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ABSTRACT

Increasing rates of transient hardware faults pose a problem for

computing applications. Current and future trends are likely to ex-

acerbate this problem. When a transient fault occurs during pro-

gram execution, data in the output can become corrupted. How

severely a fault a�ects the overall program output depends on the

application domain. Hence, di�erent applications require di�erent

levels of fault tolerance. We present an LLVM-based AN encoder

that can equip programs with an error detection mechanism at

con�gurable levels of rigor. Based on our AN encoder, the trade-

o� between fault tolerance and runtime overhead is analyzed. It is

found that, by suitably con�guring our AN encoder, the runtime

overhead can be reduced from 9.9× to 2.1×. At the same time, how-

ever, the probability that a hardware fault in the CPU will result

in silent data corruption rises from 0.007 to over 0.022. The same

probability for memory faults increases from 0.009 to over 0.032.

It is further demonstrated, by applying di�erent con�gurations of

our AN encoder to the components of an arithmetic expression in-

terpreter, that having �ne-grained control over levels of fault tol-

erance can be bene�cial.
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1 INTRODUCTION

Transient hardware faults are a widely occurring problem [20, 30,

41] and can have as malicious e�ects as entire system outages [1].

Transient faults, also referred to as soft errors, are commonly attrib-

uted to charge generation by cosmic radiation [3], and attention
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has been drawn to increasing fault rates for some time [3, 6, 8, 43].

As feature sizes continue to shrink, devices are becoming more

vulnerable to variations in supply voltage and temperature [6, 42].

Therefore, in the future, fault rates will likely increase further.

The current trend toward reducing the energy consumption of

chips exacerbates the problem of faults. For example, operating de-

vices at near-threshold voltage lowers reliability, cf. dim and dark

silicon [12, 42, 44] and reducing the power supplied to memory

modules lowers their capability to retain data [13, 28, 46]. In the

context of more disruptive trends, e.g. quantum computing, faults

are an even more prominent problem.

In the presence of hardware faults, software that is intended

to satisfy high safety and reliability requirements must be made

fault-tolerant. This can be achieved by adding integrity checks to

programs: when a check fails, an error has been detected and suit-

able measures can be taken to recover from it. The present work

focuses on error detection.

Software can be equipped with error detection measures by au-

tomatic program transformations, e.g. source transformations [24,

26, 34] or code transformations facilitated by the compiler [33, 35,

37, 40]. Popular schemes detect errors by duplicating the data �ow

of programs [11, 14, 33, 35, 47, 48]: faults lead to disagreement be-

tween duplicated copies of data; thus, errors are detectedwhen dis-

agreement is found. This approach is referred to as dual modular

redundancy (DMR).

DMR-based error detection schemes typically make the assump-

tion thatmemory is protected against faults by hardwaremeasures,

e.g. ECC. This assumption is problematic for two reasons. First,

cost and area considerations may rule out using ECC memory at

all levels of thememory hierarchy, especially in on-chip caches and

load-store queues [11]. Second, it has been found that the widely

used single error correcting, double error detecting (SECDED) codes

are incapable of handling large fractions of error patterns that oc-

cur in practice [23]. Simply extending DMR to memory, i.e. by du-

plicating memory accesses, is not an option since this may lead to

race-conditions in multi-threaded applications [11].

An alternative approach to error detection is based on encoded

processing [39]: data words are encoded, and programs operate ex-

clusively on codewords. Errors are detectedwhen non-code words

are encountered. The advantage of encoding-based error detection

is that entire systems, including CPUs, memories, and communi-

cation buses, are automatically protected against faults [17]. More-

over, no issues arise for multi-threaded applications since memory

accesses need not be duplicated. However, without dedicated hard-

ware support, encoding-based error detection schemes incur large

runtime overheads.

In the present work, we study the simple, yet e�ective, AN en-

coding scheme [7, 17]. In AN encoding, integer values are encoded

bymultiplyingwith a �xed constantA. Hence, the valid codewords
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are precisely the multiples of A. This implies that ⌊2n/A⌋ encoded

values can be represented byn bits. AN encoding can be used to de-

tect errors in the data �ow of programs that process integer values.

This introduces two major sources of runtime overhead: (i) error

checks require expensive modulo operations; (ii) some native in-

teger operations must be modi�ed to ensure that the results are

again multiples of A. Typical overheads due to AN encoding are

several 10× [37, 40], noticeably higher than for DMR-based error

detection schemes. Our work identi�es code generation strategies

that improve the performance of AN encoding. The price for this

is a reduction in the rigor of error detection.

While safety-critical application, e.g. in the automotive or aero-

space domain, may require that all errors resulting from hardware

faults be detected and handled appropriately, other applications

have less strict demands, e.g. applications with frequent or contin-

uous user interaction [14], or image processing and machine learn-

ing applications [28, 38]. For such applications, less rigorous error

detection can still ensure operationwithin reliability requirements

in an environment that is prone to hardware faults; and applying

error detection too eagerly would lead to unnecessarily big run-

time overhead. This calls for error detection and fault tolerance

schemes that can be adjusted and can thus suitably trade rigor for

performance. In this work, we make the following contributions

toward turning the basic AN encoding scheme into such an ad-

justable error detection scheme:

(1) We present a con�gurable AN encoder that can apply er-

ror detection measures at di�erent levels of rigor, trading

fault tolerance for performance.1 The encoder is based on

the LLVM compiler infrastructure [27].

(2) When code generation strategies that are speci�c to AN

encoding are applied to programs that have already been

optimized, the average overhead can be reduced from 9.9×

to 3.6×. The corresponding degradation in the capability

to detect errors is analyzed.

(3) When pointers are not encoded, the runtime overhead can

be further reduced to 2.1×.

(4) Using an interpreter as an example application, we show

that it can be bene�cial to utilize di�erent trade-o�s for

di�erent application components.

The structure of this paper is as follows. The AN encoder and

its con�gurations are introduced in Section 2. Section 3 de�nes the

fault model used to evaluate the AN encoder in Section 4. Section 5

discusses related work. Section 6 summarizes our work and gives

directions for future research.

2 AN ENCODING

Error detection schemes rely on invariant conditions that are sat-

is�ed by valid data, and the violation of an invariant condition in-

dicates the presence of an error. In encoding-based error detection,

the invariant condition is that all data words are in fact valid code

words. Errors can be detected e�ectively if the set of code words is

only a small subset of all possible datawords since, in this situation,

a fault that causes a bit �ip in a code word is unlikely to produce

another valid code word. In AN encoding, the code words are pre-

cisely the multiples of a �xed integer constant A. Thus, errors are

1https://github.com/normanrink/an-encoder

Figure 1: Compilation �ow for AN encoding.

detected by checking whether an integer value n satis�es

n modA = 0. (1)

If (1) does not hold, an errormust have occurred. Checking for erro-

neous values enables AN encoding to detect errors in a program’s

data �ow. AN encoding does not detect erroneous control �ow.

In processing AN-encoded data, there is never a need to oper-

ate on values that are not multiples of A. Nevertheless, when im-

plementing AN encoding on real hardware, an interface must be

de�ned between AN-encoded and conventional processing of data.

Speci�cally, an arbitrary integer m must be encoded before being

used in AN-encoded processing:

menc = encode(m) ≡m · A. (2)

Similarly, when passing a value from AN-encoded processing to

conventional processing, it must be decoded:

m = decode(menc ) ≡menc/A. (3)

The right members of (2) and (3) should be read as de�nitions of

the operations encode and decode respectively.

AN encoding introduces redundancy because additional bits are

required to represent multiples ofA: ifm is represented by km bits

and the constant A has kA bits, then km +kA bits must be a�orded

to menc . Therefore, in theory, the memory overhead introduced

by AN encoding is kA bits per data word. In practice, however, the

memory overhead is typically lower for the following reason. If the

machine data word is k bits wide, then the binary representation

ofm leaves k − km bits unused. Thus, provided k − km > kA, no

additional memory is needed to represent encoded values. Note

that AN encoding also implies that only ⌊2k/A⌋ code words can

be represented by the machine data word, limiting the range of

logical integer values that can be operated on.

2.1 AN Encoding of Operations

ANencoding produces arithmetic codes,meaning that certain arith-

metic operations, namely addition and subtraction, preserve code

words, e.g.

m · A + n · A = (m + n) · A . (4)

https://github.com/normanrink/an-encoder
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Table 1: Con�gurations of transformation passes.

check insertion A B

venc = loadenc aenc venc = loadenc aenc
check(venc )

venc = loadenc aenc

expansion A B

check(venc ) an_assert(venc %A) an_accumulate(venc )

Table 2: Encoding variants.

variant load check pre-opt.

1 A A ✗

2 B A ✗

3 B B ✗

po.1 A A ✓

po.2 B A ✓

po.3 B B ✓

However, not all operations preserve multiples of A. For example,

the result of a division is no longer a multiple of A:

menc/nenc = (m · A)/(n · A) =m/n . (5)

To remedy this, an encoded version of division must be used, i.e.

menc /enc nenc ≡ (A ·menc )/nenc = (m/n) · A . (6)

The implementation of some encoded operations requires that ar-

guments be decoded, e.g.

nenc &enc menc ≡ (n&m) · A (7)

for the bitwise and-operation, denoted by the symbol &. This lim-

its the error detection capability of AN encoding since errors in

the non-encoded valuesm, n, orm&n cannot be detected, cf. [36].

Since address buses cannot handle encoded addresses, memory op-

erations also require that pointer arguments be decoded, i.e.

loadenc aenc ≡ loada , (8)

storeenc nenc ,aenc ≡ storenenc , a , (9)

where a is a pointer and aenc = encode(a). More details on en-

coded operations can be found in [39].

2.2 AN Encoding of Programs

Error detection can be added to a program by transforming the

program’s processing of integers into AN-encoded processing. The

resulting program is AN-encoded. Transforming a program to its

AN-encoded version is achieved by the following steps, cf. Figure 1.

(1) Value encoding replaces every integer constant n in the

program with nenc .

(2) Operation encoding replaces all operations with their cor-

responding encoded versions. E.g., the operation & will be

replaced with &enc .

(3) Check insertion decides which values are checked for er-

rors. An abstract operation check is introduced to repre-

sent this.

(4) Expansion turns encoded operations and checks into na-

tive machine operations. The &enc -operation is expanded

as on the right-hand side of (7); expansions of memory

operations are de�ned by (8), (9); and checks can be imple-

mented using (1).

The transformations (1)–(4) have been implemented based on

the LLVM framework [27], and each of them corresponds to a

transformation pass that operates on LLVM intermediate repre-

sentation (IR). Optimizations at level -O3 are applied before and

after AN encoding.2 However, optimizations before AN encoding

are optional, as indicated by the * in Figure 1, and we refer to these

2The sequence of optimization passes performed can be obtained by executing
llvm-as < /dev/null | opt -O3 -disable-output -debug-pass=Arguments.

as pre-optimizations. Since AN encoding adds complexity to a pro-

gram’s data �ow, it may be di�cult for a compiler to identify op-

portunities for optimization in an AN-encoded program. Hence, it

is reasonable to optimize programs prior to encoding.

2.3 Con�gurable AN Encoding

The check insertion pass and the expansion pass can be con�g-

ured to generate di�erent variants of AN-encoded programs. For

the discussion of con�gurations it is important to note that AN-

encoded programs produce output in one of only two ways: either

an encoded value is written to memory, or it is passed to a library

function, in which case the value must be decoded since library

functions may not work with encoded data. Therefore, to detect

errors in program output, AN encoding must check for errors ev-

ery time a value is written to memory or decoded.

Based on these observations, the check insertion pass applies

the following rule to transform store operations,

storeenc nenc ,aenc −−−−−−−→
check(nenc )

storeenc nenc ,aenc
.

Whether checks are also inserted after load operations depends on

which of the con�gurations from Table 1 is chosen. Con�guration

A can immediately detect if an error in memory has corrupted a

value. However, checking immediately after a load operation may

not be necessary due to the so-called error propagation property of

AN encoding: whenever an error corrupts a value so that it is no

longer a multiple of A, it is unlikely that this will be recti�ed by

subsequent computations.3 Hence, the corruption can be detected

by a check at a later point in time, i.e. at the next store or decode op-

eration. Omitting checks which are deemed unnecessary, as in con-

�guration B of the check insertion pass (see Table 1), is a common

approach to reducing the overhead of error detection, cf. [35, 47].

The expansion pass is responsible for checking every time a

value is decoded. The transformation rule used for this is

v = decode(venc ) −−−−−−−→
v = venc/A

an_assert(venc −v · A)
,

where an_assert is de�ned in Listing 1. Additionally, the expan-

sion pass can transform checks in one of the two ways de�ned in

Table 1 (see Listing 1 for the de�nition of an_accumulate). Con�g-

uration B should lead to lower runtime overhead since the function

an_accumulate essentially performs an addition instead of the ex-

pensive modulo operation in con�guration A. Con�guration B can

therefore be regarded as AN-encoding-speci�c strength reduction.

In an_accumulate, values to be checked are added to an accu-

mulator acc. Each AN-encoded function maintains its own accu-

mulator acc in a local variable. Since addition preserves multiples

3If multiple errors occur, it is also unlikely that later errors will restore values to
multiples of A when they have previously become corrupted by earlier errors.
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of A, it su�ces to check only once per function whether acc is

a multiple of A. This is done immediately before the AN-encoded

function returns. The fact that acc may over�ow complicates the

structure of an_accumulate, but this may be acceptable as long as

over�ow happens rarely.

Listing 1. Assertion and accumulation in AN encoding.

a n _ a s s e r t ( x ) {
i f ( x ) e x i t (AN_ERROR_CODE ) ;

}

an_accumula t e ( x ) {
_acc = acc ;
a cc += x ;
i f ( / ∗ o v e r f l ow has o c c u r e d ∗ / ) {

a n _ a s s e r t ( _acc % A ) ;
a cc = x ;

}
}

Table 2 de�nes encoding variants obtained by combining dif-

ferent con�gurations of the check insertion and expansion passes.

Variants po.1–po.3 include the optional pre-optimizations from Fig-

ure 1. In our AN encoder, the constantA can also be con�gured. For

the present work, it has been set to A = 58659, cf. [22].

3 FAULT MODEL

Encoded processing can protect entire computing systems against

faults, including on-chip components, such as functional units and

register �les, as well as the full memory hierarchy. We therefore

consider faults in both the CPU and in memory to assess the error

detection capabilities of the encoding variants. The rarity of faults

in practice justi�es a single-event upset (SEU ) model [6]; i.e. it is

assumed that at most a single hardware fault occurs during the

execution of a program.

In this work, error detection is assessed by symptom-based fault

injection [4, 26, 39] This means that instead of simulating a fault at

the circuit level, its e�ect on the executing program, i.e. the symp-

tom of the fault, is modeled. It is common practice to evaluate error

detection schemes by injecting single bit �ips, cf. [11, 14, 47]. There-

fore, a fault in the CPU is modeled by �ipping a bit in a register.

This covers faults in the register �le and in functional units since

the results of operations are generally written to registers. A fault

in the memory system is modeled by a load operation that returns

a value with one bit �ipped. This subsumes faults in on-chip mem-

ories, i.e. load-store queues and caches, as well as in main memory.

Fault injection experiments are performed on x86 binaries, and

symptoms are injected by running a program binary under the con-

trol of the Pin dynamic instrumentation tool [29]. In a �rst golden

run, the dynamically executed instructions are recorded. Based on

this, all possible fault symptoms are determined. By simple com-

binatorics, the spaces of all possible symptoms are generally quite

large, and we therefore perform statistical sampling. To inject a

symptom into the CPU, an instruction in the targeted binary is

chosen randomly from all dynamic instructions that write to reg-

isters. If the instruction writes to multiple registers, one of the out-

put registers is randomly selected for injecting the symptom. The

bit �ip is injected into the selected register immediately after the

instruction has executed. To inject a memory fault, one of the dy-

namically executed load operations is randomly selected, and a bit

is �ipped in the value accessed by the load.

Table 3: Suite of test programs.

description

bubblesort
A inputs in ascending order
B inputs in random order
C inputs in descending order

D cyclic redundancy checker (CRC-32)

E DES encryption algorithm

F Dijkstra’s algorithm

arithmetic expression interpreter
G recursive expression tree evaluation
H token lexer for arithmetic expressions
I parser

J Fibonacci numbers

K matrix multiplication

L array copy

quicksort
M inputs in ascending order
N inputs in random order
O inputs in descending order

4 EVALUATION

To obtain statistically signi�cant results, program responses to a

large number of fault injection experiments must be sampled, fol-

lowing the procedure described at the end of Section 3. To achieve

this in manageable time, a suite of relatively small test programs,

listed in Table 3, is used. Some of the test programs (D, F, M–O)

appear in the MiBench suite [21], and the programs generally rep-

resent typical algorithmic tasks, such as sorting (A–C, M–O), ma-

nipulation of bit patterns (D, E), graph and tree traversal (F, G, I),

and linear algebra (K). Assessing error detection schemes on small

programs is meaningful since larger applications will be composed

of these algorithmic tasks. For example, the structure of a signal

processing algorithm may be similar to D and E, and a full com-

piler will be made up of components like H and I. Sorting (A–C

and M–O) and copying data (L) appear in numerous applications.

The number of fault injection experiments carried out for each

test case has been hand-tuned so that (a) each executed instruction

can, in principle, be targeted by at least one experiment, and (b)

enough statistical signi�cance is reached to distinguish between

the encoding variants. For faults in the CPU, and for each encod-

ing variant, between 9, 600 and 230, 000 fault injection experiments

have been performed per test program, depending on the size of

the program. For faults in memory, the number of experiments

per encoding variant range from 2, 400 to 9, 600 per test program.

Memory has been targeted by noticeably fewer fault injection ex-

periments since only a small fraction of instructions in the test

programs access memory.

Program responses to injected fault symptoms are classi�ed into

�ve categories.

1. correct: Despite the fault, the program has terminated normally

and produced correct output.

2. detected: The error has been detected by AN encoding. As a re-

sult, the program has exited with the exit code AN_ERROR_CODE,

cf. Listing 1.

3. hang: If the program runs for longer than 10x its normal execu-

tion time, it is deemed to hang and hence terminated. In prac-

tice, e.g., in safety-critical embedded applications, a hardware

watchdog may terminate and restart long-running programs.
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Figure 2: Runtime overheads of AN encoding.

Table 4: Runtime overheads

(geometric means).

variant overhead

1 9.9
2 7.2
3 6.5
po.1 4.3
po.2 3.8
po.3 3.6

4. crash: The program has terminated abnormally. Either the oper-

ating system has terminated the program, e.g., due to a segmen-

tation fault, or the program itself has exited prematurely due to

an error condition caused by invalid data.

5. sdc: Silent data corruption occurs when the program has termi-

nated normally but has produced incorrect output.

In the following, we analyze how di�erent encoding variants

control the probability of sdc, namely

psdc = P (“silent data corruption” | “hardware fault”), (10)

i.e. the conditional probability of sdc given that program execution

is a�ected by a hardware fault. The probability psdc can be esti-

mated based on observed frequencies of program responses. As-

sessment of fault tolerance schemes based on these frequencies is

commonly done in the literature [9, 25, 26, 33, 35, 47]. The values

of psdc must be contrasted with the runtime overheads introduced

by the di�erent encoding variants. Figure 2 gives the runtimes of

the AN-encoded test programs, normalized to the runtimes of the

plain programs, i.e. without any form of AN encoding, compiled at

optimization level -O3. Test cases G, H, I combine to form a larger

application, and only the runtime overhead of the full application

is reported. The last set of bars in Figure 2 gives the geometric

means across the suite of test programs. The numerical values of

these means are listed in Table 4.

4.1 Processor Faults

Relative frequencies of program responses to faults in the CPU are

summarized by Figure 3. These frequencies are the result of our

sampled fault experiments, and analogous results have been ob-

tained for memory faults. To demonstrate that AN encoding is ef-

fective at reducing the frequency of sdc, the �rst bar in each group

shows the responses of the plain test program.

Given the limitations of AN encoding mentioned in Section 2.1,

it is not surprising that even in variant 1, which is the most eager

at error detection, non-zero sdc frequencies occur. It should also

be noted that AN encoding may increase the frequencies of correct

responses. This is because the instructions that AN encoding adds

to a program do not a�ect the program’s output. Errors in these

instructions, even if not detected, cannot modify program output.

Since the quantities of interest are the sdc frequencies, they are

reproduced in Figure 4 for better visibility. This time, however, fre-

quencies are treated as estimates forpsdc , and the error bars depict

con�dence intervals at the 0.95%-level. Results for plain programs

have been omitted since theywould set too large a scale for the plot.

Numerical values for the mean psdc, including for plain programs,

are listed in Table 5. Figure 4 shows that the encoding variants be-

have as expected: variants with lower runtime overhead lead to

higher psdc . For many test programs there is no statistically sig-

ni�cant di�erence in psdc between variants 2 and 3. Despite this,

variant 3 incurs slightly lower overhead than variant 2. The same

statements hold for variants po.2 and po.3. Note that only variant

1 succeeds at keeping psdc < 0.01.

Table 5: Mean psdc × 1e3.

fault type plain 1 2 3 po.1 po.2 po.3

CPU 161.2 6.8 10.7 11.2 18.7 20.2 22.1
memory 480.0 8.8 26.8 32.9 19.4 20.5 32.3

4.2 Memory Faults

Estimates of psdc based on the injection of memory faults are de-

picted in Figure 5. The mean values listed in Table 5 show that

memory faults are generally more likely to lead to sdc than faults

in the processor. Moreover, according to Figure 5, the dependency

ofpsdc on the level of optimizations performed is less clear than for

faults in the CPU. This is because memory accessing instructions

are relatively rare, and hence a single vulnerable memory access

can have a strong in�uence on psdc.

The stark di�erences between the encoding variants in Figure 5

are caused by faults that a�ect values on the stack. Stack accesses

are added to program code by the compiler backend to handle local

variables, callee-saved registers, and register spills. Since the AN

encoder operates at the level of IR, memory accesses that handle

callee-saved registers or register spills cannot be protected against

faults. Local variables, on the other hand, are present at the IR level,

and hence are protected by AN encoding. However, variants other

than 1 and po.1 do not perform checks immediately after loading

values from memory, and may therefore fail to detect errors that

a�ect local variables. For example, the sdc occurring for variant 2 of

bubblesort (B, C) is caused by a corrupted local variable on the stack.

After the corrupted value has been loaded from the stack, incorrect

control �ow ensues, leading to sdc since protecting control �ow

is outside the scope of AN encoding. For variants po.1 and po.2,

the pre-optimizations promote local variables to registers, which

is why there is no sdc. Optimizations applied after AN encoding,

as in variants 2 and 3, fail to promote local variables because of the

complexity that AN encoding introduces into the program IR. In

variants 3 and po.3 a register spill occurs, which can be attributed
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Figure 3: Program responses to faults in the CPU.
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Figure 4: psdc for faults in the CPU.

to the long life range of the accumulator from Listing 1. Restoring

a corrupted value to the spilled register again leads to incorrect

control �ow, and hence sdc. Similar behavior is seen for D and L.

Practically all sdc in variants 1–3 and po.3 of the lexer (H) results

from a corrupted value that is restored to a callee-saved register.

The pre-optimizations in variants po.1 and po.2 produce code that

does not make use of this register. In variant po.3 the register is

used again because of the long life range of the accumulator.
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Figure 5: psdc for faults in memory.

After pre-optimizations, the IR of the Fibonacci test case (J) that

is passed into the AN encoder performs all computations in regis-

ters. Therefore, no checks are inserted by the AN encoder except

when the �nal result is decoded. Hence, the same �nal code is gen-

erated for variants po.1–po.3. This explains why the runtime over-

heads are the same for these variants, cf. Figure 2, and why the

con�dence intervals for psdc overlap substantially.

4.3 Leaving Pointers Unprotected

When pointers are protected by AN encoding, they must be de-

coded every time memory is accessed. Since this requires an in-

teger division, accompanied by a check, memory accesses are ex-

pensive in AN-encoded programs. If address buses could handle

encoded addresses, there would be no need for decoding pointers,

and thus the runtime overhead of AN encoding would be lower. To

study the extent to which the overhead can be reduced, the encod-

ing variants npp.3 and po.npp.3 have been derived from variants 3

and po.3 respectively by not protecting pointers (npp).

Table 6 summarizes the measured properties of variants npp.3

and po.npp.3. The mean runtime overhead of variant po.npp.3 is

2.1×, which is considerably lower than the typical several 10× that

have been reported for AN encoding [40]. Moreover, the overhead

of 2.1× is comparable with DMR-based schemes [33].

Table 6 also lists the psdc for variants npp.3 and po.npp.3. Com-

paring these with Table 5 shows that not protecting pointers does

not necessarily increase psdc noticeably. This can be explained by

higher crash frequencies due to leaving pointers unprotected.

4.4 Mixed Encoding

Test cases G, H, I are taken from an arithmetic expression inter-

preter, which processes input that consists of integers and arith-

metic operators in pre�x notation. The input is broken up into

tokens by the lexer (H). Valid tokens are integer constants, oper-

ator symbols, and parentheses. The parser (I) transforms the token

sequence into a tree that represents an arithmetic expression. By

traversing this expression tree, the evaluator (G) computes the in-

teger value of the input expression.

To enable more �ne-grained trade-o�s between fault tolerance

and performance, di�erent encoding variants can be applied to the
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Table 6: psdc × 1e3. Con�dence intervals at the 95%-level in

parentheses. Geometric means of runtime overheads.

CPU memory ohd.

npp.3 19.1 (17.9, 20.5) 33.1 (28.5, 38.9) 2.6
po.npp.3 23.9 (22.5, 25.4) 25.1 (21.7, 29.7) 2.1

Table 7: Interpreter application, psdc × 1e3.

CPU memory ohd.

3 4.6 (4.2, 5.1) 24.9 (22.6, 27.4) 5.9
mixed 5.1 (4.7, 5.7) 36.3 (33.5, 39.2) 4.7
po.3 7.3 (6.7, 7.9) 49.1 (45.9, 52.4) 3.3

interpreter components, i.e. lexer, parser, and evaluator. According

to Figures 4 and 5, the evaluator (G) is the most vulnerable part of

the interpreter application.We therefore apply the followingmixed

encoding: variant 3 is applied to the evaluator only, and the lexer

and parser are treated with variant po.3.

Table 7 lists psdc estimates and measured runtime overheads for

encoding variants 3, mixed, and po.3. Less eager error checking

gives rise to higher values of psdc, but also improves performance.

However, the di�erence in psdc for CPU faults between variants

3 and mixed is not signi�cant at the 95%-level. One could use Ta-

ble 7 as follows. If, say, psdc < 0.05 is required for memory faults,

variants 3 and mixed can be applied, and by using the mixed vari-

ant the runtime overhead is reduced by 26%, compared to 3. This

reduction would not be possible without the ability to apply di�er-

ent encoding variants to application components.

5 RELATED WORK

A summary of software-based fault tolerance schemes appeared

in [19]. Implementations of error detection by source code transfor-

mation appeared early [34] and has recently received renewed at-

tention [24, 26]. Compiler-based implementations typically add er-

ror detection and recovery mechanisms to an intermediate or low-

level representation of programs, e.g., [9, 11, 16, 25, 33, 35, 37, 40].

The DMR scheme EDDI [33] inserts duplication at the level of

machine instructions, incurring a runtime overhead of about 2×.

The SWIFT scheme [35] assumes that memory is protected by ECC

and achieves a runtime overhead of less than 1.5× by removing

redundant error checks. Similarly, the ESoftCheck scheme [47] re-

ports an average overhead of about 1.5×. The Shoestring scheme

acknowledges that not all applications require equally high lev-

els of fault tolerance [14]. DMR-based error detection has recently

been implemented using SIMD extensions [10].

AN encoding was introduced in [7] and studied in detail, among

other arithmetic error codes, in [2, 18]. Protecting processors by

AN encoding was suggested in [17], where the ANB and ANBD

schemes were also introduced.While large runtime overheads have

been reported for AN encoding and the derived ANB and ANBD-

mem schemes in [40], the rates of sdc are very low at the same time.

The ED4I [31] and the ∆-encoding [26] schemes combine DMR

with AN encoding for the purpose error detection. ∆-encoding

comes in di�erent variants, the fastest of which leads to overheads

between 2× and 4×. The present work has borrowed the concept

of accumulating values to be checked from [26].

Schemes for detecting erroneous control �ow typically assign

signatures to basic blocks. Signatures are then checked dynami-

cally to detect errors [32, 45]. The impact of compiler optimizations

on control-�ow protection has been studied in [15].

Trade-o�s between fault tolerance and hardware performance

measures, i.e. area and power, were analyzed for two hardware-

implemented schemes in [5]. All of the mentioned DMR schemes

come in di�erent variants that allow trading levels of fault toler-

ance for performance. To the best of our knowledge, the present

work is the �rst comprehensive analysis of trade-o�s in the AN

encoding scheme.

6 SUMMARY AND OUTLOOK

We have presented a con�gurable AN encoder that adds error de-

tection to programs in LLVM IR form. The studied variants of AN

encoding produce program binaries with varying levels of fault

tolerance and runtime overheads, and it has been found that the

overhead of AN encoding can be reduced from 9.9× down to 3.6×,

considerably less than previously reported in the literature [40].

While techniques speci�c to AN encoding have played a role in

this, more performance can be gained if programs are optimized

before applying AN encoding.

As the runtime overhead of AN encoding is reduced, the prob-

ability that a fault in the CPU leads to silent data corruption rises

from 0.007 to over 0.022. However, this increase is gradual, imply-

ing that performance and tolerance of CPU faults can be adjusted

according to an application’s needs. The probability that a memory

fault results in silent data corruption rises from 0.009 to over 0.032.

More interestingly, the vulnerability of an application to faults in

memory varies greatly for the studied encoding variants. Theways

in which an application uses the stack has been identi�ed as the

reason for this variation. It would therefore make sense to pair our

AN encoder with error detectionmeasures that are inserted during

a later compilation stage and that speci�cally target the stack. This

would enable the protection of local variables, register spills, and

callee-saved registers against faults in memory.

By not protecting pointers, the overhead of AN encoding can

be further reduced to 2.1×, which is comparable with early DMR-

based schemes [33]. This should motivate future work to aim for a

reduction to below 1.5×, which is seen in more sophisticated and

selective DMR schemes [14, 35, 47]. Alternatively, one might want

to look into hardware support for AN encoding: if address buses

could handle encoded addresses, the observed overhead of 2.1×

could be achieved without losing the protection of pointers.

An arithmetic expression interpreter has been used to show that

it can be bene�cial to apply di�erent encoding variants to applica-

tion components, based on how vulnerable individual components

are to hardware faults. The decision which encoding variants to

apply was based on the results of long-running fault injection ex-

periments, which is not very practical. Hence, research is required

into statical analyses that can estimate an application’s vulnerabil-

ity to hardware faults, ideally also depending on the chosen code

generation and optimization methods.

Finally, future work should look into carrying the presented

analysis of trade-o�s over to other encoding-based error detection

schemes, cf. [17, 22, 26, 40].
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