Towards a Next-Generation Parallel Particle-Mesh
Language®

Sven Karol!, Pietro Incardona?3, Yaser Afshar?3, Ivo F.
Sbalzarini?3, and Jeronimo Castrillon®

1 Chair for Compiler Construction, Center for Advancing Electronics Dresden,
TU Dresden, Dresden, Germany
[sven.karol| jeronimo.castrillon]@tu-dresden.de

2 MOSAIC Group, Chair of Scientific Computing for Systems Biology, Faculty
of Computer Science, TU Dresden, Dresden, Germany

3 Center for Systems Biology Dresden, Max Planck Institute of Molecular Cell
Biology and Genetics, Dresden, Germany
[afshar|incardon|ivos]@mpi-cbg.de

—— Abstract

We present our previous and current work on the parallel particle-mesh language PPML—a DSL
for parallel numerical simulations using particle methods and hybrid particle-mesh methods in
scientific computing.

1 Introduction

During the past years, domain-specific languages (DSLs) gained central importance in
scientific high-performance computing (HPC). This is due to the trend towards HPC clusters
with heterogeneous hardware—today, mainly using multi-core CPUs as well as streaming
processors such as GPUs—in the future, using many-core CPUs, and potentially also
reconfigurable processors or data-flow processing units. Writing programs for these machines
is a challenging and time-consuming task for scientific programers, who do not only need
to develop efficient parallel algorithms for the specific problem at hand, but also need to
tune their implementations in order to take advantage of the cluster’s hardware performance.
This does not only require experience in parallel programming, e.g. using OpenMP, OpenCL,
or MPI, but also in computer architectures and numerical simulation methods, leading to the
so-called “knowledge gap” in program efficiency [12]. Besides, it renders the simulation codes
hardly portable. DSLs can help two-fold: First, they allow scientific programmers to write
programs using abstractions closer to the original mathematical representation, e.g., partial
differential equations. Second, they transparently encapsulate hardware-specific knowledge.

In the proposed talk, we focus on the parallel particle-mesh language (PPML) [3]. This
language provides a macro-based frontend to the underlying PPM library [13, 2] as a
parallel run-time system. We analyze PPML’s implementation as well as its advantages
and disadvantages w.r.t. state-of-the-art DSL implementation techniques. Based on this
analysis, we discuss our early efforts in realizing the next version of PPML (Next-PPML) in
conjunction with a redesign of the PPM library in C++.

* This work is partially supported by the German Research Foundation (DFG) within the Cluster of
Excellence “Center for Advancing Electronics Dresden”.

Towards a Next-Generation Parallel Particle-Mesh Language

2 Particle and Mesh Abstractions

In scientific computing, discrete models are naturally simulated using particles that directly
represent the discrete entities of the model, such as atoms in a molecular-dynamics simulation
or cars in a traffic simulation. These particles carry properties and interact with each other
in order to determine the evolution of these properties and of their spatial location. But also
continuous models, written as partial differential equations, can be simulated using particles.
In this case, the particle interactions discretize differential operators, such as in the DC-PSE
method [14]. This is often combined and complemented with mesh-based discretizations,
such as the finite-difference method. Mesh and particle discretizations are equivalent in that
they approximate the simulated system by a finite number of discrete degrees of freedom that
are the particles or the mesh cells. When using particles together with meshes, it is sufficient
to consider regular Cartesian (i.e., checkerboard) meshes, since all irregular and sub-grid
phenomena are represented on the particles, which can arbitrarily distribute in the domain.

Particles and meshes hence define data abstractions. A particle is a point abstraction
that associates a location in space with arbitrary properties, like color, age, or the value of
a continuous field at that location. These properties, as well as the particle locations, are
updated at discrete time steps over the simulation period by computing interactions with
surrounding particles within a given cut-off radius. Meshes are topological abstractions with
defined neighborhood relations between cells. The properties are stored either on the mesh
nodes or the mesh cells. The PPM library supports both types of abstractions, and also
provides conversion operators between them (i.e., particle-mesh interpolation).

3 Current Status of PPM(L)

Currently, PPM is implemented in object-oriented Fortran2003 [13, 2] and PPML is a macro
system embedded in Fortran2003 [3]. PPML and PPM support transparently distributed
mesh and particle abstractions, as well as parallel operations over them. This also includes
properties and iterators. Different domain-decomposition algorithms allow for the automatic
distribution of data over the nodes of an HPC cluster. Assigning data and work to processing
elements is automatically done by a graph partitioning algorithm, and communication between
processing elements in transparently handled by PPM “mappings”. The mathematical
equations of the model to be simulated are written in LaTeX-like math notation with
additional support for differential operators and dedicated integration loops [3].

Syntactically, PPML is an extension of Fortran2003 providing the aforementioned ab-
stractions as domain-specific language concepts. Technically, the language is implemented as
a source-to-source transformation relying on a mixture of macro preprocessing steps where
macro calls are interspersed with standard Fortran2003 code. Besides C-style preprocessor
directives, PPML also supports non-local macros. These are implemented in Ruby using
eRuby as a macro language and the ANTLR parser generator for recognizing macro output
locations, such as integration loops. Hence, PPML is partially realized using an island
grammar [11].

In this preliminary form, PPML has already nicely demonstrated the benefits of embedded
DSLs for scientific HPC. It has reduced both the size and the development time of scientific
simulation codes by orders of magnitude [3]. It hides much of the parallelization intricacies
(PPML automatically generates MPI) from scientific programmers without preventing them
from using all features of the underlying programming language. The latter is essential since
a DSL may not cover all potential corner cases, and may not always deliver top performance.
However, the current light-weight implementation of PPML has severe disadvantages when

S. Karol and Y. Afshar and P. Incardona and |. F. Sbalzarini and J. Castrillon

Semi-declarative Program intermediate Decomposed Optimized
particle-mesh program Representation Domain Mapping

Figure 1 Compiler and grammarware-based language processing chain of Next-PPML.

it comes to code analysis algorithms targeting the whole program and domain-specific
optimizations based thereon. Moreover, PPML programs are difficult to debug due to a lack
of semantic error messages. We hence present our intended improvements addressing these
issues in Next-PPML.

4 Approach to Next-PPML

Next-PPML is a language extension using grammarware and compilerware. This allows us to
analyze larger portions of the program code. Examples such as the universal form language
(UFL) [1] for finite-element meshes, the Liszt language for mesh-based solvers [7], and the
Blitz++ [15] stencil template library have shown that domain-specific analyses and built-in
abstractions are beneficial for scientific computing DSLs. Hence, similar concepts will be
considered in the Next-PPML language.

Figure 1 conceptually illustrates the planned tool chain. First, the embedded DSL
program is parsed to an AST-based intermediate representation. This representation already
contains control-flow edges. After computing domain-specific static optimizations on this
intermediate representation, including optimizations to the communication pattern of the
parallel program, the Next-PPML compiler generates an executable (or source code) which
is then used to run the simulation on a parallel HPC cluster. During the simulation run,
the application continuously self-optimizes, e.g., for dynamic load balancing. While static
optimizations are handled by the DSL compiler, dynamic runtime optimization are handled
by the PPM library, which may rely on information provided by the DSL program.

Ideally, the new language uses a declarative approach that bases on an existing programming-
language grammar and extends it with new productions. Some well-known candidates for
this are Stratego/XT [4], TXL [6], JastAdd [8] or EMFText [9]. However, the target language
is C4++11 which has no simple declarative specification. Hence, it is difficult to estimate if
the above-mentioned tools would scale, and implementing a C++ frontend is a huge project
on its own. Therefore, we prefer Clang [10] as an implementation framework, which already
provides built-in analyses that can be adopted and extended.

5 Conclusions

Hybrid particle-mesh simulations are the only scientific computing framework that is able
to simulate models of all four kingdoms: continuous/deterministic, continuous/stochastic,
discrete/deterministic, and discrete/stochastic. This versatility makes the hybrid particle-
mesh paradigm a prime target for a generic parallel HPC DSL for scientific computing. Prior
work has shown the power of parallelization middleware libraries like PPM, and embedded
DSLs like PPML. Over the past 10 years, they have reduced code development times for
parallel scientific simulations from years to hours, and enabled unprecedented scalability

REFERENCES

on large HPC machines [5]. The envisioned Next-PPML will address current shortcomings
in code generation, static and dynamic optimization, and semantic error checking and
reporting. It is co-developed with the next generation of the PPM library in C++ using a
semi-declarative language design.

References

1]
2]

Martin Sandve Alnas et al. “Unified Form Language: A domain-specific language for
weak formulations of partial differential equations.” In: CoRR abs/1211.4047 (2012).
Omar Awile, Omer Demirel, and Ivo F. Sbalzarini. “Toward an Object-Oriented Core of
the PPM Library.” In: Proc. ICNAAM, Numerical Analysis and Applied Mathematics,
International Conference. AIP, 2010, pp. 1313-1316.

Omar Awile et al. “A domainspecific programming language for particle simulations
on distributed-memory parallel computers.” In: Proceedings of the 3rd International
Conference on Particle-based Methods. 2013.

Martin Bravenboer et al. “Stratego/XT 0.17. A Language and Toolset for Program
Transformation.” In: Science of Computer Programming 72.1-2 (2008): Second Issue of
Experimental Software and Toolkits (EST), pp. 52-70. 1sSN: 0167-6423.

Philippe Chatelain et al. “Billion Vortex Particle Direct Numerical Simulations of
Aircraft Wakes.” In: Comput. Method. Appl. Mech. Engrg. 197 (2008), pp. 1296-1304.
James R. Cordy. “The TXL Source Transformation Language.” In: Science of Com-
puter Programming 61.3 (2006): Special Issue on The Fourth Workshop on Language
Descriptions, Tools, and Applications (LDTA ’04), pp. 190-210. 1SSN: 0167-6423.
Zachary DeVito et al. “Liszt: a domain specific language for building portable mesh-
based PDE solvers.” In: Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. ACM. 2011, p. 9.

Torbjorn Ekman and Goérel Hedin. “The JastAdd System—Modular Extensible Com-
piler Construction.” In: Science of Computer Programming 69.1-3 (2007): Special Issue
on Experimental Software and Toolkits, pp. 14-26. 1SSN: 0167-6423.

Florian Heidenreich et al. “Model-Based Language Engineering with EMFText.” In:
GTTSE IV. Vol. 7680. LNCS. Springer, 2013, pp. 322-345. 1SBN: 978-3-642-35991-0.
Chris Lattner. “LLVM and Clang: Next generation compiler technology.” The BSD
Conference. 2008.

Leon Moonen. “Generating Robust Parsers Using Island Grammars.” In: Proceedings
of the FEighth Working Conference on Reverse Engineering 2001. Los Alamitos, CA,
USA: IEEE Computer Society, 2001, pp. 13-22. 1SBN: 0-7695-1303-4.

I. F. Sbalzarini. “Abstractions and middleware for petascale computing and beyond.”
In: Intl. J. Distr. Systems & Technol. 1(2) (2010), pp. 40-56.

LF. Sbalzarini et al. “PPM — A highly efficient parallel particle-mesh library for the
simulation of continuum systems.” In: Journal of Computational Physics 215.2 (2006),
pp. 566-588. 1SSN: 00219991.

Birte Schrader, Sylvain Reboux, and Ivo F. Sbalzarini. “Discretization Correction of
General Integral PSE Operators in Particle Methods.” In: J. Comput. Phys. 229 (2010),
pp. 4159-4182.

Todd L. Veldhuizen. “Blitz++: The Library that Thinks it is a Compiler.” In: Advances
in Software Tools for Scientific Computing. Ed. by Hans Petter Langtangen, Are Magnus
Bruaset, and Ewald Quak. Lecture Notes in Computational Science and Engineering
10. Berlin/Heidelberg: Springer, 2000, pp. 57-87. 1SBN: 978-3-642-57172-5.

