIFO. It is similar to the approach with special processes, but avoids
copying data. In the figure, tokens T; and T3 have already been
processed by the worker Wi, which is now processing T5. On the
other hand, W; is still executing T. Thus, besides automatically
adding data parallelism, psfifo channels improve execution by
relaxing the blocking reads and writes.

Finally, the psfifo channel can be relaxed further, in an imple-
mentation of split and interleave channels which we call parallel
dynamic FIFO, or pdfifo. As in a psfifo, here we have only a
single channel. In this case, however, there is no static assignment
of tokens. In order to read and write to channels in order, all tokens
are associated with a firing identifier. At the beginning of the firing,
a parallel process gets a firing id. Then, the process uses this identi-
fier to determine an exact memory address of data for reading and
writing. In Figure 4, since W, takes a long time executing T, tokens
T3 and Ty are assigned dynamically to Wi. This will generally lead
to a better dynamic scheduling as depicted in Figure 2.

While they allow a more flexible execution, as described, dynamic
channels currently only work on a shared memory model. In further
work we plan to study how to implement this on a distributed
memory model as well.

2.3 Adaptivity

A regular KPN with static data-parallelism is called rigid, since
it is specified by the user at compile-time. The psfifo version
improves this by allowing the system to decide. This property is
called moldability. The pdfifo channels are even more adaptable.
This adaptivity comes at two distinct levels: workload distribution
among parallel workers, and the possibility to change the number
of parallel workers. This latter property is called malleability.

Since pdfifo channels do not statically distribute tokens among
parallel workers, the distribution of the tokens may adapt and
vary at run-time. Workers adapt the distribution of the workload
implicitly: once a worker finishes a firing it executes the next token.
It follows that a faster worker will execute more firings, and a slower
worker will execute less number of firings. While this still does not
ensure an optimal scheduling, it should improve it in most cases
(see Figures 2 and 4). This is especially beneficial in scenarios where
parallel workers are running on heterogeneous platforms or when
one of the cores is shared with another application. Similarly, this
is also beneficial when the workload depends on the data, and thus,
the execution time of a single firing varies significantly between
firings.

The other level of adaptivity is how the application may change
the number of parallel workers without changing split-interleave

PARMA-DITAM ’18, January 23, 2018, Manchester, United Kingdom

strategies. In fact, pdfifo channels are agnostic to the number
of parallel workers. Moreover, parallel workers may start or stop
operating without interrupting the rest of the application, including
other parallel workers. Note that stopping can only safely occur
after finishing a firing, not during one.

2.4 Semantics

Having described the extension above it should be intuitively clear
that the extended execution model preserves the semantics of the
original KPN program, where a single process is placed instead of
parallel workers. Both psfifo and pdfifo channels and parallel
tokens are just an implementation of the same f as before, in the
KPN semantics. By using the properties required in Section 2.1, we
can ensure that f can be executed in different “firings” in parallel,
and the channel implementations just ensure the order is preserved.
A particularly useful property of this is that all assumptions based
solely on the KPN semantics still hold. This includes determinism,
as demonstrated in the original KPN paper [9], as well as many
assumptions that are implicit in many analysis flows [2, 19, 20].
The execution, on the other hand, effectively bridges the Mac-
Queen gap between KPN semantics and the Kahn-MacQueen exe-
cution model with blocking reads and writes. To see why this is the
case, consider Figure 4. In the Kahn-MacQueen execution model,
the application would block in both cases after W has finished
executing Ty and T3, since from the blocking semantics the network
would continue to wait for W5 to finish with Ty, before being able
to process the next token. Additionally, the pdfifo channels go
even beyond this, since they allow dynamic changes to the work-
load distribution. In particular, the workload distribution in pdfifo
channels is a controlled non-deterministic procedure, although the
execution of the whole parallel process remains deterministic.

3 EVALUATION

In this section, we evaluate our extension of implicit data-parallism
and the parallel channels, with a particular focus on the adaptivity
of our approach.

3.1 Experimental setup

Hardware setup. We conducted the evaluation on two platforms:
Intel Core i7-4790 and Hardkernel Odroid XU4, a modern off-the-
shelf heterogeneous multicore system. Intel Core i7-4790 is a quad-
core 64 bit CPU that runs 8 threads simultaneously using hyper-
threading technology. The CPU is clocked at 3.60 GHz and has
a cache of 8 Mb. Odroid XU4 features Exynos 5422 big. LITTLE
chip with four Cortex-A15 cores and four Cortex-A7, with 2 Gb
of LPDDR3 RAM. The frequency of the A7 (little) cluster ranges
from 200 MHz to 1.4 GHz and that of the A15 (big) cluster ranges
from 200 MHz to 2.0 GHz. During the experiments the performance
governor was activated.

Benchmark description. In our experiments we used as bench-
mark a calculation of the Mandelbrot set. The process network is
shown on Figure 1 and is explained in the introduction. The parallel
workers calculate points in an iterative fashion, where the num-
ber of iterations depends on the point itself. For this reason, this
benchmark is well-suited for investigating data-parallelism more
thoroughly, since in contrast to many benchmarks based on linear

Robert Khasanov, Andrés Goens, and Jeronimo Castrillon

number of
iterations
1000

750

500

250

]

Figure 5: Number of iterations needed to calculate the Man-
delbrot set

54
o 41 channels
3 baseline
B3 psfifo
[
&)

24 —e— pdfifo

14

2 4 6 8

number of workers

Figure 6: Speedup on Intel i7-4790

algebra, the execution time of the algorithm is data-dependent. Fig-
ure 5 shows how many iterations it performs for each point, which
incidentally shows the Mandelbrot set as well.

We tested our benchmark on three versions of data-parallelism
in KPNs: baseline, psfifo and pdfifo. In the baseline version,
data parallelism is inserted manually on the KPN at the source-
code level by implementing the split-interleave functionality as
part of the processes. The capacity of each channel in baseline
version is 8 tokens, and the capacity of parallel channels is 8 X
number of workers. In our experiments we calculate the Mandel-
brot set for two areas: 4000 X 3000 and 8000 x 6000, for the ex-
periments in Sections 3.2 and 3.3 respectively. In all scenarios, all
parallel workers were fixed to individual cores/hardware threads,
without sharing, while the source and sink processes were not fixed.

3.2 Evaluation of channels

In the first experiment we check the performance of all three ver-
sions by varying the number of parallel workers on both, Intel
i7-4790 and Odroid XU-4.

To measure the performance on Intel i7-4790 we executed all
three versions, with the number of parallel workers ranging from 1
to 8. In configurations of up to 4 parallel workers, the workers were
fixed to different physical cores, and on the other configurations,
additional workers were fixed to the second hardware thread of
each core. The results are shown on Figure 6. It shows how the
speed-up curves of baseline and psfifo are virtually identical, as
well as all three curves are for up to 4 parallel workers. However,
for more than 4 workers pdfifo outperforms the other versions
by up to 25.6 %. This effect diminishes up to 8 cores, where the ver-
sions perform again virtually identically. The reason of the worse
performance of the two static versions in the middle of the plot is
that in these configurations some workers use a physical core exclu-
sively, while the other workers share a core on different hardware
threads. Thereby, they become stragglers, slowing down the rest
of the process network. In the dynamic version, the faster workers
take over part of the workload from the slower ones, improving
performance.

Implicit Data-Parallelism in Kahn Process Networks: Bridging the MdRARi¥eA-DEPAM 18, January 23, 2018, Manchester, United Kingdom

1 462 887
(-1.41%)

1'259 080
(-1.00%)

1646 070
(-2.93%)

1448 034
(-2.41%)

pdfifo

2248 367
(-9.16%)

throughput

1844568 2051284 2254540 [pixels/s]

(-1.13%)

baseline psfifo
44 2253406 1048622 1258737 1463491 1646793 2261898 1048512 1258314
(-896%) (-1.06%) (-1.03%) (-1.37%) (-2.89%) (861%) (-1.07%) (-1.06%)
3- 1843 106 841114 1052339 1258920 1448417 1847 637 840 831 1 052 579
(0.71%) (0.80%) (-0.71%) (-1.01%) (-2.38%) (-0.47%) (-0.83%) (-0.69%)
» 5 -

[.,
] 2- 1239 261 632344 844062 1052782 1245396 1236910 | 682171 843 563
; (0.14%) (-0.56%) (-0.45%) (-0.67%) (-2.08%) (-0.05%) (-0.59%) (-0.51%)
619035 634304 843290 1042469 | 618882 634 197
(0.04%) (025%) (054%) (-1.64%) (0.02%) (-0.27%).

837573
(1.22%)

635285
(-0.10%)

0 2 3 4 0 1 2

little cores

1052 227
(-0.72%)

843112

635136
(-0.12%)

(0.63%) (-0.82%)

1245992 1236018 1446341 1655036 1858452 2043598 26406
(203%) (0.12%) (0.22%) (0.39%) (-0.80%) (-2.01%)
1044049 | 618397 830772 1042464 1249897 1446865 Te+08
(056%) (1.49%) | (0.06%) (0.00%) (-0.02%) (-0.38%) (-1.35%) .

- 0e+00
837518 636308 840137
(1.22%) (0.06%) (-0.91%)

3 4 0 1 2 3 4

Figure 7: Throughput on Odroid XU-4 with different numbers of little and big cores

On Odroid XU-4 we executed all versions for all possible combi-
nations of numbers of little and big workers, which we define as
workers running on little and big cores respectively. The perfor-
mance is reported in terms of throughput, in pixels/s. The results
are depicted in Figure 7. Similar to the previous experiment, both
baseline and psfifo show equal throughput on each configura-
tion. All three versions show the same results when all workers
allocated to homogeneous subsets of cores, either big or little. When
the workers are fixed to a heterogeneous subset of cores, pdfifo
shows a better performance, by up to 78.0 %. Perhaps surprisingly,
the static versions with 4 big workers outperform the ones with 4
big and 4 little workers by 36.8 %.

This can again be explained by straggling workers slowing down
the rest of the system. We can quantify this observation, by approx-
imating the total throughput for the static and dynamic kernels as
follows:

stat _) THiie X (0 +1) if1>0
total ™| THyig x b ifl=0
d

THto}gall ~ THijirtle X 1 + THbig x b,

where [and b are the number of little and big workers, respectively.

On Figure 7 the relative error of this approximation is shown in
brackets. The dashed lines show equally-performing configurations
of the static versions. On all configurations in which the big cluster
is not fully utilized, the relative error of our approximation does
not exceed 3.44 %. When the big cluster is fully utilized we see a
significant increase of the relative error (11.79 %) because the big
cluster is not able to sustain high frequency. This, in turn, is due to
the inability of the stock fan to adequately cool the chip.

Both experiments show that, indeed, in the static versions the
rigid execution model allows straggling workers to impair the exe-
cution in the whole system.

3.3 Adaptivity

In the previous experiments we only evaluated our approach on
systems with fixed resources. In this section, we analyze the run-
time adaptability of the different versions. We do this at two levels:
workload distribution adaptivity, and parallelization adaptivity.

3.3.1 Workload distribution adaptivity. In this scenario we run
the benchmark with four little workers on Odroid-XU4. At run-
time, we start a second application (a sorting task), which creates
contention by sharing one of the little cores with our benchmark.
We start two instances of this contending application, one after

1000000

750000

500000 4

throughput [pixels/s]

250000 4

0 20 40 60
time [s]

channels baseline psfifo — pdfifo

Figure 8: The Effect of Contention on Performance for the

Different Variants.
2000000

config -+ single — contention

1500000

1000000

500000

throughput [pixels/s]

0 10 20 30 40
time [s]

Figure 9: Dynamic Reallocation of Resources.

15s and the other one 17 s later. Figure 8 shows the throughput
of the benchmark as a function of time, for all three versions. For
reference, the same graphs for all three versions, without an addi-
tional application contending for resources, are shown as the dotted
lines in the plot. We see how the contending application dramati-
cally reduces the throughput of the architecture on baseline and
psfifo, whereas the reduction is much less dramatic for pdfifo.
This is because the worker sharing a core with the other applica-
tion becomes a straggler and slows down all the other workers in
the static versions. This effect is avoided by the dynamic pdfifo.
Note that the high throughput at the beginning and the end of the
execution relates to the data-dependent behavior of the application,
as at those points it is calculating the edges of the square area, far
from the Mandelbrot set (see Figure 5).

3.3.2 Parallelization adaptivity. In this scenario we change the
amount of parallelism at run-time. This feature is only supported
by the pdfifo library, since its dynamic nature allows to add and
remove instances of the parallel process without affecting the
currently-executing ones. Figure 9 shows the evolution of through-
put over time throughout the experiment. It starts with two little
workers. After 15 s, four big workers are added, marked by (1). Then,
after an additional delay of 13 s, three big and one little worker are
removed. This event is marked by (2). The plot shows how the

PARMA-DITAM ’18, January 23, 2018, Manchester, United Kingdom

pdfifo library can adapt to the resources available at run-time,
utilizing them to the fullest.

4 RELATED WORK

The optimization of data-parallelism in dataflow applications has
attracted much interest from the research community. In the litera-
ture it is called with different names, such as fission, partitioning
or replication [8].

In Streamlt [5, 6], the authors apply fission tranformations along
with other tranformation like fusion, reordering and load balancing
at compile-time. Similarly, several authors use diverse approaches
to leverage data-parallelism in SDF graphs at compile time [3, 11, 23—
25]. Conversely, the authors of [16] introduced a dynamic schedul-
ing approach for SDF graphs. However, our approach works with
the far more expressive KPN model of computation.

More closely related to our work with KPN, in AdaPNet [21], a
new application model called Expandable Process Networks (EPN)
is introduced as an extension of KPN. In this model, a stateful pro-
cess might be expanded to a refinement network and contracted
back, resulting in a new process network that has the same function-
ality as the original network. Though this system addresses more
general transformations on stateful processes, these transforma-
tions are not malleable nor does it address implicit data-parallelism.
The transformations have to be specified explicitly. The authors
of [17], on the other hand, offload the computation of stateless
actors to the GPU units. In contrast to this, our approach works
in more general heterogeneous systems through the abstract na-
ture of the SLX flow. Moreover, this work uses a non-deterministic
model of computation through RVC-CAL, whereas our approach
still guarantees a deterministic execution.

To the best of our knowledge, our approach is the first solution
that works on the highest possible level that guarantees deter-
minism (KPN), while improving run-time adaptivity in malleable
way and providing implicit parallelism, effectively briding the Mac-
Queen gap.

5 CONCLUSION

In this paper we presented an extension of Kahn Process Networks
with an alternative execution model. We showed how, by replicating
certain stateless processes, we can leverage data-parallelism in
KPNs in an implicit fashion. Additionally, we argued how we can
remove the blocking reads and writes from the KahnMacQueen
execution model while retaining the deterministic KPN semantics.
We showed how this holds true, improving the performance of a
benchmark on two architectures, by up to 25.6 % on commodity
desktop hardware with hyperthreading, and by up to 78.0 % on the
heterogeneous Odroid system. In particular, the dynamic nature
of our execution model allows the execution to utilize all system
resources, avoiding being blocked by a straggling process and rigid
semantics.

In future work we will address questions of optimal energy-
efficient mapping for such process networks and study an efficient
implementation of our extension to platforms with a distributed
memory model. Additionally, we plan to explore relaxing the se-
mantics of a subgraph, violating the KPN semantics in a controlled
fashion, to further improve performance when it is safe to do so.

Robert Khasanov, Andrés Goens, and Jeronimo Castrillon

ACKNOWLEDGMENTS

This work was supported in part by the German Research Founda-
tion (DFG) within the Collaborative Research Center HAEC and
the Center for Advancing Electronics Dresden (cfaed). We thank
Silexica for making their SLX Tool Suite available to us.

REFERENCES

[1] Greet Bilsen, Marc Engels, Rudy Lauwereins, and Jean Peperstraete. 1996. Cycle-
static dataflow. IEEE Transactions on signal processing 44, 2 (1996), 397-408.

[2] Jeronimo Castrillon Mazo and Rainer Leupers. 2014. Programming heterogeneous
MPSoCs: tool flows to close the software productivity gap. Springer, Cham.

[3] Sardar M. Farhad, Yousun Ko, Bernd Burgstaller, and Bernhard Scholz. 2011.
Orchestration by Approximation: Mapping Stream Programs Onto Multicore
Architectures. SIGPLAN Not. 47, 4 (March 2011), 357-368.

[4] Dror G. Feitelson and Larry Rudolph. 1996. Towards Convergence in Job Sched-
ulers for Parallel Supercomputers. In Proceedings of the Workshop on Job Schedul-
ing Strategies for Parallel Processing (IPPS °96). Springer-Verlag, London, UK, UK,
1-26. http://dlacm.org/citation.cfm?id=646377.689507

[5] Michael I. Gordon and et al. 2002. A Stream Compiler for Communication-
exposed Architectures. SSGARCH Comput. Archit. News 30, 5 (Oct. 2002), 291-303.
https://doi.org/10.1145/635506.605428

[6] Michael I. Gordon, William Thies, and Saman Amarasinghe. 2006. Exploiting
Coarse-grained Task, Data, and Pipeline Parallelism in Stream Programs. SIG-
PLAN Not. 41, 11 (Oct. 2006), 151-162. https://doi.org/10.1145/1168918.1168877

[7] Peter Greenhalgh. 2011. Big. little processing with arm cortex-al5 & cortex-a7.
ARM White paper (2011), 1-8.

[8] Martin Hirzel, Robert Soulé, Scott Schneider, Bugra Gedik, and Robert Grimm.

2014. A Catalog of Stream Processing Optimizations. ACM Comput. Surv. 46, 4,

Article 46 (March 2014), 34 pages. https://doi.org/10.1145/2528412

Gilles Kahn. 1974. The semantics of a simple language for parallel program-

ming. In Information processing, J. L. Rosenfeld (Ed.). North Holland, Amsterdam,

Stockholm, Sweden, 471-475.

Gilles Kahn and David MacQueen. 1976. Coroutines and networks of parallel

processes. (1976).

Manjunath Kudlur and Scott Mahlke. 2008. Orchestrating the Execution of

Stream Programs on Multicore Platforms. SIGPLAN Not. 43, 6 (June 2008), 114—

124. https://doi.org/10.1145/1379022.1375596

Edward A Lee. 2015. The past, present and future of cyber-physical systems: A

focus on models. Sensors 15, 3 (2015), 4837-4869.

Edward A Lee and Eleftherios Matsikoudis. 2008. The semantics of dataflow

with firing. G. Huet, G. Plotkin, J.-. Lévy, and Y. Bertot, editors, From Semantics to

Computer Science: Essays in Honour of Gilles Kahn (2008), 71-94.

[14] E. A.Lee and D. G. Messerschmitt. 1987. Synchronous data flow. Proc. IEEE 75, 9

(Sept 1987), 1235-1245. https://doi.org/10.1109/PROC.1987.13876

Edward A Lee and Thomas M Parks. 1995. Dataflow process networks. Proc.

IEEE 83, 5 (1995), 773-801.

Haeseung Lee, Weijia Che, and Karam Chatha. 2012. Dynamic Scheduling of

Stream Programs on Embedded Multi-core Processors (CODES+ISSS ’12). ACM,

New York, NY, USA, 93-102. https://doi.org/10.1145/2380445.2380465

[17] W.Lund, S. Kanur, J. Ersfolk, L. Tsiopoulos, J. Lilius, J. Haldin, and U. Falk. 2015.

Execution of Dataflow Process Networks on OpenCL Platforms. In 2015 23rd

Euromicro International Conference on Parallel, Distributed, and Network-Based

Processing. 618-625. https://doi.org/10.1109/PDP.2015.29

Andreas Olofsson. 2016. Epiphany-V: A 1024 processor 64-bit RISC System-On-

Chip. arXiv preprint arXiv:1610.01832 (2016).

[19] Andy D Pimentel, Cagkan Erbas, and Simon Polstra. 2006. A systematic approach

to exploring embedded system architectures at multiple abstraction levels. IEEE

Trans. Comput. 55, 2 (2006), 99-112.

Claudius Ptolemaeus. 2014. System design, modeling, and simulation: using Ptolemy

II. Vol. 1. Ptolemy. org Berkeley.

[21] L. Schor, L. Bacivarov, H. Yang, and L. Thiele. 2014. AdaPNet: Adapting process
networks in response to resource variations. In CASES 2014. 1-10. https://doi.
org/10.1145/2656106.2656112

[22] Silexica. 2017. SLX. (2017). http://www.silexica.com

[23] J.Spasic, D.Liu, and T. Stefanov. 2016. Exploiting resource-constrained parallelism
in hard real-time streaming applications. In DATE 2016. 954-959.

[24] A.Stulova, R. Leupers, and G. Ascheid. 2012. Throughput driven transformations

of Synchronous Data Flows for mapping to heterogeneous MPSoCs. In 2012

International Conference on Embedded Computer Systems (SAMOS). 144-151. https:

//doi.org/10.1109/SAMOS.2012.6404168

J. T. Zhai, M. A. Bamakhrama, and T. Stefanov. 2013. Exploiting just-enough

parallelism when mapping streaming applications in hard real-time systems. In

2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC). 1-8. https:

//doi.org/10.1145/2463209.2488944

—_
2

=
S

—_
_

=
)

=
&

=
i)

=
&

=
&

™
=

[25

http://dl.acm.org/citation.cfm?id=646377.689507
https://doi.org/10.1145/635506.605428
https://doi.org/10.1145/1168918.1168877
https://doi.org/10.1145/2528412
https://doi.org/10.1145/1379022.1375596
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1145/2380445.2380465
https://doi.org/10.1109/PDP.2015.29
https://doi.org/10.1145/2656106.2656112
https://doi.org/10.1145/2656106.2656112
http://www.silexica.com
https://doi.org/10.1109/SAMOS.2012.6404168
https://doi.org/10.1109/SAMOS.2012.6404168
https://doi.org/10.1145/2463209.2488944
https://doi.org/10.1145/2463209.2488944

	Abstract
	1 Introduction
	2 Extension of Parallel Processes
	2.1 Parallel Processes
	2.2 Parallel Channels
	2.3 Adaptivity
	2.4 Semantics

	3 Evaluation
	3.1 Experimental setup
	3.2 Evaluation of channels
	3.3 Adaptivity

	4 Related work
	5 Conclusion
	Acknowledgments
	References

