
High-Level NoC Model for MPSoC Compilers
Christian Menard, Andrés Goens, and Jeronimo Castrillon

Center for Advancing Electronics Dresden (cfaed)
Technische Universität Dresden, Dresden, Germany

Email: firstname.lastname@tu-dresden.de

Abstract—Programming modern Multi-Processor Systems-on-
Chip (MPSoCs) is a complex problem. To address it, academic
compilers and programming flows exist that use internal hard-
ware models and simulations to guide the automatic search for an
efficient implementation. For the search to be effective, models
need to be accurate to guide the search in the right direction
and fast to allow for exploration of the large design space that
comes with modern architectures. However, academic flows rarely
evaluate the accuracy of their models against real hardware. In
this paper, we introduce a high-level analytical Network-on-Chip
(NoC) model, amenable for integration in MPSoC compilation
flows, and validate it against actual hardware. On a trace-driven
discrete event simulation, we show potential for a simulation
speedup of an order of magnitude compared to a state-of-the-
art SystemC model. We show that the model is accurate in
low network congestion regimes, using 2, 500 randomly-generated
applications. In the case study, our model is within 1% relative
error more than 88% of the time, and within 5% more than
99% of the time. Finally, we also stress the model to determine
a suitable operational range.

I. INTRODUCTION

Data access speed plays a crucial role in the efficiency of
execution in most computing systems. In the same manner,
with the multicore era, inter-core communication has been
increasingly important for ensuring performance and efficiency.
As Multi-Processor Systems-on-Chip (MPSoCs) keep increas-
ing in size and diversity, Network-on-Chip (NoC) technologies
become imperative if the chip performance is to scale.

As new developments constantly push the boundaries of
modern hardware, the difficulty of programming this hardware
increases accordingly. In order to harness the power of
NoC-based SoCs, a developer not only has to partition the
applications but also explore where in the chip which part of the
code will be executed. The complexity of this problem grows
exponentially with the size of applications and architectures.
Therefore, we need compilers that automate the deployment
of applications on MPSoC platforms.

Several academic works are addressing the problem of
efficient MPSoC programming, like MAPS [1], Sesame [2],
Daedalus [3], DOL [4], or Turnus [5]. In order to decide
how to partition and deploy applications, and to evaluate the
decisions, most academic flows rely on simulations, which in
turn rely on hardware models. The simulations should be fast
in order to evaluate a large portion of the design-space in a
short development cycle. They should also be accurate, in order
to make right decisions and produce good results. However,
most works assume fast and accurate simulations are given and
focus on methods for using them. In particular, most academic

flows for programming MPSoCs stay at the model level and
do not validate their results running on actual silicon.

In this paper, we focus on the hardware models used in
MPSoC compilers, and study their accuracy with respect
to execution on actual hardware. For this, we introduce an
analytical NoC hardware model for trace-driven discrete event
simulation. Our model differs from traditional NoC-simulators
like HNOCS [6], Booksim [7], or Noxim [8] which provide
a cycle-accurate simulation of the NoC itself. This level of
detail is too complex in order to quickly simulate applications
executing on systems. Our model, instead, abstracts hardware
details and focuses on efficient system-level simulation of entire
applications for performance estimation in MPSoC compilers.

While the approach of trace-driven simulation on a high
abstraction level warrants speed, we show it can also be
accurate. In order to validate our model, we integrate it
into the MAPS MPSoC programming flow [9] and compare
simulations to measurements on a real MPSoC platform, the
Tomahawk2 [10]. We do this with a pipeline application similar
to those common in the multimedia and signal processing
domains as well as with randomly-generated applications.

The rest of this paper is structured as follows. Section II
gives background information. We introduce our NoC model
in Section III and compare it to real hardware in Section IV.
Section V presents related work, and Section VI concludes the
paper.

II. BACKGROUND

This section briefly introduces the Tomahawk MPSoC
platform, that we use for validation, as well as the MAPS
compiler framework, in which we integrated our NoC model.

A. Tomahawk

Tomahawk is a family of research MPSoCs targeting systems
with high performance and energy-efficiency requirements [11].
For this paper, we use the second generation Tomahawk,
the Tomahawk2 [10]. However, we only use a subset of the
available components.

Figure 1 shows the simplified top-level view of the Toma-
hawk2, as used in this paper. It consists of eight Xtensa LX4
processing elements (PEs) with 64 kiB of local scratchpad
memory and an SDRAM-Interface. A star-mesh NoC connects
all components with each other. The NoC is packet switched
with a packet size of 8 bytes, implements xy-routing, and
is deadlock free. On the Tomahakw2, all network nodes and



Router
(0,0)

Router
(0,1)

Router
(1,0)

Router
(1,1)

PE0

PE1PE2

PE3

PE4

PE5PE6

PE7

RAM

Fig. 1: A simplified top view of the Tomahawk2 MPSoC

routers operate asynchronously in their own clock domain. De-
pending on the configuration, this may lead to a heterogeneous
distribution of bandwidth among all the network links. In this
paper, we use a homogeneous configuration where the routers
operate at 500 MHz and the PEs operate at 200 MHz.

B. MAPS

MAPS is a retargetable compiler framework for program-
ming heterogeneous MPSoC platforms [1]. It uses Kahn process
networks (KPN) [12] as its underlying programming model
and provides a complete tool-flow from KPN applications to
implementations for various target platforms. Details on the
programming model and compiler framework follow.

1) KPN: A KPN is a directed graph in which nodes corre-
spond to processes and edges correspond to communication
channels [12]. KPN processes may have an arbitrary control
flow, but may only communicate by reading/writing atomic
data elements (tokens) from/to channels. The channels are
unbounded FIFO queues and allow a producing process to
send tokens to a consuming process.

2) Compiler Framework: MAPS implements heuristics for
deriving mappings of KPN applications. Here, a mapping is an
assignment of KPN processes and channels to computation and
communication resources on the target platform. In order to
get information on the runtime behavior of KPN applications,
MAPS derives execution traces for all KPN processes. Based on
the process traces and a hardware model of the target platform,
MAPS searches for an optimized mapping. Figure 2 illustrates
the structure of the MAPS compiler framework.

A process trace is a sequence of segments, where a segment
is a particular kind of path through a process’ control flow
graph (CFG) [1]. It starts and ends with a synchronization
event, which, in this paper, is a read access from an input
channel or a write access to an output channel.

In order to estimate the performance of KPN applications
on a target platform, MAPS provides a discrete event simulator
called TRM (trace replay module). Guided by the event traces,
the TRM simulates the execution of a given application for
a given mapping based on a hardware model of the target
platform.

Trace Generation

Mapping and Scheduling

Simulation (Trace Replay Module)

Code Generation

HW
Model

KPN
Apps Config

.c File.c File .c File

Fig. 2: The MAPS compiler framework

The hardware model itself comprises a processor model and
a communication model. The processor model provides cost
estimations for the execution of a trace segment on a given
processor architecture. The costs for performing read and write
accesses on KPN channels are captured by the communication
model. In this paper, we focus on the communication model
and replace the processor model by measured values.

3) Communication Model: The communication model of
MAPS includes an interconnect model and so-called communi-
cation primitives. The interconnect model defines the available
communication resources in the target platform, e.g., memories
and buses. Communication primitives are an abstraction for
communication via KPN channels. They describe and model
the software API that implements the KPN semantics on the
target platform. In this way, different APIs using the same
hardware can be modeled and effectively used.

A communication primitive is defined as a four-tuple CP [9].

CP =
(
PEi, PEj , S ⊆ CR, CMCP

)
(1)

This tuple expresses how a process running on PEi can
communicate with a process running on PEj via a set of
communication resources S, a subset of CR, the set of all
communication resources that a platform provides. The cost
model CMCP is composed of three functions that map commu-
nication volume to a cost value in different phases [13]. When
communicating x bytes, PCP (x) represents data production
costs on the producer side (PEi), T CP (x) transport costs in the
interconnect (e.g., a DMA unit in S), and CCP (x) consumption
costs on the consumer side (PEj).

CMCP =
{
CCP (x), T CP (x),PCP (x)

}
(2)

We consider costs in terms of time. However, the costs can
also represent other parameters, e.g., energy consumption.

III. NOC-AWARE COMMUNICATION MODEL

Since the MAPS hardware model was designed for mod-
eling bus-based architectures, it is not well suited for NoC
architectures. Firstly, the interconnect model is not aware of
routers and links along the path of a data transport. Secondly,



cost estimation only depends on the data volume but does
not respect the network route. In this section, we describe
an extended model for NoC-based architectures and derive a
concrete model for the Tomahawk2.

A. Model Extension

In our model, a NoC is a list of routers, unidirectional
links, and endpoints. An endpoint may be a global memory or
a PE with local memory. Each link has a known constant
bandwidth and the routers operate according to a known
oblivious deterministic routing algorithm. The links either
connect a PE and a router or two routers with each other.
Given two endpoints A and B, this model can be used to
derive the route from A to B. Knowing the route, one can
determine the number of hops as well as the bandwidths of
links along the route.

The NoC-aware cost model is based on the split cost model
as shown in Equation 2, but extends the cost functions by
additional arguments. This extension allows modeling the
dependence of communication costs and the network route.
The cost functions for consuming, transport, and producing
map the data volume x as well as the number of hops h and
the bandwidth of the route’s slowest link b to a cost value.

CMCP
NoC =

{
CCP (x, b, h), T CP (x, b, h),PCP (x, b, h)

}
(3)

By separating interconnect and cost model, it is possible to
define communication costs independent of the definition of
the network architecture. This allows for quick exploration of
various network architectures while maintaining the network’s
characteristics. Additionally, the influence of various network
configurations on the application performance can be explored
for a given architecture.

B. Model Derivation

On the Tomahawk2 we distinguish three different ways of
implementing KPN channels depending on the placement of
the underlying FIFO buffer. This buffer is either located in the
global RAM, in the scratchpad that is local to the producing
process, or in the scratchpad that is local to the consuming
process. In this paper, we focus on NoC-communication and,
therefore, we do not consider the case of communicating via
global RAM. This would require a model of the memory
controller.

In order to create a complete communication model for
the Tomahawk2, we need to define communication primitives
for all possible ways of implementing KPN channels on
the Tomahawk2. The communication primitives Pi,j model
communication from PEi to PEj via the producer’s scratchpad
Si while the primitives Ci,j model communication via the
consumer’s scratchpad Sj .

Pi,j =
(
PEi, PEj , Si, CMP

NoC

)
, i 6= j (4)

Ci,j =
(
PEi, PEj , Sj , CMC

NoC

)
, i 6= j (5)

The communication primitives Pi,j and Ci,j require cost
models for communication via the producer’s scratchpad
(CMP

NoC) and via the consumer’s scratchpad (CMC
NoC),

0 512 1,024 1,536 2,048

300

400

500

Token size in bytes

Ti
m

e
in

cy
cl

es

consume (1 hop)
consume (3 hops)
produce

Fig. 3: Time measurement for remote buffer accesses.

respectively. In order to define the cost models, we need to
derive the cost functions for consuming, transporting, and
producing. We do this by measuring the costs on the target
device.

CMP
NoC =

{
CP (x, b, h), T P (x, b, h),PP (x, b, h)

}
(6)

CMC
NoC =

{
CC(x, b, h), T C(x, b, h),PC(x, b, h)

}
(7)

In the case of the Tomahawk2, we assume that there is no
transport delay as the implementation does not transfer data
in parallel to processor operation, for which T P (x, b, h) =
T C(x, b, h) = 0. Consuming or producing a token in a local
buffer does not require any data transfer and, therefore, the
costs for performing local channel accesses do not depend on
data volume, bandwidth, or the number of hops. The costs
only need to represent the execution of operations required to
implement the access, which is a constant value. We measure
the costs for local channel accesses on the Tomahawk2 to be
205 cycles for producing and 164 cycles for consuming, i.e.,
CC(x, b, h) = 164 and PP (x, b, h) = 205.

In contrast to local channel accesses, remote channel accesses
require data transfers, and, therefore, the access costs depend
on data volume, bandwidth, and the number of hops. In order to
derive the cost functions for the Tomahawk2, we performed a
series of measurements with varying data volumes and number
of hops. Figure 3 shows the results of this measurement. More
details on how we measured communication costs on the
Tomahawk2 can be found in [14].

On the Tomahawk2, two PEs can only communicate over
a distance of one hop or a distance of three hops. Therefore,
we only need to consider these two cases. As the NoC on the
Tomahawk2 does not send an acknowledgment when writing
data, a process that produces a token in a remote buffer has
no notion of the travel time of a single packet. Therefore, the
time required for a remote produce operation is independent
of the number of hops. Only the time required for a remote
consume operation depends on the number of hops, as the
process performing the access has to send a read request and
waits until the reply arrives.

The plots in Figure 3 clearly have a linear trend. Therefore,
we use linear regression analysis to derive the following
functions:



CPh=1(x) = 258 + 0.1256 · x (8)

CPh=3(x) = 289 + 0.1256 · x (9)

PC(x) = 299 + 0.1256 · x (10)

We generalize CP using linear interpolation and get:

CP (x, h) = 242.5 + 15.5 · h+ 0.1256 · x

The slope in Equations 10 and III-B is the inverse data rate
of the transfer. Therefore, we can generalize the equations
for an arbitrary bandwidth by setting the slope to the inverse
bandwidth.

PC(x, b, h) = 299 +
x

b
(11)

CP (x, b, h) = 242.5 + 15.5 · h+
x

b
(12)

Apart from the communication model, we also need to derive
an interconnect model for the Tomahawk2. The model simply
resembles the Tomahawk2 NoC by using the same arrangement
of links, routers, and endpoints (PEs). In order to define the
bandwidth of all links in the model, we measured the link
bandwidth on the Tomahawk2. We found that links connecting
a PE and a router have a bandwidth of 8.0 byte/cycle. Links that
connect two routers have a bandwidth of 10.2 byte/cycle.

IV. EVALUATION

In this section we present two experiments that compare the
TRM predictions using the proposed Tomahawk2 communica-
tion model with measured times on real hardware. The first
experiment evaluates the model’s accuracy by analyzing ran-
domly generated KPN applications. In the second experiment,
we use a synthetic benchmark to stress the model and thereby
determine its operational range. We also report on the speed
of the proposed model to show its applicability in MPSoC
programming flows.

A. Random KPNs

In this experiment, we analyze a total of 2, 500 randomly
generated KPN traces, 50 different graphs and 50 traces per
graph. For graph generation we use the SDF-for-free (SDF3)
tool [15] and then modify the traces in order to derive a
KPN application, using the process described in [16]. In order
to execute the generated application on the Tomahawk2, we
created a script that generates source code from process traces.
Computational segments are simply implemented by calling a
function that waits for a given number of cycles.

Each one of the generated KPN applications consists of
up to eight processes. Each channel has a mean token size
of 512 bytes and each process segment has a mean length of
5,000 cycles. The Load Balancer [1] algorithm of MAPS is
used to derive a mapping for each application. Then the TRM
estimates the total execution time of this application and the
application is executed on the Tomahawk2 in order to measure
the actual execution time.

For each pair of measured and predicted execution times we
calculate the relative error of the TRM prediction. Figure 4

Minimum −0.983%
1st Quartile −0.338%
Median −0.191%
Mean 0.186%
3rd Quartile 0.258%
Maximum 15.331%

0 5 10 15

Relative error in %

Fig. 4: Distribution of the relative error of TRM predictions.

shows characteristics of the distribution of the relative error in
all 2, 500 measurements. The results show that most predictions
are close to the actual measured value. The relative error is
less than 1% for 88% of all analyzed KPNs and is less than 5%
for 99% of all analyzed KPNs. However, there are cases where
the TRM underestimates the total execution time significantly.
We observed a maximum relative error of 15.3%. In order to
examine the cause of significant mispredictions and to analyze
the operating range of our model, we examine a synthetic
benchmark in the following section.

B. Pipeline Application

The second experiment analyzes performance predictions
for a pipelined KPN application as shown in Figure 5a. The
application consists of a source process, a sink process, and six
worker processes. The source and sink processes permanently
produce and consume tokens. The worker processes consume
a token on the input channel, perform computations, and
then produce a token on the output channel. For the sake of
simplicity, the processes do not perform actual computations but
wait for 1,000 cycles. Each process consumes and/or produces
a total of 1,000 tokens. For the experiment, we vary the token
size from 1 to 4,096 bytes.

The experiment considers two possible ways of mapping
the pipeline application to the Tomahawk2. The best case
mapping (Figure 5b) minimizes the distance between processes
that communicate with each other and ensures that each link
hast to serve at most one KPN channel. The worst case
mapping (Figure 5b) maximizes the distance between processes
and the links have to serve up to four KPN channels.

In addition to the process mapping, the placement of channel
buffers has to be considered. For each channel, the buffer can
be placed in the scratchpad of the producing process or in the
scratchpad of the consuming process. In this experiment, we
consider the case where all buffers are stored on the consumer
side and the case where all buffers are stored on the producer
side.

Figures 5c and 5e visualize the measured results. The plots
show the measured total execution time of the KPN application
for the best case and the worst case mapping as well as the
TRM prediction. As the TRM prediction for best case and
worst case mapping only differ by a few hundred cycles, the
diagram only shows the TRM values for the best case mapping.

In the case that all channel buffers are mapped to the
consumer scratchpad (Figure 5c), the measured best case
execution time matches the TRM simulation. However, the
measured execution time for the worst case mapping only
matches the TRM prediction for relatively small token sizes



Src

W1

W2

W3

W4

W5

W6

Sink

(a) KPN

W1

W2W3

Src

W6

SinkW4

W5

RAM

(b) Best Mapping

0 1,024 2,048 3,072 4,096

1.5

2

2.5

·106

Token size in bytes

E
xe

cu
tio

n
tim

e
in

cy
cl

es Measured (Best mapping)
Measured (Worst mapping)
TRM (Best mapping)

(c) Transfer via consumer scratchpad

W6

W4W2

Src

Sink

W1W3

W5

RAM

(d) Worst Mapping

0 1,024 2,048 3,072 4,096

1.5

2

2.5

·106

Token size in bytes

E
xe

cu
tio

n
tim

e
in

cy
cl

es Measured (Best Mapping)
Measured (Worst mapping)
TRM (Best mapping)

(e) Transfer via producer scratchpad

Fig. 5: Comparison of measured execution times and TRM predictions of a synthetic pipeline application for various cases.

and diverges significantly for token sizes larger than 2,048
bytes. This divergence is caused by network congestion as
multiple KPN channels share the same network links.

Our model does not consider network congestion and,
therefore, produces poor estimations for highly congested
networks. However, we can detect congestion during simulation
by comparing the bandwidth for all links to the combined
average throughput of all KPN channels using the links. This
is valuable information for an MPSoC compiler as it will try to
avoid implementations that lead to network congestion. If cost
predictions for congested networks are required, the simulator
could try to estimate the costs based on total throughput of
active channels and the link bandwidth, or it could fall back
to a slower but more detailed model.

In the case that all channel buffers are mapped to the producer
scratchpad (Figure 5e), the measured values for both the best
case mapping and the worst case mapping are significantly
higher than the predicted values. This behavior is caused
by the interface between network and scratchpad memory.
The interface cannot handle read and write requests from the
network simultaneously, which causes additional delays.

In the pipeline application, a worker process Wi that finishes
producing a token immediately consumes a token. At the same
time, the following worker process Wi+1 consumes the token
produced by Wi. However, the network interface is already
busy handling the read request of Wi and the read request of
Wi+1 is delayed. This leads to the discrepancy between the
model predictions and measured execution times.

The prediction errors in Figure 5e, show that there are
hardware effects that cannot be easily covered on the high
abstraction level of our model. Analysis of the randomly

generated KPNs showed, that the mispredictions are caused by
the effect described above. However, as we demonstrated in
the first experiment, we achieve accurate results for most of
the cases despite this limitation.

C. Simulation Speed

To evaluate the speed of the proposed model, we integrated
it on a simple TRM implementation that is based on the simpy
Python module for discrete event simulation [17]. We simulate
a pipeline, similar to the application described in the previous
section, with 16 processes on a 4 × 4 NoC. We found that
our TRM module simulates the 15,000 transactions (produce,
transfer, and consume) of the pipeline application in about a
second on an Intel® Core™ i7-6500U based system. As we
do not consider dynamic behavior of the NoC, this value does
neither depend on the simulated NoC architecture nor on the
token size of the simulated channels.

For comparison purposes, we measured the time required for
simulating a similar workload (15,000 packets, 0.001 packets/cycle

injection rate) on a 4×4 NoC in the Systemc-based Noxim [8].
For a payload of 512 bytes per transaction/packet and a flit size
of 64 bits, we found that Noxim requires around 10 seconds
per simulation. This is one order of magnitude slower than
our unoptimized TRM implementation. However, the speedup
depends on the average payload per transaction or packet. As
Noxim simulates every single FLIT, the simulation effort and,
therefore, also the speedup, increases with the packet size. For
packets with only one data flit (8 byte payload) Noxim still
requires about four seconds.



V. RELATED WORK

In the literature, there are various tools for high-level evalu-
ation of MPSoC designs that use trace-driven simulation [18]–
[21]. SPADE is an early example of an efficient methodology
for exploration of signal processing architectures [18]. Similar
to our approach, SPADE maps KPN applications to architecture
models and uses trace-driven simulation for performance
evaluation. Lahiri, Raghunathan, and Dey described a trace-
driven approach for accurate modeling of dynamic behavior
in bus communication for various protocols [19]. Plyaskin,
Masrur, Geier, et al. presented a trace-driven SystemC
TLM SoC simulator that considers application as well as
OS workload and precisely models memory accesses [20].
RAPITIMATE is a timing estimation framework that targets
pipelined MPSoCs [21]. All these approaches focus on bus-
based systems and do not consider communication in a NoC-
based architecture.

There are also several simulation tools for exploration of
NoC architectures [6]–[8]. HNOCS is an open-source NoC
simulator that targets heterogeneous NoC designs [6]. Booksim
is cycle-accurate NoC-simulator that uses a modular structure
and provides detailed and configurable implementations of
various network components [7]. Noxim is a cycle-accurate
SystemC NoC simulator that considers not only traditional
NoC architectures but also models wireless NoCs [8]. All of
these tools are designed for exploration of NoC designs and
provide very detailed simulations. However, this level of detail
leads to relatively slow simulations and is not required for
evaluation of application mappings. These simulators also are
often limited to certain topologies and switching techniques.

VI. CONCLUSION

We presented an abstract analytical NoC-model for perfor-
mance estimation of applications mapped to MPSoC platforms
and integrated it with a trace-driven simulator. We compared
simulation results with measured execution times on the
Tomahawk2 and found that our high-level approach provides
accurate prediction without the need for a detailed hardware
model in most of the cases. In contrast to related work, our
approach combines trace-based simulation with an abstract
NoC-model. We showed that this allows us to provide fast and
accurate evaluation of application mappings.

Future work includes the integration of a model for network
congestion. We want to analyze, whether it is possible to
accurately predict the overhead in communication costs for
congested networks on a high abstraction level. Furthermore,
we want to evaluate our model on larger systems and analyze
its applicability for multi-application scenarios.

ACKNOWLEDGMENT

This work was partly supported by the German Research
Foundation (DFG) within the Cluster of Excellence “Center for
Advancing Electronics Dresden” (cfaed). The authors would
also like to thank Silexica (www.silexica.com) for making their
embedded multicore software development tool available to us.

REFERENCES

[1] J. Castrillon, R. Leupers, and G. Ascheid, “MAPS: Mapping concurrent
dataflow applications to heterogeneous MPSoCs,” IEEE Trans. Ind.
Inform., vol. 9, no. 1, pp. 527–545, Feb. 2013.

[2] C. Erbas, A. D. Pimentel, M. Thompson, and S. Polstra, “A framework
for fystem-level modeling and simulation of embedded systems
architectures,” EURASIP J. Embed. Syst., vol. 2007, pp. 1–11, 2007.

[3] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R.
Bose, C. Zissulescu, and E. Deprettere, “Daedalus: Toward composable
multimedia MP-SoC design,” Proc. 45th ACMIEEE Des. Autom. Conf.
DAC08, pp. 574–579, Jun. 2008.

[4] L. Thiele, I. Bacivarov, W. Haid, and K. Huang, “Mapping applications
to tiled multiprocessor embedded systems,” Proc. Th 7th Int. Conf.
Appl. Concurr. Syst. Des. ACSD07, pp. 29–40, Jul. 2007.

[5] S. Casale-Brunet, C. Alberti, M. Mattavelli, and J. W. Janneck,
“Turnus: A unified dataflow design space exploration framework for
heterogeneous parallel systems,” Proc. 2013 Conf. Des. Archtictures
Signal Image Process. DASIP13, pp. 47–54, Oct. 2013.

[6] Y. Ben-Itzhak, E. Zahavi, I. Cidon, and A. Kolodny, “HNOCS:
Modular open-source simulator for heterogeneous NoCs,” 2012 Int.
Conf. Embed. Comput. Syst. SAMOS, pp. 51–57, Jul. 2012.

[7] N. Jiang, J. Balfour, D. U. Becker, B. Towles, W. J. Dally, G.
Michelogiannakis, and J. Kim, “A detailed and flexible cycle-accurate
network-on-chip simulator,” 2013 IEEE Int. Symp. Perform. Anal. Syst.
Softw. ISPASS2013, pp. 86–96, Apr. 2013.

[8] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti, “Noxim:
An open, extensible and cycle-accurate network on chip simulator,”
2015 IEEE 26th Int. Conf. Appl.-Specif. Syst. Archit. Process. ASAP13,
pp. 162–163, Jul. 2015.

[9] J. Castrillon and R. Leupers, Programming heterogeneous MPSoCs.
Cham: Springer International Publishing, 2014.

[10] B. Noethen, O. Arnold, E. P. Adeva, et al., “10.7 A 105GOPS 36mm2
heterogeneous SDR MPSoC with energy-aware dynamic scheduling
and iterative detection-decoding for 4G in 65nm CMOS,” 2014 IEEE
Int. Solid-State Circuits Conf. Dig. Tech. Pap. ISSCC14, pp. 188–189,
Feb. 2014.

[11] T. Limberg, M. Winter, M. Bimberg, et al., “A heterogeneous MPSoC
with hardware supported dynamic task scheduling for software defined
radio,” Proc. 46th ACMIEEE Des. Autom. Conf. DAC09, 2009.

[12] G. Kahn, “The semantics of a simple language for parallel program-
ming,” pp. 471–475, 1974.

[13] M. Odendahl, J. Castrillon, V. Volevach, R. Leupers, and G. Ascheid,
“Split-cost communication model for improved MPSoC application
mapping,” 2013 Int. Symp. Syst. Chip SoC, pp. 1–8, Oct. 2013.

[14] C. Menard, “Mapping KPN-based applications to the NoC-based
Tomahawk architecture,” Master’s Thesis, TU Dresden, Mar. 24, 2016.
[Online]. Available: https://cfaed.tu-dresden.de/files/user/jcastrillon/
theses/1603_Menard_DA.pdf (visited on 10/10/2016).

[15] S. Stuijk, M. Geilen, and T. Basten, “SDF3: SDF for free,” Appl. Con-
curr. Syst. Des. ACSD06, pp. 276–278, 2006. (visited on 08/22/2016).

[16] J. Castrillon, A. Tretter, R. Leupers, and G. Ascheid, “Communication-
aware mapping of KPN applications onto heterogeneous MPSoCs,”
Proc. 49th Des. Autom. Conf. DAC12, pp. 1262–1267, Jun. 2012.

[17] K. Müller and T. Vignaux, SimPy: Simulating systems in Python,
Feb. 27, 2003. [Online]. Available: http://www.onlamp.com/pub/a/
python/2003/02/27/simpy.html (visited on 08/22/2016).

[18] P. Lieverse, P. van der Wolf, E. Deprettere, and K. Vissers, “A
methodology for architecture exploration of heterogeneous signal
processing systems,” 1999 IEEE Workshop Signal Process. Syst.
SiPS99, pp. 181–190, 1999.

[19] K. Lahiri, A. Raghunathan, and S. Dey, “System-level performance
analysis for designing on-chip communication architectures,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 20, no. 6, pp. 768–
783, Jun. 2001.

[20] R. Plyaskin, A. Masrur, M. Geier, S. Chakraborty, and A. Herkersdorf,
“High-level timing analysis of concurrent applications on MPSoC
platforms using memory-aware trace-driven simulations,” 2010 18th
IEEEIFIP Int. Conf. VLSI Syst.–Chip, pp. 229–234, Sep. 2010.

[21] S. M. M. Shwe, K. Batra, Y. Yachide, J. Peddersen, and S.
Parameswaran, “RAPITIMATE: Rapid performance estimation of
pipelined processing systems containing shared memory,” 2015 33rd
IEEE Int. Conf. Comput. Des. ICCD, pp. 635–642, Oct. 2015.


